1
|
Gil-Pacheco E, Suárez-Navarro JA, Fernández-Salegui AB, Sánchez-González SM, Suarez-Navarro MJ, García-Sánchez A. Factors that influence the absorption of uranium by indigenous plants on the spoil tip of an abandoned mine in western Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143571. [PMID: 33248777 DOI: 10.1016/j.scitotenv.2020.143571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The purpose of this work was to study the factors affecting the absorption of U by plants growing on the spoil tip of an abandoned mine in western Spain. The plant species were selected based on how palatable they were to livestock and were sampled for four consecutive years during which, we also recorded rainfall data. The factors related to the plants studied were the leaf size and the percentage and characteristics of the arbuscular mycorrhizae (AM) fungi present in their roots. Our results showed a correlation between the annual rainfall and the U concentration in the plants. The percentage of mycorrhization and AM vesicles is a predominant factor in the uptake of U by plants. Spergularia rubra (L.) J.Presl & C.Presl, which is resistant to mycorrhization, contained higher U concentrations relative to the plants that grew with AM mycorrhization. The absorption curves of the different plants studied indicated that these plants were tolerant to 238U from 875 Bq kg-1 (70 mg kg-1), with a hormesis effect below that concentration. The annual U removal was 0.068%, suggesting that AM are responsible for limiting the incorporation of U into the food chain, favouring its retention in the soil and preventing its dispersion.
Collapse
Affiliation(s)
- E Gil-Pacheco
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), CSIC, Consejo Superior de Investigaciones Científicas, C/Cordel de Merinas, 40, 37008 Salamanca, Spain
| | - J A Suárez-Navarro
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Avd/Complutense, 40, 28040 Madrid, Spain.
| | - A B Fernández-Salegui
- Universidad de León, Departamento de Biodiversidad y Gestión Ambiental área de Botánica, Campus de Vegazana, 24071 León, Spain
| | - S M Sánchez-González
- Universidad Europea Miguel de Cervantes, C/Padre Julio Chevalier, 2., 47012 Valladolid, Spain
| | - M J Suarez-Navarro
- Universidad Politécnica de Madrid (UPM), Departamento de Hidráulica, Energía y Medioambiente, E.T.S.I. Caminos, Canales y Puertos, Profesor Aranguren s/n, 28040 Madrid, Spain
| | - A García-Sánchez
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), CSIC, Consejo Superior de Investigaciones Científicas, C/Cordel de Merinas, 40, 37008 Salamanca, Spain
| |
Collapse
|
2
|
d’Errico G, Aloj V, Ventorino V, Bottiglieri A, Comite E, Ritieni A, Marra R, Bolletti Censi S, Flematti GR, Pepe O, Vinale F. Methyl t-butyl ether-degrading bacteria for bioremediation and biocontrol purposes. PLoS One 2020; 15:e0228936. [PMID: 32084150 PMCID: PMC7034917 DOI: 10.1371/journal.pone.0228936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
A total of fifteen potential methyl t-butyl ether (MtBE)-degrading bacterial strains were isolated from contaminated soil. They have been identified as belonging to the genera Bacillus, Pseudomonas, Kocuria, Janibacter, Starkeya, Bosea, Mycolicibacterium, and Rhodovarius. Bacillus aryabhattai R1B, S. novella R8b, and M. mucogenicum R8i were able to grow using MtBE as carbon source, exhibiting different growth behavior and contaminant degradation ability. Their biocontrol ability was tested against various fungal pathogens. Both S. novella R8b and B. aryabhattai were effective in reducing the development of necrotic areas on leaves within 48 hours from Botritys cinerea and Alternaria alternata inoculation. Whereas, M. mucogenicum effectively controlled B. cinerea after 72 hours. Similar results were achieved using Pythium ultimum, in which the application of isolated bacteria increased seed germination. Only M. mucogenicum elicited tomato plants resistance against B. cinerea. This is the first report describing the occurrence of bioremediation and biocontrol activities in M. mucogenicum, B. aryabhattai and S. novella species. The production of maculosin and its antibiotic activity against Rhizoctonia solani has been reported for first time from S. novella. Our results highlight the importance of multidisciplinary approaches to achieve a consistent selection of bacterial strains useful for plant protection and bioremediation purposes.
