1
|
Singh SP, Chaudhary U, Sharma I. Catalytic Thioglycoside Activation with Diazo-Derived Copper Carbenes. Molecules 2024; 29:5367. [PMID: 39598755 PMCID: PMC11597044 DOI: 10.3390/molecules29225367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Traditional glycosylation methods using thioglycosides often require harsh conditions or expensive metal catalysts. This study presents a more sustainable alternative by employing copper, an earth-abundant catalyst. We developed diazo-based thioglycoside donors that, through copper catalysis, undergo intramolecular activation to form glycosyl sulfonium ions, leading to the generation of oxocarbenium ions. This versatile approach efficiently accommodates a variety of O-nucleophiles, including primary, secondary, and tertiary, as well as complex bioactive molecules. It is compatible with various glycosyl donors and protecting groups, including superarmed, armed, and disarmed systems. Notably, the methodology operates orthogonally to traditional thioglycoside and alkyne donors and has been successfully applied to the orthogonal iterative synthesis of trisaccharides. Mechanistic insights were gained by studying the electronic effects of electron-donating (OMe) and electron-withdrawing (NO2) groups on the donors, offering a valuable understanding of the intramolecular reaction pathway.
Collapse
Affiliation(s)
| | | | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5251, USA; (S.P.S.); (U.C.)
| |
Collapse
|
2
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
3
|
Chen JS, Lo TC, Hsieh YC, Chen CH, Lin M, Lin HY, Hung MW, Wu HR, Luo SY. Utilizing Reusable Catalyst Phosphotungstic Acid for the Synthesis of Thioglycoside from Per- O-acetyl Saccharides with Microwave-Assisted and De- O-acetylation with Methanol. ACS OMEGA 2023; 8:8885-8893. [PMID: 36910976 PMCID: PMC9996587 DOI: 10.1021/acsomega.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Traditional methods for synthesizing complex oligosaccharides currently developed are not efficient, requiring a new glycosylation methodology. Herein, using phosphotungstic acid (PTA) as a catalyst has demonstrated to be a simple possibility for carbohydrate synthesis. The methodology is engineered into a PTA-catalyzed thioglycoside preparation under microwave conditions and de-O-acetylation of carbohydrates. These easier operations and convenient protocols display a wide substrate scope. Moreover, both methods can be developed into a one-pot reaction for the efficient synthesis of carbohydrate analogues.
Collapse
Affiliation(s)
- Jyun-Siao Chen
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tai-Chung Lo
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ya-Chi Hsieh
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Hsien Chen
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Heng-Yan Lin
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ming-Wei Hung
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsin-Ru Wu
- Instrumentation
Center, National Tsing Hua University, MOST, Hsinchu 300044, Taiwan
| | - Shun-Yuan Luo
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Zou LJ, Yang X, Zhao XR, He H, Zhang D, Song H, Xue F, Qin Y. Iterative Synthesis of Inulin-Type Fructooligosaccharides Enabled by Stereoselective β-d-Fructofuranosylation. J Org Chem 2022; 87:15273-15288. [PMID: 36318096 DOI: 10.1021/acs.joc.2c01849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inulin-type fructooligosaccharides (FOSs) constitute an abundant subgroup of fructans with important biological activities. However, the availability of individual fructooligosaccharides with an accurate structure in high purity and quality remains challenging. We herein report the first iterative synthesis of five inulin-type FOSs with degrees of polymerization ranging from 3 to 7 via highly stereoselective β-(2 → 1)-d-fructofuranosylation on a gram scale. Central to the synthesis is the decisive use of the 1-O-TIPS-6-O-picoloyl-protected fructofuranosyl thioglycoside donor, which assured the excellent β-selective glycosylation by the hydrogen-bond-mediated aglycone delivery (HAD).
