1
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
2
|
Park HW, Lee W, Kim S, Jangid AK, Park J, Lee CE, Kim K. Optimized Design of Hyaluronic Acid-Lipid Conjugate Biomaterial for Augmenting CD44 Recognition of Surface-Engineered NK Cells. Biomacromolecules 2024; 25:1959-1971. [PMID: 38379131 DOI: 10.1021/acs.biomac.3c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Triple-negative breast cancer (TNBC) presents treatment challenges due to a lack of detectable surface receptors. Natural killer (NK) cell-based adaptive immunotherapy is a promising treatment because of the characteristic anticancer effects of killing malignant cells directly by secreting cytokines and lytic granules. To maximize the cancer recognition ability of NK cells, biomaterial-mediated ex vivo cell surface engineering has been developed for sufficient cell membrane immobilization of tumor-targeting ligands via hydrophobic anchoring. In this study, we optimized amphiphilic balances of NK cell coating materials composed of CD44-targeting hyaluronic acid (HA)-poly(ethylene glycol) (PEG)-lipid to improve TNBC recognition and the anticancer effect. Changes in the modular design of our material by differentiating hydrophilic PEG length and incorporating lipid amount into HA backbones precisely regulated the amphiphilic nature of HA-PEG-lipid conjugates. The optimized biomaterial demonstrated improved anchoring into NK cell membranes and facilitating the surface presentation level of HA onto NK cell surfaces. This led to enhanced cancer targeting via increasing the formation of immune synapse, thereby augmenting the anticancer capability of NK cells specifically toward CD44-positive TNBC cells. Our approach addresses targeting ability of NK cell to solid tumors with a deficiency of surface tumor-specific antigens while offering a valuable material design strategy using amphiphilic balance in immune cell surface engineering techniques.
Collapse
Affiliation(s)
- Hee Won Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Wonjeong Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaewon Park
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Chae Eun Lee
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Nasiri F, Farrokhi K, Safarzadeh Kozani P, Mahboubi Kancha M, Dashti Shokoohi S, Safarzadeh Kozani P. CAR-T cell immunotherapy for ovarian cancer: hushing the silent killer. Front Immunol 2023; 14:1302307. [PMID: 38146364 PMCID: PMC10749368 DOI: 10.3389/fimmu.2023.1302307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
As the most lethal gynecologic oncological indication, carcinoma of the ovary has been ranked as the 5th cause of cancer-related mortality in women, with a high percentage of the patients being diagnosed at late stages of the disease and a five-year survival of ~ 30%. Ovarian cancer patients conventionally undergo surgery for tumor removal followed by platinum- or taxane-based chemotherapy; however, a high percentage of patients experience tumor relapse. Cancer immunotherapy has been regarded as a silver lining in the treatment of patients with various immunological or oncological indications; however, mirvetuximab soravtansine (a folate receptor α-specific mAb) and bevacizumab (a VEGF-A-specific mAb) are the only immunotherapeutics approved for the treatment of ovarian cancer patients. Chimeric antigen receptor T-cell (CAR-T) therapy has achieved tremendous clinical success in the treatment of patients with certain B-cell lymphomas and leukemias, as well as multiple myeloma. In the context of solid tumors, CAR-T therapies face serious obstacles that limit their therapeutic benefit. Such hindrances include the immunosuppressive nature of solid tumors, impaired tumor infiltration, lack of qualified tumor-associated antigens, and compromised stimulation and persistence of CAR-Ts following administration. Over the past years, researchers have made arduous attempts to apply CAR-T therapy to ovarian cancer. In this review, we outline the principles of CAR-T therapy and then highlight its limitations in the context of solid tumors. Ultimately, we focus on preclinical and clinical findings achieved in CAR-T-mediated targeting of different ovarian cancer-associated target antigens.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Khadijeh Farrokhi
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Lee J, Keam B, Park HR, Park JE, Kim S, Kim M, Kim TM, Kim DW, Heo DS. Monalizumab efficacy correlates with HLA-E surface expression and NK cell activity in head and neck squamous carcinoma cell lines. J Cancer Res Clin Oncol 2023; 149:5705-5715. [PMID: 36547689 DOI: 10.1007/s00432-022-04532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE NKG2A, an inhibitory receptor expressed on NK cells and T cells, leads to immune evasion by binding to HLA-E expressed on cancer cells. Here, we investigated the relationship between HLA-E surface expression on head and neck squamous cell carcinoma (HNSCC) cell lines and the efficacy of monalizumab, an NKG2A inhibitor, in promoting NK cell activity. METHODS Six HNSCC cell lines were used as target cells. After exposure to IFN- γ, HLA-E surface expression on HNSCC cell lines was measured by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy donors and isolated NK cells were used as effector cells. NK cells were stimulated by treatment with IL-2 and IL-15 for 5 days, and NK cell-induced cytotoxicity was analyzed by CD107a degranulation and 51Cr release assays. RESULTS We confirmed that HLA-E expression was increased by IFN-γ secreted by NK cells and that HLA-E expression was different for each cell line upon exposure to IFN-γ. Cell lines with high HLA-E expression showed stronger inhibition of NK cell cytotoxicity, and efficacy of monalizumab was high. Combination with cetuximab increased the efficacy of monalizumab. In addition, stimulation of isolated NK cells with IL-2 and IL-15 increased the efficacy of monalizumab, even in the HLA-E low groups. CONCLUSION Monalizumab efficacy was correlated with HLA-E surface expression and was enhanced when NK cell activity was increased by cetuximab or cytokines. These results suggest that monalizumab may be potent against HLA-E-positive tumors and that monalizumab efficacy could be improved by promoting NK cell activity.
Collapse
Affiliation(s)
- Jeongjae Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ha-Ram Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
5
|
Combination of novel intravesical xenogeneic urothelial cell immunotherapy and chemotherapy enhances anti-tumor efficacy in preclinical murine bladder tumor models. Cancer Immunol Immunother 2020; 70:1419-1433. [PMID: 33156394 PMCID: PMC8053151 DOI: 10.1007/s00262-020-02775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors induce robust and durable responses in advanced bladder cancer (BC), but only for a subset of patients. Xenovaccination has been proposed as an effective immunotherapeutic approach to induce anti-tumor immunity. Thus, we proposed a novel intravesical xenogeneic urothelial cell immunotherapy strategy to treat advanced BC based on the hypothesis that implanted xenogeneic urothelial cells not only provoke xeno-rejection immune responses but also elicit bystander anti-tumor immunity. METHODS Mouse advanced bladder cancer models were treated with vehicle control, intravesical xenogeneic urothelial cells, cisplatin + gemcitabine, or the combination and assessed for tumor responses to treatments. Tumors and spleens samples were collected for immunohistological staining, cellular and molecular analysis assessed by antibody staining, ELISA, cytotoxicity, and flow cytometry, respectively. RESULTS The combination treatment of xenogeneic urothelial cell immunotherapy with chemotherapy was more efficacious than either single therapy to extend survival time in MBT-2 graft bladder tumor model and to suppress tumor progression in murine carcinogen BBN-induced bladder tumor model. The single-cell immunotherapy and combined therapy increased more tumor-infiltrating immune cells in MBT-2 graft tumors compared to vehicle control and chemotherapy treatment groups. The activated T-cell proliferation, cytokine production, and cytotoxicity capacities were also higher in mice with xenogeneic urothelial cell immunotherapy and combination treatments. CONCLUSIONS Our results suggest the potential for a novel xenogeneic urothelial cell-based immunotherapy alone and synergy with chemotherapy in the combination therapy. Therefore, our study supports developing xenogeneic urothelial cells as an immunotherapeutic agent in combination with chemotherapy for BC treatment.