Collapse
Affiliation(s)
- Giada d’Errico
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Veronica Aloj
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Valeria Ventorino
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Assunta Bottiglieri
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Ernesto Comite
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Alberto Ritieni
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Roberta Marra
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | | | - Gavin R. Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Olimpia Pepe
- University of Naples Federico II, Department of Agricultural Sciences, Portici (NA), Italy
| | - Francesco Vinale
- University of Naples Federico II, Department of Veterinary Medicine and Animal Production, Naples, Italy
- National Research Council, Institute for Sustainable Plant Protection, Portici (NA), Italy
- * E-mail:
| |
Collapse
|
3
|
Role of Mushroom Fungi in Decolourization of Industrial Dyes and Degradation of Agrochemicals. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Nancucheo I, Bitencourt JAP, Sahoo PK, Alves JO, Siqueira JO, Oliveira G. Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7256582. [PMID: 29119111 PMCID: PMC5651148 DOI: 10.1155/2017/7256582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 11/24/2022]
Abstract
Acidic mine drainage (AMD) is regarded as a pollutant and considered as potential source of valuable metals. With diminishing metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety of dissolved metals (Fe, Mn, Cu, Ni, and Zn) in much greater concentration than what is found in natural water bodies. There are numerous remediation treatments including chemical (lime treatment) or biological methods (aerobic wetlands and compost bioreactors) used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of treatments for metal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic microorganisms in AMD treatment.
Collapse
Affiliation(s)
- Ivan Nancucheo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - José A. P. Bitencourt
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66055-090 Belém, PA, Brazil
| | - Prafulla K. Sahoo
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66055-090 Belém, PA, Brazil
| | - Joner Oliveira Alves
- SENAI Innovation Institute for Mineral Technologies, Av. Com. Brás de Aguiar 548, 66035-405 Belém, PA, Brazil
| | - José O. Siqueira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66055-090 Belém, PA, Brazil
| | - Guilherme Oliveira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, 66055-090 Belém, PA, Brazil
| |
Collapse
|
5
|
|
6
|
Monsieurs P, Hobman J, Vandenbussche G, Mergeay M, Van Houdt R. Response of Cupriavidus metallidurans CH34 to Metals. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20594-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Yu X, Li Y, Zhang C, Liu H, Liu J, Zheng W, Kang X, Leng X, Zhao K, Gu Y, Zhang X, Xiang Q, Chen Q. Culturable heavy metal-resistant and plant growth promoting bacteria in V-Ti magnetite mine tailing soil from Panzhihua, China. PLoS One 2014; 9:e106618. [PMID: 25188470 PMCID: PMC4154735 DOI: 10.1371/journal.pone.0106618] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.
Collapse
Affiliation(s)
- Xiumei Yu
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
- * E-mail: (XY); (QC)
| | - Yanmei Li
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Chu Zhang
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Huiying Liu
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Jin Liu
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Wenwen Zheng
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xia Kang
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xuejun Leng
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
- Environmental Monitoring Station, Panzhihua Municipal Environmental Protection Bureau, Panzhihua, China
| | - Ke Zhao
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Yunfu Gu
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- Department of Microbiology, College of Resource and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
- * E-mail: (XY); (QC)
| |
Collapse
|
8
|
Gadd GM, Rhee YJ, Stephenson K, Wei Z. Geomycology: metals, actinides and biominerals. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:270-96. [PMID: 23760792 DOI: 10.1111/j.1758-2229.2011.00283.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Geomycology can be simply defined as 'the scientific study of the roles of fungi in processes of fundamental importance to geology' and the biogeochemical importance of fungi is significant in several key areas. These include nutrient and element cycling, rock and mineral transformations, bioweathering, mycogenic biomineral formation and interactions of fungi with clay minerals and metals. Such processes can occur in aquatic and terrestrial habitats, but it is in the terrestrial environment where fungi probably have the greatest geochemical influence. Of special significance are the mutualistic relationships with phototrophic organisms, lichens (algae, cyanobacteria) and mycorrhizas (plants). Central to many geomycological processes are transformations of metals and minerals, and fungi possess a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Some fungal transformations have beneficial applications in environmental biotechnology, e.g. in metal and radionuclide leaching, recovery, detoxification and bioremediation, and in the production or deposition of biominerals or metallic elements with catalytic or other properties. Metal and mineral transformations may also result in adverse effects when these processes result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment. The ubiquity and importance of fungi in biosphere processes underlines the importance of geomycology as an interdisciplinary subject area within microbiology and mycology.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