Collapse
Affiliation(s)
- Liang-Jing Zou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Xi-Rui Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Huan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Dan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Hao Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
5
|
Morelli L, Compostella F, Panza L, Imperio D. Unusual promoters and leaving groups in glycosylation reactions: The evolution of carbohydrate synthesis. Carbohydr Res 2022; 519:108625. [DOI: 10.1016/j.carres.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
|
6
|
Synthesis of naturally occurring β-l-arabinofuranosyl-l-arabinofuranoside structures towards the substrate specificity evaluation of β-l-arabinofuranosidase. Bioorg Med Chem 2022; 68:116849. [PMID: 35653870 DOI: 10.1016/j.bmc.2022.116849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022]
Abstract
Methyl β-l-arabinofuranosyl-(1 → 2)-, -(1 → 3)-, and -(1 → 5)-α-l-arabinofuranosides have been stereoselectively synthesized through 2-naphthylmethyl ether-mediated intramolecular aglycon delivery (NAP-IAD), whose β-linkages were confirmed by NMR analysis on the 3JH1-H2 coupling constant and 13C chemical shift of C1. The NAP-IAD approach was simply extended for the synthesis of trisaccharide motifs possessing β-l-arabinofuranosyl-(1 → 5)-l-arabinofuranosyl non-reducing terminal structure with the branched β-l-arabinofuranosyl-(1 → 5)-[α-l-arabinofuranosyl-(1 → 3)]-α-l-arabinofuranosyl and the liner β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl-(1 → 5)-β-l-arabinofuranosyl structures in olive arabinan and dinoflagellate polyethers, respectively. The results on the substrate specificity of a bifidobacterial β-l-arabinofuranosidase HypBA1 using the regioisomers indicated that HypBA1 could hydrolyze all three linkages however behaved clearly less active to β-(1 → 5)-linked disaccharide than other two regioisomers including the proposed natural degradation product, β-(1 → 2)-linked one from plant extracellular matrix such as extensin. On the other hand, Xanthomonas XeHypBA1 was found to hydrolyze all three disaccharides as the substrate with higher specificity to β-(1 → 2)-linkage than bifidobacterial HypBA1.
Collapse
|
7
|
Mitachi K, Mingle D, Effah W, Sánchez‐Ruiz A, Hevener KE, Narayanan R, Clemons WM, Sarabia F, Kurosu M. Concise Synthesis of Tunicamycin V and Discovery of a Cytostatic DPAGT1 Inhibitor. Angew Chem Int Ed Engl 2022; 61:e202203225. [PMID: 35594368 PMCID: PMC9329268 DOI: 10.1002/anie.202203225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A short total synthesis of tunicamycin V (1), a non-selective phosphotransferase inhibitor, is achieved via a Büchner-Curtius-Schlotterbeck type reaction. Tunicamycin V can be synthesized in 15 chemical steps from D-galactal with 21 % overall yield. The established synthetic scheme is operationally very simple and flexible to introduce building blocks of interest. The inhibitory activity of one of the designed analogues 28 against human dolichyl-phosphate N-acetylglucosaminephosphotransferase 1 (DPAGT1) is 12.5 times greater than 1. While tunicamycins are cytotoxic molecules with a low selectivity, the novel analogue 28 displays selective cytostatic activity against breast cancer cell lines including a triple-negative breast cancer.
Collapse
Affiliation(s)
- Katsuhiko Mitachi
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - David Mingle
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - Wendy Effah
- Department of Medicine University of Tennessee Health Science Center 19 S. Manassas, Room 120 Memphis TN 38103 USA
| | - Antonio Sánchez‐Ruiz
- Faculty of Pharmacy Campus de Albacete Universidad de Castilla-La Mancha Avda. Dr. José María Sánchez Ibáñez S/N 02008 Albacete Spain
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| | - Ramesh Narayanan
- Department of Medicine University of Tennessee Health Science Center 19 S. Manassas, Room 120 Memphis TN 38103 USA
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E. California Blvd. Pasadena CA 91125 USA
| | - Francisco Sarabia
- Department of Organic Chemistry Faculty of Sciences Universidad de Málaga, Campus de Teatinos 29071 Málaga Spain
| | - Michio Kurosu
- Department of Pharmaceutical Sciences College of Pharmacy University of Tennessee Health Science Center 881 Madison Avenue Memphis TN 38163 USA
| |
Collapse
|
8
|
Kanaujiya VK, Tiwari V, Pattanaik K, Sabiah S, Kandasamy J. Synthesis of Glycouronamides by the Transamidation Approach at Room Temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Varsha Tiwari
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | | | | | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
9
|