Collapse
|
6
|
Bernasconi P, Borsani O. Immune Escape after Hematopoietic Stem Cell Transplantation (HSCT): From Mechanisms to Novel Therapies. Cancers (Basel) 2019; 12:cancers12010069. [PMID: 31881776 PMCID: PMC7016529 DOI: 10.3390/cancers12010069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Recent advances in understanding its molecular basis have opened the way to new therapeutic strategies, including targeted therapies. However, despite an improvement in prognosis it has been documented in recent years (especially in younger patients) that allogenic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment in AML and the first therapeutic option for high-risk patients. After allo-HSCT, relapse is still a major complication, and is observed in about 50% of patients. Current evidence suggests that relapse is not due to clonal evolution, but instead to the ability of the AML cell population to escape immune control by a variety of mechanisms including the altered expression of HLA-molecules, production of anti-inflammatory cytokines, relevant metabolic changes and expression of immune checkpoint (ICP) inhibitors capable of “switching-off” the immune response against leukemic cells. Here, we review the main mechanisms of immune escape and identify potential strategies to overcome these mechanisms.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-340-656-3988
| |
Collapse
|
7
|
Benson DM, Caligiuri MA. Natural Killer Cell Immunity. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Eisenberg V, Shamalov K, Meir S, Hoogi S, Sarkar R, Pinker S, Markel G, Porgador A, Cohen CJ. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor. Front Immunol 2017; 8:1212. [PMID: 29085357 PMCID: PMC5649149 DOI: 10.3389/fimmu.2017.01212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR) continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK) cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs). In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Vasyl Eisenberg
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shimrit Meir
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Hoogi
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rhitajit Sarkar
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.,ASAS, Amity University Haryana, Manesar, India
| | - Shirel Pinker
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Markel
- The Ella Lemelbaum Institute of Immuno-Oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Cyrille J Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
9
|
Gilham DE, Maher J. 'Atypical' CAR T cells: NKG2D and Erb-B as examples of natural receptor/ligands to target recalcitrant solid tumors. Immunotherapy 2017; 9:723-733. [PMID: 28771104 DOI: 10.2217/imt-2017-0045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has recently been recommended for approval for certain B-cell malignancies bringing the approach closer to mainstream cancer treatment. This rapid rise to prominence has been driven by impressive clinical results and the means to successfully commercialize the approach now being actively pursued. The current success of CAR T cells in B-cell malignancies relies upon the absolute lineage specificity of the CD19 antigen. CARs can also be targeted using non-antibody approaches, including the use of receptors and ligands to provide target specificity that have different specificities and binding kinetics. The specific examples of NKG2D and Erb-B are used that provide different characteristics and target profiles for CAR T-cell therapy of cancer.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cancer Vaccines/immunology
- Genetic Therapy
- Humans
- Immunotherapy, Adoptive/methods
- Leukemia, B-Cell/genetics
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/therapy
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Neoplasm Recurrence, Local
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- T-Lymphocytes/physiology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- David E Gilham
- Research & Development, Celyad S.A., Axis Business Park, Rue Edouard Belin 2, B-1435 Mont Saint Guibert, Belgium
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
- Department of Clinical Immunology & Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
- Department of Immunology, Eastbourne Hospital, Kings Drive, Eastbourne, East Sussex, BN21 2UD, UK
| |
Collapse
|
10
|
Crouse J, Xu HC, Lang PA, Oxenius A. NK cells regulating T cell responses: mechanisms and outcome. Trends Immunol 2015; 36:49-58. [PMID: 25432489 DOI: 10.1016/j.it.2014.11.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are important innate effectors in immunity. NK cells also have a role in the regulation of the adaptive immune response, and have been shown, in different contexts, to stimulate or inhibit T cell responses. Recent findings have expanded our understanding of the mechanisms underlying this regulation, revealing that regulation by NK cells can result from both direct interactions between NK cells and T cells, as well as indirectly, involving interactions with antigen presenting cells and the impact of NK cells on infected cells and pathogen load. We review these recent findings here, and outline emerging principles of how this regulation influences the overall outcome of adaptive immunity in infection and disease.
Collapse
|
11
|
An NCR1-based chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget 2015; 5:10949-58. [PMID: 25431955 PMCID: PMC4279421 DOI: 10.18632/oncotarget.1919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
The Ral (Ras-like) GTP-binding proteins (RalA and RalB), as effectors of the proto-oncogene Natural killer (NK) cells are an important component of the anti-tumor response. Tumor recognition by NK cells was found to be partly triggered by molecules termed natural cytotoxic receptors (NCRs). Adoptive transfer of genetically-engineered tumor-reactive T-lymphocytes can mediate remarkable tumor regressions mostly in melanoma and leukemia patients. Yet, the application of such treatments to other cancers is needed and dependent on the isolation of receptors that could facilitate efficient recognition of these malignancies. Herein, we aimed at combining NK tumor recognition capability with the genetic modification of T-cells to provide the latter with a means to recognize several tumors in a non-MHC restricted way. Consequently, we generated and evaluated several chimeric receptors based on the extracellular domain of NCR1 (NKp46) fused to multiple signaling moieties and assess their antitumor activity when retrovirally expressed in T-cells. Following co-culture with different tumors, primary human T-lymphocytes expressing a chimeric NCR1 molecule recognized target cells derived from lung, cervical carcinoma, leukemia and pancreatic cancer. In addition, this receptor mediated an upregulation of surface activation markers and significant antitumor cytotoxicity both in vitro and in vivo. These results have meaningful implications for the immunotherapeutic treatment of cancer using gene-modified T-cells.
Collapse
|
12
|
Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, Lee SH, Kumar V, Lee KM, Fu YX. CD160 is essential for NK-mediated IFN-γ production. ACTA ACUST UNITED AC 2015; 212:415-29. [PMID: 25711213 PMCID: PMC4354368 DOI: 10.1084/jem.20131601] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tu et al. generated a novel CD160-deficient mouse and showed impaired NK cell–mediated tumor elimination and IFN-γ production. CD160+ NK cells are functionally distinct in secretion of IFN-γ from their CD160− NK cell counterparts. NK-derived cytokines play important roles for natural killer (NK) function, but how the cytokines are regulated is poorly understood. CD160 is expressed on activated NK or T cells in humans but its function is unknown. We generated CD160-deficient mice to probe its function. Although CD160−/− mice showed no abnormalities in lymphocyte development, the control of NK-sensitive tumors was severely compromised in CD160−/− mice. Surprisingly, the cytotoxicity of NK cells was not impaired, but interferon-γ (IFN-γ) secretion by NK cells was markedly reduced in CD160−/− mice. Functionally targeting CD160 signaling with a soluble CD160-Ig also impaired tumor control and IFN-γ production, suggesting an active role of CD160 signaling. Using reciprocal bone marrow transfer and cell culture, we have identified the intrinsic role of CD160 on NK cells, as well as its receptor on non-NK cells, for regulating cytokine production. To demonstrate sufficiency of the CD160+ NK cell subset in controlling NK-dependent tumor growth, intratumoral transfer of the CD160+ NK fraction led to tumor regression in CD160−/− tumor-bearing mice, indicating demonstrable therapeutic potential for controlling early tumors. Therefore, CD160 is not only an important biomarker but also functionally controls cytokine production by NK cells.