9
|
Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. MICROBIOLOGY-SGM 2009; 156:609-643. [PMID: 20019082 DOI: 10.1099/mic.0.037143-0] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
10
|
Tajer Mohammad Ghazvini P, Ghorbanzadeh Mashkani S. Effect of salinity on vanadate biosorption by Halomonas sp. GT-83: preliminary investigation on biosorption by micro-PIXE technique. BIORESOURCE TECHNOLOGY 2009; 100:2361-2368. [PMID: 19117752 DOI: 10.1016/j.biortech.2008.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 05/27/2023]
Abstract
Thirty-eight soil samples were collected from crude oil contaminated land in south of Iran. Initial screening of a total of 100 bacterial isolates, resulted in the selection of one isolate with maximum adsorption capacity of 52.7 mg vanadate/g dry weight. It was tentatively identified as Halomonas sp. according to morphological and biochemical properties and named strain GT-83. Removal of vanadate by biosorption with Halomonas sp. GT-83 was very sensitive to solution pH. Vanadate adsorption decreased with increasing pH, with maximum adsorption capacities achieved in at pH 3.0 in the absence and in the presence of increasing concentrations of salt. Vanadate-salt biosorption studies were also performed at this pH value. Equilibrium uptakes of vanadate increased with increasing vanadate concentration up to 600 mg/l. Maximum metal removal (91.8%) took place at pH 3.0 with initial vanadate concentration of 100mg/l, which got reduced (84.8%) in the presence of 50 g/l salt. The equilibrium sorption data were analyzed by using Freundlich isotherm. The specific uptake of vanadate increased at low cell concentration and decreased when cell concentration exceeded 0.75 g/l. The paper also demonstrates the potential value of micro-PIXE in biosorption studies.
Collapse
Affiliation(s)
- Parisa Tajer Mohammad Ghazvini
- Department of Nuclear Biotechnology, Nuclear Science Research School, Nuclear Science and Technology Research Institute, North Karegar Street, Tehran, Iran
| | | |
Collapse
|
11
|
|
12
|
Malekzadeh F, Mashkani SG, Ghafourian H, Soudi MR. Biosorption of tungstate by a Bacillus sp. isolated from Anzali lagoon. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-006-9313-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Biological wastewater treatments for metallurgical industries. ANN MICROBIOL 2006. [DOI: 10.1007/bf03174962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Kamaludeen SPB, Megharaj M, Juhasz AL, Sethunathan N, Naidu R. Chromium-microorganism interactions in soils: remediation implications. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2003; 178:93-164. [PMID: 12868782 DOI: 10.1007/0-387-21728-2_4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Discharge of Cr waste from many industrial applications such as leather tanning, textile production, electroplating, metallurgy, and petroleum refinery has led to large-scale contamination of land and water. Generally, Cr exists in two stable states: Cr(III) and Cr(VI). Cr(III) is not very soluble and is immobilized by precipitation as hydroxides. Cr(VI) is toxic, soluble, and easily transported to water resources. Cr(VI) undergoes rapid reduction to Cr(III), in the presence of organic sources or other reducing compounds as electron donors, to become precipitated as hydroxides. Cr(VI)-reducing microorganisms are ubiquitous in soil and water. A wide range of microorganisms, including bacteria, yeasts; and algae, with exceptional ability to reduce Cr(VI) to Cr(III) anaerobically and/or aerobically, have been isolated from Cr-contaminated and noncontaminated soils and water. Bioremediation approaches using the Cr(VI)-reducing ability of introduced (in bioreactors) or indigenous (augmented by supplements with organic amendments) microorganisms has been more successful for remediation of Cr-contaminated water than soils. Apart from enzymatic reduction, nonenzymatic reduction of Cr(VI) can also be common and widespread in the environment. For instance, biotic-abiotic coupling reactions involving the microbially formed products, H2S (the end product of sulfate reduction), Fe(II) [formed by Fe(III) reduction], and sulfite (formed during oxidation of elemental sulfur), can mediate the dissimilatory reduction of Cr(VI). Despite the dominant occurrence of enzymatic and nonenzymatic reduction of Cr(VI), natural attenuation of Cr(VI) is not taking place at a long-term contaminated site in South Australia, even 225 years after the last disposal of tannery waste. Evidence suggests that excess moisture conditions leading to saturation or flooded conditions promote the complete removal of Cr(VI) in soil samples from this contaminated site; but Cr(VI) reappears, probably because of oxidation of the Cr(III) by Mn oxides, with a subsequent shift to drying conditions in the soil. In such environments with low natural attenuation capacity resulting from reversible oxidation of Cr(III), bioeremediation of Cr(VI) can be a challenging task.
Collapse
Affiliation(s)
- Sara P B Kamaludeen
- The University of Adelaide, Department of Soil and Water, Waite Campus, Glen Osmond, SA 5064, Australia
| | | | | | | | | |
Collapse
|