Mitachi K, Mingle D, Effah W, Sánchez-Ruiz A, Hevener KE, Narayanan R, Clemons WM, Sarabia F, Kurosu M. Concise Synthesis of Tunicamycin V and Discovery of a Cytostatic DPAGT1 Inhibitor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katsuhiko Mitachi
- The University of Tennessee Health Science Center College of Pharmacy Pharmacy 881 Madison AvenueROOM 557 38163 MEMPHS UNITED STATES
| | - David Mingle
- The University of Tennessee Health Science Center College of Pharmacy Pharmacy 881 MADISON AVE 38163 MEMPHS UNITED STATES
| | - Wendy Effah
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Medicine UNITED STATES
| | | | - Kirk E. Hevener
- UTHSC College of Pharmacy Memphis: The University of Tennessee Health Science Center College of Pharmacy Pharmacy UNITED STATES
| | - Ramesh Narayanan
- University of Tennessee College of Medicine: The University of Tennessee Health Science Center College of Medicine Medicine 19, S. Manassas 38013 Memphis UNITED STATES
| | - William M. Clemons
- Caltech: California Institute of Technology Chemistry and Chemical Engineering UNITED STATES
| | - Francisco Sarabia
- University of Malaga: Universidad de Malaga Organic Chemistry UNITED STATES
| | - Michio Kurosu
- UTHSC College of Pharmacy Memphis: The University of Tennessee Health Science Center College of Pharmacy Department of Pharmaceutical Sciences, College of Pharmacy 881 MADISON AVEROOM 557 38163 Memphis UNITED STATES
| |
Collapse
|
10
|
Escopy S, Demchenko AV. Transition-Metal-Mediated Glycosylation with Thioglycosides. Chemistry 2021; 28:e202103747. [PMID: 34935219 DOI: 10.1002/chem.202103747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 11/09/2022]
Abstract
Thioglycosides are among the most common glycosyl donors that find broad application in the synthesis of glycans and glycoconjugates. However, the requirement for toxic and/or large access of activators needed for common glycosylations with thioglycosides remains a notable drawback. Due to the increased awareness of the chemical waste impact on the environment, synthetic studies have been driven by the goal of finding non-toxic reagents. The main focus of this review is to highlight recent methods for thioglycoside activation that rely on transition metal catalysis.
Collapse
Affiliation(s)
- Samira Escopy
- University of Missouri - St. Louis, Chemistry, UNITED STATES
| | - Alexei V Demchenko
- Saint Louis University, Chemistry, 3501 Laclede Ave, 63103, St. Louis, UNITED STATES
| |
Collapse
|
11
|
Das A, Jayaraman N. Aglycon reactivity as a guiding principle in latent-active approach to chemical glycosylations. Carbohydr Res 2021; 508:108404. [PMID: 34352649 DOI: 10.1016/j.carres.2021.108404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Chemical glycosylations critically depend on the activation of a glycosyl donor and the reaction of this activated donor intermediate with an acceptor alcohol. Whereas many strategies are developed for the activation of an anomeric aglycon substituent, the latent-active method of glycosylation is based specifically on tuning the reactivity of the aglycon substituent of a glycosyl donor. Several novel methods have emerged to install reactive aglycon moiety in a glycosyl donor and fine-tuning the reactivity of the moiety. Remote functionalizations of the aglycon plays a key role in the reactivity tuning. Activation of a remote functionality enables an otherwise latent aglycon to an active moiety, suitable as a glycosyl donor. The latent-active approach provides an advantage to avoid the conversion of the aglycon to another donor prior to a glycosylation, in addition to advancing the contemporary glycosylations with alternate insights. The review analyzes the methodologies that consolidate the latent-active approach to chemical glycosylations.
Collapse
Affiliation(s)
- Anupama Das
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
12
|
Kirubakaran S, Sureshkumar D, Chandrasekaran S. Tetrathiomolybdate and Tetraselenotungstate as Sulfur/Selenium Transfer Reagents: Applications in the Synthesis of New Thio/Seleno Sugars. CHEM REC 2021; 21:3076-3086. [PMID: 34145726 DOI: 10.1002/tcr.202100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 11/11/2022]
Abstract
Sulfur and selenium containing sugars have gained prominence in the last two decades because of their importance in several biological applications. These type of carbohydrate scaffolds are also challenging targets for synthesis. In this personal note, we have summarised the results of our investigation over the last 20 years on the use of two reagents, benzyltriethylammonium tetrathiomolybdate and tetraethylammonium tetraselenotungstate, in efficient transfer of sulfur and selenium respectively to the synthesis of a number of carbohydrate derivatives.