Collapse
Affiliation(s)
- Tony C Tu
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Nicholas K Brown
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Tae-Jin Kim
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Joanna Wroblewska
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Xuanming Yang
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Xiaohuan Guo
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Seoyun Hyunji Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Vinay Kumar
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Kyung-Mi Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX 77054
| | - Yang-Xin Fu
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
13
|
Yoon SR, Kim TD, Choi I. Understanding of molecular mechanisms in natural killer cell therapy. Exp Mol Med 2015; 47:e141. [PMID: 25676064 PMCID: PMC4346487 DOI: 10.1038/emm.2014.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 01/14/2023] Open
Abstract
Cancer cells and the immune system are closely related and thus influence each other. Although immune cells can suppress cancer cell growth, cancer cells can evade immune cell attack via immune escape mechanisms. Natural killer (NK) cells kill cancer cells by secreting perforins and granzymes. Upon contact with cancer cells, NK cells form immune synapses to deliver the lethal hit. Mature NK cells are differentiated from hematopoietic stem cells in the bone marrow. They move to lymph nodes, where they are activated through interactions with dendritic cells. Interleukin-15 (IL-15) is a key molecule that activates mature NK cells. The adoptive transfer of NK cells to treat incurable cancer is an attractive approach. A certain number of activated NK cells are required for adoptive NK cell therapy. To prepare these NK cells, mature NK cells can be amplified to obtain sufficient numbers of NK cells. Alternatively, NK cells can be differentiated and amplified from hematopoietic stem cells. In addition, the selection of donors is important to achieve maximal efficacy. In this review, we discuss the overall procedures and strategies of NK cell therapy against cancer.
Collapse
Affiliation(s)
- Suk Ran Yoon
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Tae-Don Kim
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Inpyo Choi
- 1] Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea [2] Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Spear P, Barber A, Sentman CL. Collaboration of chimeric antigen receptor (CAR)-expressing T cells and host T cells for optimal elimination of established ovarian tumors. Oncoimmunology 2014; 2:e23564. [PMID: 23734311 PMCID: PMC3654581 DOI: 10.4161/onci.23564] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/24/2022] Open
Abstract
Conditioning strategies that deplete host lymphocytes have been shown to enhance clinical responses to some adoptive T-cell therapies. However, host T cells are capable of eliminating tumor cells upon the relief of immunosuppression, indicating that lymphodepletion prior to T-cell transfer may reduce optimal tumor protection elicited by cell treatments that are capable of shaping host immunity. In this study, we show that adoptively transferred T cells bearing a chimeric antigen receptor (CAR) harness endogenous T cells for optimal tumor elimination and the development of a tumor-specific memory T cell response. Mice bearing ID8 ovarian cancer cells were treated with T cells transduced with a NKG2D-based CAR. CAR-expressing T cells increased the number of host CD4+ and CD8+ T cells at the tumor site in a CXCR3-dependent manner and increased the number of antigen-specific host CD4+ T cells in the tumor and draining lymph nodes. In addition, the administration of CAR-expressing T cells increased antigen presentation to CD4+ T cells, and this increase was dependent on interferon γ and granulocyte-macrophage colony-stimulating factor produced by the former. Host CD4+ T cells were sufficient for optimal tumor protection mediated by NKG2D CAR-expressing T cells, but they were not necessary if CD4+ T cells were adoptively co-transferred. However, host CD4+ T cells were essential for the development of an antigen-specific memory T-cell response to tumor cells. Moreover, optimal tumor elimination as orchestrated by NKG2D CAR-expressing T cells was dependent on host CD8+ T cells. These results demonstrate that adoptively transferred T cells recruit and activate endogenous T-cell immunity to enhance the elimination of tumor cells and the development of tumor-specific memory responses.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology & Immunology; The Geisel School of Medicine at Dartmouth; Lebanon, NH USA
| | | | | |
Collapse
|
15
|
Gogali F, Paterakis G, Rassidakis GZ, Liakou CI, Liapi C. CD3(-)CD16(-)CD56(bright) immunoregulatory NK cells are increased in the tumor microenvironment and inversely correlate with advanced stages in patients with papillary thyroid cancer. Thyroid 2013; 23:1561-8. [PMID: 23721357 DOI: 10.1089/thy.2012.0560] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The innate immune system is the first line of defense and plays a key role in thyroid cancer development. The role of the tumor-infiltrating natural killer (NK) cells is becoming increasingly important in research and potential cancer therapies. NK cell subpopulations, CD3(-)CD16(+)CD56(dim) and CD3(-)CD16(-)CD56(bright), demonstrate a significant role in the tumor immuno-surveillance process. METHODS We investigated the distribution of CD3(-)CD16(+)CD56(dim) and CD3(-)CD16(-)CD56(bright) NK subpopulations in tissue and blood samples from patients with papillary thyroid cancer (PTC) and nodular goiter (NG). Twenty-eight patients with PTC, 13 patients with NG, and 50 healthy donors were included in the study. Tissue and blood samples from all patients and blood samples from healthy donors were analyzed for CD3(-)CD16(+)CD56(dim) and CD3(-)CD16(-)CD56(bright) NK cells by flow cytometry. RESULTS A significant predominance of CD3(-)CD16(+)CD56(dim) cells compared to CD3(-)CD16(-)CD56(bright) NK cells was found in blood samples in all groups (p<0.0001 in PTC, NG, and healthy donors). Increased infiltration by CD3(-)CD16(-)CD56(bright) NK cells was observed in thyroid tissue of patients with PTC, as compared to CD3(-)CD16(+)CD56(dim) NK cells (p=0.046), while CD3(-)CD16(+)CD56(dim) NK cells demonstrated a higher infiltration of NG tissues. CD3(-)CD16(+)CD56(dim) NK cell tissue infiltration positively correlated with advanced stages of PTC. In contrast, the CD3(-)CD16(-)CD56(bright) NK cell population was negatively associated with tumor stage in patients with PTC. CONCLUSION CD3(-)CD16(-)CD56(bright) NK cell infiltration seems to be associated with PTC progression. These findings contribute to a better understanding of the immune response in PTC and may lead to novel immunotherapeutic approaches in these patients.
Collapse
Affiliation(s)
- Foteini Gogali
- 1 Department of Pharmacology, Medical School, National and Kapodistrian University of Athens , Greece
| | | | | | | | | |
Collapse
|
16
|
Petrosiute A, Auletta JJ, Lazarus HM. Achieving graft-versus-tumor effect in brain tumor patients: from autologous progenitor cell transplant to active immunotherapy. Immunotherapy 2013. [PMID: 23194364 DOI: 10.2217/imt.12.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Success in treating aggressive brain tumors like glioblastoma multiforme and medulloblastoma remains challenging, in part because these malignancies overcome CNS immune surveillance. New insights into brain tumor immunology have led to a rational development of immunotherapeutic strategies, including cytotoxic Tlymphocyte therapies and dendritic cell vaccines. However, these therapies are most effective when applied in a setting of minimal residual disease, so require prior use of standard cytotoxic therapies or cytoreduction by surgery. Myeloablative chemotherapy with autologous hematopoietic cell transplantation (autoHCT) can offer a platform upon which different cellular therapies can be effectively instituted. Specifically, this approach provides an inherent 'chemical debulking' through high-dose chemotherapy and a graft-versus-tumor effect through an autologous T-cell replete graft. Furthermore, autoHCT may be beneficial in 'resetting' the body's immune system, potentially 'breaking' tumor tolerance, and in providing a 'boost' of immune effector cells (NK cells or cytotoxic T lymphocytes), which could augment desired anti-tumor effects. As literature on the use of autoHCT in brain tumors is scarce, aspects of immunotherapies applied in non-CNS malignancies are reviewed as potential therapies that could be used in conjunction with autoHCT to eradicate brain tumors.
Collapse
Affiliation(s)
- Agne Petrosiute
- Department of Pediatrics, Hematology/Oncology, Rainbow Babies & Children's Hospital, Case Western Reserve University, 11100 Euclid Avenue, Mailstop 6054, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
17
|
Meehan KR, Talebian L, Tosteson TD, Hill JM, Szczepiorkowski Z, Sentman CL, Ernstoff MS. Adoptive cellular therapy using cells enriched for NKG2D+CD3+CD8+T cells after autologous transplantation for myeloma. Biol Blood Marrow Transplant 2013; 19:129-37. [PMID: 22975165 PMCID: PMC3772513 DOI: 10.1016/j.bbmt.2012.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/24/2012] [Indexed: 01/09/2023]
Abstract
The number of circulating lymphocytes on day 15 after transplantation correlates with improved survival in patients with myeloma, but the lymphocyte subset responsible is unknown. NKG2D is a natural killer (NK) cell activating receptor that mediates non-MHC restricted and TCR-independent cell lysis. Our preliminary results indicate that CD3(+)CD8(+) T cells expressing NKG2D may be a critical lymphocyte population. A phase II trial examined the feasibility of infusing ex vivo-expanded cells enriched for NKG2D(+)CD3(+)CD8(+) T cells at weeks 1, 2, 4, and 8 after an autologous transplantation. In addition, low-dose IL-2 (6 × 10(5) IU/m(2)/day) was administered for 4 weeks, beginning on the day of transplantation. Twenty-three patients were accrued and 19 patients are evaluable. There were no treatment-related deaths. All patients completed their course of IL-2 and demonstrated normal engraftment. When compared with patients with myeloma who underwent transplantation not receiving posttransplantation immune therapy, the treated patients demonstrated an increase in the number of circulating NKG2D(+)CD3(+)CD8(+) T cells/μL (P < .004), CD3(+)CD8(+) T cells/μL (P < .04), CD3(+)CD8(+)CD56(+) T cells/μL (P < .004), and NKG2D(+)CD3(-)CD56(+) T cells/μL (P < .003). Myeloma cell-directed cytotoxicity by the circulating mononuclear cells increased after transplantation (P < .002). When compared to posttransplantation IL-2 therapy alone in this patient population, the addition of cells enriched for NKG2D(+)CD3(+)CD8(+) T cells increased tumor-specific immunity, as demonstrated by enhanced lysis of autologous myeloma cells (P = .02). We postulate that this regimen that increased the number and function of the NKG2D(+)CD3(+)CD8(+) T cells after transplantation may improve clinical outcomes by eliminating residual malignant cells in vivo.
Collapse
Affiliation(s)
- Kenneth R Meehan
- Blood and Marrow Transplant Program, Dartmouth Hitchcock Medical Center, Dartmouth Medical School and Norris Cotton Cancer Center, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mahmood S, Kanwar N, Tran J, Zhang ML, Kung SKP. SHP-1 phosphatase is a critical regulator in preventing natural killer cell self-killing. PLoS One 2012; 7:e44244. [PMID: 22952938 PMCID: PMC3432062 DOI: 10.1371/journal.pone.0044244] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/31/2012] [Indexed: 12/31/2022] Open
Abstract
Balance of signals generated from the engaged activating and inhibitory surface receptors regulates mature NK cell activities. The inhibitory receptors signal through immunoreceptor tyrosine based inhibitory motifs (ITIM), and recruit phosphatases such as SHP-1 to inhibit NK cell activation. To directly examine the importance of SHP-1 in regulating activities and cell fate of mature NK cells, we used our established lentiviral-based engineering protocol to knock down the SHP-1 protein expression in primary C57BL/6NCrl cells. Gene silencing of the SHP-1 in primary NK cells abrogated the ability of ITIM-containing NK inhibitory receptors to suppress the activation signals induced by NK1.1 activating receptors. We followed the fates of stably transduced SHP-1 silenced primary NK cells over a longer period of time in IL-2 containing cultures. We observed an impaired IL-2 induced proliferation in the SHP-1 knockdown NK cells. More interestingly, these "de-regulated" SHP-1 knockdown NK cells mediated specific self-killing in a real-time live cell microscopic imaging system we developed to study NK cell cytotoxicity in vitro. Selective target recognition of the SHP-1 knockdown NK cells revealed also possible involvement of the SHP-1 phosphatase in regulating other NK functions in mature NK cells.
Collapse
MESH Headings
- Animals
- Cell Degranulation/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Computer Systems
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Gene Knockdown Techniques
- Gene Silencing/drug effects
- Imaging, Three-Dimensional
- Immunoassay
- Interleukin-2/pharmacology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/physiology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism
Collapse
Affiliation(s)
- Sajid Mahmood
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Namita Kanwar
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, John Buhler Research Centre, Winnipeg, Manitoba, Canada
| | - Jimmy Tran
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Man-li Zhang
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sam K. P. Kung
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Abstract
Although innate immune signals shape the activation of naive T cells, it is unclear how innate signals influence effector T-cell function. This study determined the effects of stimulating the NKG2D receptor in conjunction with the TCR on human effector CD8(+) T cells. Stimulation of CD8(+) T cells through CD3 and NKG2D simultaneously or through a chimeric NKG2D receptor, which consists of NKG2D fused to the intracellular region of CD3ζ, activated β-catenin and increased expression of β-catenin-induced genes, whereas T cells stimulated through the TCR or a combination of the TCR and CD28 did not. Activation by TCR and NKG2D prevented expression and production of anti-inflammatory cytokines IL-10, IL-9, IL-13, and VEGF-α in a β-catenin- and PPARγ- dependent manner. NKG2D stimulation also modulated the cytokine secretion of T cells activated simultaneously through CD3 and CD28. These data indicate that activating CD8(+) T cells through the NKG2D receptor along with the TCR modulates signal transduction and the production of anti-inflammatory cytokines. Thus, human effector T cells alter their function depending on which innate receptors are engaged in conjunction with the TCR complex.