Collapse
Affiliation(s)
- Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Devarajulu Sureshkumar
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | | |
Collapse
|
13
|
Jayaraman N. Display of Rich Reactivities of Endo- and Exocyclic Unsaturated Sugars that Parallel the Native Sugars. CHEM REC 2021; 21:3049-3062. [PMID: 33960656 DOI: 10.1002/tcr.202100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/10/2022]
Abstract
Unsaturated monosaccharides expand the scope of reactivities in a sugar, directly leading to the development of newer methodologies, molecular structures and functional entities. The unsaturation as a reactive moiety can either be within the molecule, namely, endocyclic, or as a pendant moiety around the molecule, namely, exocyclic. One carbon homologations aided by reactions at the unsaturated moiety expand the molecular structures in both endo- and exocyclic sugars and lead to structures that are largely hitherto unknown. Molecular shifts and rearrangements permit interchanging the reactivities from one carbon to the other in unsaturated sugars. Activations of exocyclic unsaturated sugars also find newer possibilities to reactions central to the sugar chemistry, namely, the glycosylations. The personal reflections result from a couple of decades of explorations that traverse through the unsaturated sugars from different vantage points.
Collapse
|
14
|
Traverssi MG, Peñéñory AB, Varela O, Colomer JP. Photooxidation of thiosaccharides mediated by sensitizers in aerobic and environmentally friendly conditions. RSC Adv 2021; 11:9262-9273. [PMID: 35423421 PMCID: PMC8695230 DOI: 10.1039/d0ra09534f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
A series of β-d-glucopyranosyl derivates have been synthesized and evaluated in photooxidation reactions promoted by visible light and mediated by organic dyes under aerobic conditions. Among the different photocatalysts employed, tetra-O-acetyl riboflavin afforded chemoselectively the respective sulfoxides, without over-oxidation to sulfones, in good to excellent yields and short reaction times. This new methodology for the preparation of synthetically useful glycosyl sulfoxides constitutes a catalytic, efficient, economical, and environmentally friendly oxidation process not reported so far for carbohydrates.
Collapse
Affiliation(s)
- Miqueas G Traverssi
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| | - Alicia B Peñéñory
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| | - Oscar Varela
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad Ciencias Exactas y Naturales, Ciudad Universitaria Pab. 2, C1428EHA Buenos Aires Argentina.,Centro de Investigación en Hidratos de Carbono (CIHIDECAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UBA Argentina
| | - Juan P Colomer
- Departamento de Química Orgánica, Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Ciudad Universitaria Edificio de Ciencias II Córdoba Argentina .,Instituto de Investigaciones en Fisico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), UNC Argentina
| |
Collapse
|
15
|
Shrestha G, Panza M, Singh Y, Rath NP, Demchenko AV. Indolylthio Glycosides As Effective Building Blocks for Chemical Glycosylation. J Org Chem 2020; 85:15885-15894. [PMID: 32627548 DOI: 10.1021/acs.joc.0c00943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The S-indolyl (SIn) anomeric moiety was investigated as a new leaving group that can be activated for chemical glycosylation under a variety of conditions including thiophilic and metal-assisted pathways. Understanding of the reaction pathways for the SIn moiety activation was achieved via the extended mechanistic study. Also reported is how the new SIn donors fit into selective activation strategies for oligosaccharide synthesis.
Collapse
Affiliation(s)
- Ganesh Shrestha
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
16
|
Li W, Yu B. Temporary ether protecting groups at the anomeric center in complex carbohydrate synthesis. Adv Carbohydr Chem Biochem 2020; 77:1-69. [PMID: 33004110 DOI: 10.1016/bs.accb.2019.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of a carbohydrate building block usually starts with introduction of a temporary protecting group at the anomeric center and ends with its selective cleavage for further transformation. Thus, the choice of the anomeric temporary protecting group must be carefully considered because it should retain intact during the whole synthetic manipulation, and it should be chemoselectively removable without affecting other functional groups at a late stage in the synthesis. Etherate groups are the most widely used temporary protecting groups at the anomeric center, generally including allyl ethers, MP (p-methoxyphenyl) ethers, benzyl ethers, PMB (p-methoxybenzyl) eithers, and silyl ethers. This chapter provides a comprehensive review on their formation, cleavage, and applications in the synthesis of complex carbohydrates.
Collapse
Affiliation(s)
- Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
17
|
Romanò C, Jiang H, Boos I, Clausen MH. S-Glycosides: synthesis of S-linked arabinoxylan oligosaccharides. Org Biomol Chem 2020; 18:2696-2701. [PMID: 32206767 DOI: 10.1039/d0ob00470g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
S-Glycosides are important tools for the elucidation of specific protein-carbohydrate interactions and can significantly aid structural and functional studies of carbohydrate-active enzymes, as they are often inert or act as enzyme inhibitors. In this context, this work focuses on the introduction of an S-linkage into arabinoxylan oligosaccharides (AXs) in order to obtain a small collection of synthetic tools for the study of AXs degrading enzymes. The key step for the introduction of the S-glycosidic linkage involved anomeric thiol S-alkylation of an orthogonally protected l-arabinopyranoside triflate. The resulting S-linked disaccharide was subsequently employed in a series of glycosylation reactions to obtain a selectively protected tetrasaccharide. This could be further elaborated through chemoselective deprotection and glycosylation reactions to introduce branching l-arabinofuranosides.
Collapse
Affiliation(s)
- Cecilia Romanò
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Hao Jiang
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Irene Boos
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| | - Mads H Clausen
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
18
|
Uriel C, Permingeat C, Ventura J, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Gómez AM, Lopez JC. BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry 2020; 26:5388-5399. [PMID: 31999023 DOI: 10.1002/chem.201905780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/11/2022]
Abstract
A series of fluorescent boron-dipyrromethene (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes have been designed to participate, as aglycons, in synthetic oligosaccharide protocols. As such, they served a dual purpose: first, by being incorporated at the beginning of the process (at the reducing-end of the growing saccharide moiety), they can function as fluorescent glycosyl tags, facilitating the detection and purification of the desired glycosidic intermediates, and secondly, the presence of these chromophores on the ensuing compounds grants access to fluorescently labeled saccharides. In this context, a sought-after feature of the fluorescent dyes has been their chemical robustness. Accordingly, some BODIPY derivatives described in this work can withstand the reaction conditions commonly employed in the chemical synthesis of saccharides; namely, glycosylation and protecting-group manipulations. Regarding their photophysical properties, the BODIPY-labeled saccharides obtained in this work display remarkable fluorescence efficiency in water, reaching quantum yield values up to 82 %, as well as notable lasing efficiencies and photostabilities.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Caterina Permingeat
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Ventura
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Jorge Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain
| | | | - Ana M Gómez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
19
|
Singh Y, Rodriguez Benavente MC, Al-Huniti MH, Beckwith D, Ayyalasomayajula R, Patino E, Miranda WS, Wade A, Cudic M. Positional Scanning MUC1 Glycopeptide Library Reveals the Importance of PDTR Epitope Glycosylation for Lectin Binding. J Org Chem 2019; 85:1434-1445. [PMID: 31799848 PMCID: PMC7012140 DOI: 10.1021/acs.joc.9b02396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the main barriers to explaining the functional significance of glycan-based changes in cancer is the natural epitope heterogeneity found on the surface of cancer cells. To help address this knowledge gap, we focused on designing synthetic tools to explore the role of tumor-associated glycans of MUC1 in the formation of metastasis via association with lectins. In this study, we have synthesized for the first time a MUC1-derived positional scanning synthetic glycopeptide combinatorial library (PS-SGCL) that vary in number and location of cancer-associated Tn antigen using the "tea bag" approach. The determination of the isokinetic ratios necessary for the equimolar incorporation of (glyco)amino acids mixtures to resin-bound amino acid was determined, along with developing an efficient protocol for on resin deprotection of O-acetyl groups. Enzyme-linked lectin assay was used to screen PS-SGCL against two plant lectins, Glycine max soybean agglutinin and Vicia villosa. The results revealed a carbohydrate density-dependent affinity trend and site-specific glycosylation requirements for high affinity binding to these lectins. Hence, PS-SGCLs provide a platform to systematically elucidate MUC1-lectin binding specificities, which in the long term may provide a rational design for novel inhibitors of MUC1-lectin interactions involved in tumor spread and glycopeptide-based cancer vaccines.