Collapse
|
20
|
Yu J, Ren X, Yan F, Li H, Cao S, Chen Y, Sun H, An X, Zhang N, Hao X. Alloreactive natural killer cells promote haploidentical hematopoietic stem cell transplantation by expansion of recipient-derived CD4+CD25+ regulatory T cells. Transpl Int 2010; 24:201-12. [DOI: 10.1111/j.1432-2277.2010.01185.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Jonsson AH, Yang L, Kim S, Taffner SM, Yokoyama WM. Effects of MHC class I alleles on licensing of Ly49A+ NK cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:3424-32. [PMID: 20194719 DOI: 10.4049/jimmunol.0904057] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are innate immune lymphocytes that can react to cells lacking self-MHC class I. However, NK cells that cannot engage self-MHC through an inhibitory receptor are resistant to stimulation through their activation receptors. To become licensed (i.e., functionally competent to be triggered through its activation receptors), an NK cell must engage host MHC class I via a MHC class I-specific inhibitory receptor, such as a member of the murine Ly49 family. To explore potential determinants of NK cell licensing on a single Ly49 receptor, we have investigated the relative licensing impacts of the b, d, k, q, r, and s H2 haplotypes on Ly49A(+) NK cells. The results indicate that licensing is essentially analog but is saturated by moderate-binding MHC class I ligands. Interestingly, licensing exhibited a strong inverse correlation with a measure of cis engagement of Ly49A. Finally, licensing of Ly49A(+) NK cells was found to be less sensitive to MHC class I engagement than Ly49A-mediated effector inhibition, suggesting that licensing establishes a margin of safety against NK cell autoreactivity.
Collapse
Affiliation(s)
- A Helena Jonsson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
22
|
Mitsuki M, Nara K, Yamaji T, Enomoto A, Kanno M, Yamaguchi Y, Yamada A, Waguri S, Hashimoto Y. Siglec-7 mediates nonapoptotic cell death independently of its immunoreceptor tyrosine-based inhibitory motifs in monocytic cell line U937. Glycobiology 2009; 20:395-402. [PMID: 20032046 DOI: 10.1093/glycob/cwp195] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Siglec-7, a sialic acid binding immunoglobulin-like lectin, predominantly transduces inhibitory signals through cytosolic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Here, we report that clustering of Siglec-7 with a specific F(ab')(2) elicited cell death. Interestingly, a truncated Siglec-7 lacking the cytosolic ITIM domain still induced the cell death, suggesting that the ITIMs are not essential for the death signaling. Further analyses of the death signaling revealed that an oxygen radical scavenger, N-acetyl cysteine, completely inhibited the cell death, whereas a pancaspase inhibitor did not. In addition, caspase-3 activation, DNA ladder formation, and nuclear condensation were not detected during the death process, suggesting that the cell death is nonapoptotic. To identify the critical region for the death signaling, we prepared a series of shuffling chimeras between Siglec-7 and Siglec-9, the latter of which did not transduce a death signal. The critical region was mapped to the middle of the membrane-proximal C2-set domain, which contained only six amino acid differences between Siglec-7 and Siglec-9. Point mutation analyses of each of these six amino acids revealed that four of the six amino acids were critical for the death signal. A computer-assisted 3D modeling revealed that these four amino acids were proximally located on the surface of the C2-set domain. In conclusion, Siglec-7 induces nonapoptotic cell death, the signal for which is transduced by an extracellular C2-set domain.
Collapse
Affiliation(s)
- Motoaki Mitsuki
- Glyco-chain Functions Laboratory, Supra-Biomolecule Research Group, RIKEN Frontier Research System, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang C, Adrianus GN, Sheng N, Toh S, Gong Y, Wang DA. In vitro performance of an injectable hydrogel/microsphere based immunocyte delivery system for localised anti-tumour activity. Biomaterials 2009; 30:6986-95. [PMID: 19783044 DOI: 10.1016/j.biomaterials.2009.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 09/04/2009] [Indexed: 02/04/2023]
Abstract
The current practice of cell immunotherapy against cancer has encountered a substantial challenge, that is, targeted delivery of therapeutic cells to tumour sites is not favourably managed. In this study, we aimed to provide an engineering solution to govern the cell targeting and actions, for which a biomaterial model is developed to mediate the conveyance and accommodation of activated immunocytes with anti-cancer potentials. We fabricated a dual-layered hydrogel/microsphere (GS) composite, which preserves all advantageous features of hydrogel such as injectability and favourable permeability, to achieve genuine localisation and physical immobilisation of the executing immunocytes-macrophages. According to our presented in vitro investigations, the GS immunoconstruct exhibited effective elimination of carcinoma cells as well as high safety free of gene alteration or cell leakage. Notably, unwanted long-term proliferation of the delivered cells was restrained by physical encapsulation in the bio-inert 3D hydrogel frameworks. By these efforts, we have provided an immunocyte delivery platform with which cell-based immunotherapy can be initiated at a desired location and implemented in a controlled manner.
Collapse
Affiliation(s)
- Chunming Wang
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, N1.3-B2-13, Singapore 637457, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
24
|
Barber A, Sentman CL. Chimeric NKG2D T cells require both T cell- and host-derived cytokine secretion and perforin expression to increase tumor antigen presentation and systemic immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:2365-72. [PMID: 19625653 DOI: 10.4049/jimmunol.0900721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Treatment of mice bearing established ovarian tumors with T cells expressing chimeric NKG2D receptors (chNKG2D) develop protective host immune responses to tumor Ags. In this study, the mechanisms that chNKG2D T cells require to induce host immunity against ovarian tumors and which of the host immune cells are involved in tumor elimination were determined. Treatment with chNKG2D T cells led to a sustained, increased IFN-gamma production by host NK, CD4(+), and CD8(+) T cells in the spleen and at the tumor site and this continued for many weeks after T cell injection. Tumor Ag presentation was enhanced in chNKG2D T cell-treated mice, and there were greater numbers of tumor-specific T cells at the tumor site and in draining lymph nodes after treatment with chNKG2D T cells. The increase in host cell cytokine secretion and Ag presentation was dependent on chNKG2D T cell-derived perforin, IFN-gamma, and GM-CSF. Host immune mechanisms were involved in tumor elimination because inhibition of tumor growth was limited in mice that lacked perforin, IFN-gamma, NK cells, or T and B cells (Rag1(-/-)). There was no role for host-derived GM-CSF or CD1-dependent NKT cells, because mice deficient in these were able to clear tumors as well as treated wild-type B6 mice. In summary, chNKG2D T cells required both cytotoxicity and cytokine secretion as well as the participation of host immune cells for development of a host antitumor immune response and complete efficacy.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | |
Collapse
|
25
|
Stoeckle C, Gleske AK. Immunotherapy: from basic research to clinical applications. Cancer Immunol Immunother 2009; 58:1129-36. [PMID: 18584173 PMCID: PMC11031055 DOI: 10.1007/s00262-008-0544-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 06/04/2008] [Indexed: 12/12/2022]
Affiliation(s)
- Christina Stoeckle
- Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen, Germany.
| | | |
Collapse
|
26
|
Rey J, Veuillen C, Vey N, Bouabdallah R, Olive D. Natural killer and gammadelta T cells in haematological malignancies: enhancing the immune effectors. Trends Mol Med 2009; 15:275-84. [PMID: 19487160 DOI: 10.1016/j.molmed.2009.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/03/2009] [Accepted: 04/03/2009] [Indexed: 11/28/2022]
Abstract
Human natural killer (NK) and gamma delta (gammadelta) T cells are potent effectors involved in the destruction of abnormal cells. Accumulating clinical and experimental data point towards a key role for NK cells and gammadelta T cells in the control of most, if not all, haematological malignancies. This review focuses on the alterations in these effector cells found in patients with haematological malignancies, which might explain an escape from innate immune surveillance. We discuss new anti-cancer drugs that target these effector cells indirectly or directly. Finally, we review future strategies that offer the possibility of enhancing the effector functions of NK and gammadelta T cells against haematological malignancies.