Collapse
Affiliation(s)
- YashoNandini Singh
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Maria C Rodriguez Benavente
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Mohammed H Al-Huniti
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Donella Beckwith
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Ramya Ayyalasomayajula
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Eric Patino
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - William S Miranda
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Alex Wade
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| | - Maré Cudic
- From the Department of Chemistry and Biochemistry, Charles E. Schmidt College of Science , Florida Atlantic University , 777 Glades Road , Boca Raton , Florida 33431 , United States
| |
Collapse
|
20
|
Escopy S, Singh Y, Demchenko AV. Triflic acid-mediated synthesis of thioglycosides. Org Biomol Chem 2019; 17:8379-8383. [PMID: 31490529 DOI: 10.1039/c9ob01610d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient synthesis of thioglycosides from per-acetates in the presence of triflic acid is described. The developed protocol features high reaction rates and product yields. Some reactive sugar series give high efficiency in the presence of sub-stoichiometric trifluoromethanesulfonic acid (TfOH) in contrast to other known protocols that require multiple equivalents of Lewis acids to reach high conversion rates.
Collapse
Affiliation(s)
- Samira Escopy
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Yashapal Singh
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| | - Alexei V Demchenko
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, One University Boulevard, St. Louis, Missouri 63121, USA.
| |
Collapse
|
21
|
Mahapa A, Samanta GC, Maiti K, Chatterji D, Jayaraman N. Mannopyranoside Glycolipids Inhibit Mycobacterial and Biofilm Growth and Potentiate Isoniazid Inhibition Activities in M. smegmatis. Chembiochem 2019; 20:1966-1976. [PMID: 30951240 DOI: 10.1002/cbic.201900040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Lipomannan and lipoarabinomannan are integral components of the mycobacterial cell wall. Earlier studies demonstrated that synthetic arabinan and arabinomannan glycolipids acted as inhibitors of mycobacterial growth, in addition to exhibiting inhibitory activities of mycobacterial biofilm. Herein, it is demonstrated that synthetic mannan glycolipids are better inhibitors of mycobacterial growth, whereas lipoarabinomannan has a higher inhibition efficiency to biofilm. Syntheses of mannan glycolipids with a graded number of mannan moieties and an arabinomannan glycolipid are conducted by chemical methods and subsequent mycobacterial growth and biofilm inhibition studies are conducted on Mycobacterium smegmatis. Growth inhibition of (73±3) % is observed with a mannose trisaccharide containing a glycolipid, whereas this glycolipid did not promote biofilm inhibition activity better than that of arabinomannan glycolipid. The antibiotic supplementation activities of glycolipids on growth and biofilm inhibitions are evaluated. Increases in growth and biofilm inhibitions are observed if the antibiotic is supplemented with glycolipids, which leads to a significant reduction of inhibition concentrations of the antibiotic.
Collapse
Affiliation(s)
- Avisek Mahapa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | - Gopal Ch Samanta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Krishnagopal Maiti
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560 012, India
| | | |
Collapse
|
22
|
Dey S, Bajaj SO, Tsai TI, Lo HJ, Wu K, Wong CH. Synthesis of Modular Building Blocks using Glycosyl Phosphate Donors for the Construction of Asymmetric N-Glycans. Tetrahedron 2018; 74:6003-6011. [PMID: 30983640 PMCID: PMC6456066 DOI: 10.1016/j.tet.2018.08.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosyl phosphates are known as versatile donors for the synthesis of complex oligosaccharides both chemically and enzymatically. Herein, we report the stereoselective construction of modular building blocks for the synthesis of N-glycan using glycosyl phosphates as donors. We have synthesized four trisaccharide building blocks with orthogonal protecting groups, namely, Manβ2GlcNAc(OAc)3β6GlcNAc (9), Manβ2GlcNAc-β6GlcNAc(OAc)3 (15), Manβ2GlcNAc(OAc)3β4GlcNAc (18) and Manβ2GlcNAcβ4GlcNAc(OAc) (22) for further selective elongation using glycosyltransferases. The glycosylation reaction using glycosyl phosphate was found to be high yielding with shorter reaction time. Initially, The phthalimide protected glucosamine donor was exploited to ensure the formation of β-glycosidic linkage and later converted to the N-acetyl group before the enzymatic synthesis. The selective deprotection of O-benzyl group was performed prior to enzymatic synthesis to avoid its negative interference.