Collapse
Affiliation(s)
- Jérôme Rey
- INSERM UMR 891, Université de la Méditerranée, Institut de Cancérologie et d'Immunologie de Marseille IFR137, Institut Paoli-Calmettes, 232 Boulevard Sainte-Marguerite, 13009 Marseille, France
| | | | | | | | | |
Collapse
|
27
|
Stauch D, Dernier A, Sarmiento Marchese E, Kunert K, Volk HD, Pratschke J, Kotsch K. Targeting of natural killer cells by rabbit antithymocyte globulin and campath-1H: similar effects independent of specificity. PLoS One 2009; 4:e4709. [PMID: 19266059 PMCID: PMC2651595 DOI: 10.1371/journal.pone.0004709] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/07/2009] [Indexed: 12/31/2022] Open
Abstract
T cell depleting strategies are an integral part of immunosuppressive regimens widely used in the hematological and solid organ transplant setting. Although it is known to induce lymphocytopenia, little is known about the effects of the polyclonal rabbit antithymocyte globulin (rATG) or the monoclonal anti-CD52 antibody alemtuzumab on Natural Killer (NK) cells in detail. Here, we demonstrate that induction therapy with rATG following kidney/pancreas transplantation results in a rapid depletion of NK cells. Treatment of NK cells with rATG and alemtuzumab in vitro leads to impairment of cytotoxicity and induction of apoptosis even at a 10-fold lower concentration (0.1 microg/ml) compared with T and B cells. By generating Fc-parts of rATG and alemtuzumab we illustrate that their ligation to FcgammaRIII (CD16) is sufficient for the significant induction of degranulation, apoptosis and inflammatory cytokine release (FasL, TNFalpha and IFNgamma) exclusively in CD3(-)CD56(dim) NK cells whereas application of rATG and alemtuzumab F(ab) fragments abolishes these effects. These findings are of general importance as our data suggest that NK cells are also mediators of the clinically relevant cytokine release syndrome and that their targeting by therapeutic antibodies should be considered as they are functionally relevant for the effective clearance of opportunistic viral infections and anti-tumor activity posttransplantation.
Collapse
Affiliation(s)
- Diana Stauch
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Annelie Dernier
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | | | - Kristina Kunert
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Charité Universitätsmedizin, Campus Virchow, Berlin, Germany
| | - Katja Kotsch
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| |
Collapse
|
28
|
Abstract
Armed with potent cytotoxic and immunostimulatory effector functions, natural killer (NK) cells have the potential to cause significant damage to normal self cells unless controlled by self-tolerance mechanisms. NK cells identify and attack target cells based on integration of signals from activation and inhibitory receptors, whose ligands exhibit complex expression and/or binding patterns. Preservation of NK cell self-tolerance must therefore go beyond mere engagement of inhibitory receptors during effector functions. Herein, we review recent work that has uncovered a number of mechanisms to ensure self-tolerance of NK cells. For example, licensing of NK cells allows only NK cells that can engage self-MHC to become functionally competent, or licensed. The molecular mechanism of this phenomenon appears to require signaling by receptors that were originally identified in effector inhibition. However, the nature of the signaling event has not yet been defined, but new interpretations of several published experiments provide valuable clues. In addition, several other cell-intrinsic and -extrinsic mechanisms of NK cell tolerance are discussed, including activation receptor cooperation and synergy, cytokine stimulation, and the opposing roles of accessory and regulatory cells. Finally, NK cell tolerance is discussed as it relates to the clinic, such as KIR-HLA disease associations, tumor immunotherapy, and fetal tolerance.
Collapse
|
29
|
Malmberg KJ, Bryceson YT, Carlsten M, Andersson S, Björklund A, Björkström NK, Baumann BC, Fauriat C, Alici E, Dilber MS, Ljunggren HG. NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy. Cancer Immunol Immunother 2008; 57:1541-52. [PMID: 18317755 PMCID: PMC11030949 DOI: 10.1007/s00262-008-0492-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/19/2008] [Indexed: 12/30/2022]
Abstract
Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.
Collapse
Affiliation(s)
- Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barber A, Zhang T, Megli CJ, Wu J, Meehan KR, Sentman CL. Chimeric NKG2D receptor-expressing T cells as an immunotherapy for multiple myeloma. Exp Hematol 2008; 36:1318-28. [PMID: 18599182 DOI: 10.1016/j.exphem.2008.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 04/14/2008] [Accepted: 04/22/2008] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Most myeloma tumor cells from patients express NKG2D ligands. We have reported the development of a chimeric NKG2D receptor (chNKG2D), which consists of the NKG2D receptor fused to the CD3zeta chain. T cells expressing this receptor kill and produce cytokines in response to NKG2D-ligand+ tumor cells. Therefore, we investigated whether human chNKG2D T cells respond against human myeloma cells. MATERIALS AND METHODS ChNKG2D T cells were generated from healthy donors and myeloma patients. The effector phase of chNKG2D T cells was analyzed by cell-surface marker expression and human myeloma cell lines were tested for expression of NKG2D ligands. Lysis of myeloma cell lines and cytokine secretion by chNKG2D T cells was determined. ChNKG2D T cells grown in serum-free media, or cyropreserved, were assessed for effector cell functions. RESULTS Myeloma cell lines expressed NKG2D ligands. ChNKG2D T cells from healthy donors and myeloma patients lysed myeloma cells, and secreted proinflammatory cytokines when cultured with myeloma cells or patient bone marrow, but not with peripheral blood mononuclear cells or normal bone marrow. Lysis of myeloma cells was dependent on chNKG2D T-cell expression of NKG2D and perforin. Additionally, chNKG2D T cells upregulated CD45RO, did not express CD57, and maintained expression of CD27, CD62L, and CCR7, indicating that the T cells were at an early effector stage. Finally, we showed that chNKG2D T cells generated with serum-free media, or when cryopreserved, maintained effector functions. CONCLUSION ChNKG2D T cells respond to human myeloma cells and can be generated using clinically applicable cell culture techniques.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
31
|
Barber MA, Zhang T, Gagne BA, Van Ginderachter JA, De Baetselier P, Sentman CL. Ly49G2 receptor blockade reduces tumor burden in a leukemia model but not in a solid tumor model. Cancer Immunol Immunother 2008; 57:655-62. [PMID: 17891395 PMCID: PMC11030679 DOI: 10.1007/s00262-007-0404-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/05/2007] [Indexed: 01/20/2023]
Abstract
BACKGROUND NK cell activity is regulated in part by inhibitory receptors that bind to MHC class I molecules. It is possible to enhance NK cell cytotoxicity against tumor cells by preventing the interaction of these inhibitory receptors with their MHC class I ligands. RESULTS In this study, we determined that Ly49G2 is an inhibitory receptor in AKR mice for self-MHC class I, and AKR Ly49G2 has an identical sequence to BALB/c Ly49G2. Blockade of Ly49G2 receptors in vivo resulted in decreased growth of BW-Sp3 lymphoma cells when the tumor cells were given i.v. but not when the tumor cells were inoculated into the flank forming a solid tumor. However, NK cells were involved in inhibiting the growth of BW-Sp3 tumor cells in the flank. CONCLUSION These data demonstrate that the effectiveness of inhibitory receptor blockade depends upon the tissue location of the tumor cells.
Collapse
Affiliation(s)
- Melissa A. Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, 6W Borwell Bldg, One Medical Center Dr, Lebanon, NH 03756 USA
| | - Tong Zhang
- Department of Microbiology and Immunology, Dartmouth Medical School, 6W Borwell Bldg, One Medical Center Dr, Lebanon, NH 03756 USA
| | - Bethany A. Gagne
- Department of Microbiology and Immunology, Dartmouth Medical School, 6W Borwell Bldg, One Medical Center Dr, Lebanon, NH 03756 USA
| | - Jo A. Van Ginderachter
- Lab of Cellular and Molecular Immunology, Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Patrick De Baetselier
- Lab of Cellular and Molecular Immunology, Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charles L. Sentman
- Department of Microbiology and Immunology, Dartmouth Medical School, 6W Borwell Bldg, One Medical Center Dr, Lebanon, NH 03756 USA
| |
Collapse
|
32
|
Barber A, Zhang T, Sentman CL. Immunotherapy with chimeric NKG2D receptors leads to long-term tumor-free survival and development of host antitumor immunity in murine ovarian cancer. THE JOURNAL OF IMMUNOLOGY 2008; 180:72-8. [PMID: 18097006 DOI: 10.4049/jimmunol.180.1.72] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ovarian cancer is one of the leading causes of cancer death in women and the development of novel therapies is needed to complement the standard treatment options such as chemotherapy and radiation. In this study, we show that treatment with T cells expressing a chimeric NKG2D receptor (chNKG2D) was able to lead to long-term, tumor-free survival in mice bearing established ovarian tumors. Tumor-free mice were able to reject a rechallenge with ovarian tumor cells 225 days after original tumor injection. In addition, chNKG2D T cell treatment induced specific host immune responses to ovarian tumor cells, including the development of both CD8+ and CD4+ T cell tumor-specific memory responses. The chNKG2D T cells reduced the ovarian tumor burden using both cytotoxic and cytokine-dependent pathways. Specifically, chNKG2D T cell expression of perforin, GM-CSF, and IFN-gamma were essential for complete antitumor efficacy.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
33
|
|
34
|
Zhang T, Barber A, Sentman CL. Chimeric NKG2D modified T cells inhibit systemic T-cell lymphoma growth in a manner involving multiple cytokines and cytotoxic pathways. Cancer Res 2007; 67:11029-36. [PMID: 18006849 DOI: 10.1158/0008-5472.can-07-2251] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the efficacy and mechanisms of chimeric NKG2D receptor (chNKG2D)-modified T cells in eliminating NKG2D ligand-positive RMA/Rae1 lymphoma cells were evaluated. Intravenous injection of RMA/Rae1 cells led to significant tumor formation in spleens and lymph nodes within 2 weeks. Adoptive transfer of chNKG2D-modified T cells after tumor injection significantly reduced tumor burdens in both spleens and lymph nodes, and prolonged the survival of tumor-bearing mice. Multiple treatments with chNKG2D T cells resulted in long-term tumor-free survival. Moreover, these long-term survivors were resistant to rechallenge with RMA tumor cells (NKG2D ligand-negative), and their spleen and lymph node cells produced IFN-gamma in response to RMA but not to other tumors in vitro, indicating immunity against RMA tumor antigens. ChNKG2D T cell-derived IFN-gamma and granulocyte-macrophage colony-stimulating factor, but not perforin (Pfp), tumor necrosis factor-related apoptosis-inducing ligand, or Fas ligand (FasL) alone were critical for in vivo efficacy. T cells deficient in both Pfp and FasL did not kill NKG2D ligand-positive RMA cells in vitro. Adoptive transfer of Pfp(-/-)FasL(-/-) chNKG2D T cells had reduced in vivo efficacy, indicating that chNKG2D T cells used both mechanisms to attack RMA/Rae1 cells. Taken together, these results indicate that chNKG2D T-cell-mediated therapeutic effects are mediated by both cytokine-dependent and cytotoxic mechanisms in vivo.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | |
Collapse
|
35
|
Abstract
Clinical trials have established that T cells have the ability to prevent and treat pathogens and tumors. This is perhaps best exemplified by engraftment of allogeneic T cells in the context of hematopoietic stem-cell transplantation (HSCT), which for over the last 50 years remains one of the best and most robust examples of cell-based therapies for the treatment of hematologic malignancies. Yet, the approach to infuse T cells for treatment of cancer, in general, and pediatric tumors, in particular, generally remains on the sidelines of cancer therapy. This review outlines the current state-of-the-art and provides a rationale for undertaking adoptive immunotherapy trials with emphasis on childhood malignancies.
Collapse
|
36
|
Haddad R, Pflumio F, Vigon I, Visentin G, Auvray C, Fichelson S, Amsellem S. The HOXB4 homeoprotein differentially promotes ex vivo expansion of early human lymphoid progenitors. Stem Cells 2007; 26:312-22. [PMID: 17962697 DOI: 10.1634/stemcells.2007-0721] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The HOXB4 homeoprotein is known to promote the expansion of mouse and human hematopoietic stem cells (HSCs) and progenitors of the myeloid lineages. However, the putative involvement of HOXB4 in lymphopoiesis and particularly in the expansion of early lymphoid progenitor cells has remained elusive. Based on the ability of the HOXB4 protein to passively enter hematopoietic cells, our group previously designed a long-term culture procedure of human HSCs that allows ex vivo expansion of these cells. Here, this method has been further used to investigate whether HOXB4 could cause similar expansion on cells originating from CD34(+) hematopoietic progenitor cells (HPCs) committed at various levels toward the lymphoid lineages. We provide evidence that HOXB4 protein delivery promotes the expansion of primitive HPCs that generate lymphoid progenitors. Moreover, HOXB4 acts on lymphomyeloid HPCs and committed T/natural killer HPCs but not on primary B-cell progenitors. Our results clarify the effect of HOXB4 in the early stages of human lymphopoiesis, emphasizing the contribution of this homeoprotein in the maintenance of the intrinsic lymphomyeloid differentiation potential of defined HPC subsets. Finally, this study supports the potential use of HOXB4 protein for HSC and HPC expansion in a therapeutic setting and furthers our understanding of the mechanisms of the molecular regulation of hematopoiesis.
Collapse
Affiliation(s)
- Rima Haddad
- Institut Cochin, Département d'Hématologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Yim MH, Shin JW, Son JY, Oh SM, Han SH, Cho JH, Cho CK, Yoo HS, Lee YW, Son CG. Soluble components of Hericium erinaceum induce NK cell activation via production of interleukin-12 in mice splenocytes. Acta Pharmacol Sin 2007; 28:901-7. [PMID: 17506950 DOI: 10.1111/j.1745-7254.2007.00577.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIM To investigate the immunoregulatory functions of water extracts of Hericium erinaceum (WEHE) focusing on natural killer (NK) cell-based anticancer activities. METHODS Mouse splenocytes or purely isolated NK cells were stimulated with 1-100 mg/L WEHE for 24 h followed by co-culture with (51)Cr-labeled Yac-1 cells for 4 h, then NK cell-derived cytolytic activity was measured using a radio-release assay. Neutralizing antibodies against mouse interleukin-12 (IL-12) were added into the WEHE-stimulated splenocytes, thereafter, cytotoxicity was measured to examine the involvement of IL-12. RT-PCR and ELISA analyses were performed to confirm the induction of transcription and the translation of IL-12 and interferon-gamma (IFN-gamma) in the WEHE-treated splenocytes. RESULTS WEHE enhanced the cytolytic activity of total splenocytes towards Yac-1 cells in a dose-dependent manner. However, this activation was not observed when the NK cells isolated from the splenocytes were treated with WEHE. Furthermore, the treatment with antibodies against IL-12 abolished the effect of WEHE on splenocyte-derived cytolytic activity. RT-PCR and ELISA analyses showed the induction of IL-12 and IFN-gamma in the WEHE-treated splenocytes. CONCLUSION WEHE indirectly activates the cytolytic ability of NK cells via the induction of IL-12 in total splenocytes, and possibly via other immuno-mediators or cellular components.
Collapse
Affiliation(s)
- Myung-Hyun Yim
- East-West Cancer Center, Dunsan Oriental Hospital of Daejeon University, Daejeon 302-122, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Arina A, Murillo O, Dubrot J, Azpilikueta A, Alfaro C, Pérez-Gracia JL, Bendandi M, Palencia B, Hervás-Stubbs S, Melero I. Cellular liaisons of natural killer lymphocytes in immunology and immunotherapy of cancer. Expert Opin Biol Ther 2007; 7:599-615. [PMID: 17477799 DOI: 10.1517/14712598.7.5.599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is compelling evidence for the role of natural killer (NK) cells in tumor immunosurveillance and their beneficial effects on many experimentally successful immunotherapy strategies. NK cells mediate cell contact-dependent cellular cytotoxicity and produce pro-inflammatory cytokines, but do not rearrange antigen receptors. Their activation depends on various germline-encoded receptors, including CD16, which mediates recognition of antibody-coated target cells. NK cytotoxicity is checked by a repertoire of inhibitory receptors that scan adequate expression of major histocompatibility complex class I molecules on the potential target cell. Functional cross-talk of NK and dendritic cells suggests a critical role for NK cells in the initiation and regulation of cellular immunity. Considerable knowledge on the molecular basis of NK recognition/activation contrasts with a lack of successful translational research on these matters. However, there is plenty of opportunity for targeted intervention of inhibitory/activatory surface receptors and for adoptive cell therapy with autologous or allogeneic NK cells.
Collapse
Affiliation(s)
- Ainhoa Arina
- University of Navarra, Centro de Investigación Médica Aplicada and Clinica Universitaria, Gene Therapy Unit, Avda. Pio XII 55, 31008, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Barber A, Zhang T, DeMars LR, Conejo-Garcia J, Roby KF, Sentman CL. Chimeric NKG2D Receptor–Bearing T Cells as Immunotherapy for Ovarian Cancer. Cancer Res 2007; 67:5003-8. [PMID: 17510432 DOI: 10.1158/0008-5472.can-06-4047] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite advancements in the treatment of ovarian cancer, this disease continues to be a leading cause of cancer death in women. Adoptive transfer of tumor-reactive T cells is a promising antitumor therapy for many cancers. We designed a chimeric receptor linking NKG2D, a natural killer (NK) cell-activating receptor, to the CD3zeta chain of the T-cell receptor to target ovarian tumor cells. Engagement of chimeric NKG2D receptors (chNKG2D) with ligands for NKG2D, which are commonly expressed on tumor cells, leads to T-cell secretion of proinflammatory cytokines and tumor cytotoxicity. In this study, we show that >80% of primary human ovarian cancer samples expressed ligands for NKG2D on the cell surface. The tumor samples expressed MHC class I-related protein A, MICB, and UL-16 binding proteins 1 and 3. ChNKG2D-expressing T cells lysed ovarian cancer cell lines. We show that T cells from ovarian cancer patients that express chNKG2D secreted proinflammatory cytokines when cultured with autologous tumor cells. In addition, we show that chNKG2D T cells can be used therapeutically in a murine model of ovarian cancer. These data indicate that treatment with chNKG2D-expressing T cells is a potential immunotherapy for ovarian cancer.
Collapse
Affiliation(s)
- Amorette Barber
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
40
|
Belov K, Sanderson CE, Deakin JE, Wong ESW, Assange D, McColl KA, Gout A, de Bono B, Barrow AD, Speed TP, Trowsdale J, Papenfuss AT. Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 2007; 17:982-91. [PMID: 17495011 PMCID: PMC1899125 DOI: 10.1101/gr.6121807] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The availability of the first marsupial genome sequence has allowed us to characterize the immunome of the gray short-tailed opossum (Monodelphis domestica). Here we report the identification of key immune genes, including the highly divergent chemokines, defensins, cathelicidins, and Natural Killer cell receptors. It appears that the increase in complexity of the mammalian immune system occurred prior to the divergence of the marsupial and eutherian lineages approximately 180 million years ago. Genomes of ancestral mammals most likely contained all of the key mammalian immune gene families, with evolution on different continents, in the presence of different pathogens leading to lineage specific expansions and contractions, resulting in some minor differences in gene number and composition between different mammalian lineages. Gene expansion and extensive heterogeneity in opossum antimicrobial peptide genes may have evolved as a consequence of the newborn young needing to survive without an adaptive immune system in a pathogen laden environment. Given the similarities in the genomic architecture of the marsupial and eutherian immune systems, we propose that marsupials are ideal model organisms for the study of developmental immunology.
Collapse
Affiliation(s)
- Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Cancer immunotherapy is a growing field that aims at restoring and enhancing immune function to combat oncogenic conditions. One target of this field is natural killer (NK) cells. Part of innate immunity, NK cells are able to kill tumor cells without previous priming. Results from stem cell transplants containing alloreactive donor NK cells and in vitro work have evidenced a great antitumor potential. In addition, NK cells are likely to interact with dendritic cells, potent antigen-presenting cells, thus forming a bridge between innate and adaptive immunity. This review aims to provide an overview of NK cells with particular emphasis on properties that can and are being targeted in order to potentiate the antitumor activity of these cells.
Collapse
Affiliation(s)
- Karrune Woan
- University of Florida College of Medicine, Gainesville, FL 32608, USA.
| | | |
Collapse
|