Collapse
Affiliation(s)
- Supriya Dey
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Sumit O Bajaj
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
- Corden Pharma Colorado Inc., 2075 55 Street, Boulder, CO, USA, 80301
| | - Tsung-I Tsai
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Hong-Jay Lo
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Kevin Wu
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
| | - Chi-Huey Wong
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA, USA, 92037
- The Genomics Research Center, Academia Sinica, No. 128, Academia Rd., Section 2, Nankang District, Taipei, 115, Taiwan
| |
Collapse
|
23
|
Chatterjee S, Moon S, Hentschel F, Gilmore K, Seeberger PH. An Empirical Understanding of the Glycosylation Reaction. J Am Chem Soc 2018; 140:11942-11953. [PMID: 30125122 DOI: 10.1021/jacs.8b04525] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reliable glycosylation reactions that allow for the stereo- and regioselective installation of glycosidic linkages are paramount to the chemical synthesis of glycan chains. The stereoselectivity of glycosylations is exceedingly difficult to control due to the reaction's high degree of sensitivity and its shifting, simultaneous mechanistic pathways that are controlled by variables of unknown degree of influence, dominance, or interdependency. An automated platform was devised to quickly, reproducibly, and systematically screen glycosylations and thereby address this fundamental problem. Thirteen variables were investigated in as isolated a manner as possible, to identify and quantify inherent preferences of electrophilic glycosylating agents (glycosyl donors) and nucleophiles (glycosyl acceptors). Ways to enhance, suppress, or even override these preferences using judicious environmental conditions were discovered. Glycosylations involving two specific partners can be tuned to produce either 11:1 selectivity of one stereoisomer or 9:1 of the other by merely changing the reaction conditions.
Collapse
Affiliation(s)
- Sourav Chatterjee
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Sooyeon Moon
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Felix Hentschel
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Kerry Gilmore
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max-Planck-Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
24
|
Panza M, Pistorio SG, Stine KJ, Demchenko AV. Automated Chemical Oligosaccharide Synthesis: Novel Approach to Traditional Challenges. Chem Rev 2018; 118:8105-8150. [PMID: 29953217 PMCID: PMC6522228 DOI: 10.1021/acs.chemrev.8b00051] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Advances in carbohydrate chemistry have certainly made common oligosaccharides much more accessible. However, many current methods still rely heavily upon specialized knowledge of carbohydrate chemistry. The application of automated technologies to chemical and life science applications such as genomics and proteomics represents a vibrant field. These automated technologies also present opportunities for their application to organic synthesis, including that of the synthesis of oligosaccharides. However, application of automated methods to the synthesis of carbohydrates is an underdeveloped area as compared to other classes of biomolecules. The overarching goal of this review article is to present the advances that have been made at the interface of carbohydrate chemistry and automated technology.
Collapse
Affiliation(s)
- Matteo Panza
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Salvatore G. Pistorio
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Alexei V. Demchenko
- Department of Chemistry and Biochemistry, University of Missouri–St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
25
|
Mohamed S, He QQ, Lepage RJ, Krenske EH, Ferro V. Glycosylations of Simple Acceptors with 2‐
O
‐Acyl
l
‐Idose or
l
‐Iduronic Acid Donors Reveal Only a Minor Role for Neighbouring‐Group Participation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Romain J. Lepage
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences The University of Queensland 4072 Brisbane QLD Australia
| |
Collapse
|
26
|
Chen W, Zeng J, Wang H, Xiao X, Meng L, Wan Q. Tracking the leaving group in the remote activation of O -2-[(propan-2-yl)sulfinyl]benzyl (OPSB) glycoside. Carbohydr Res 2017; 452:1-5. [DOI: 10.1016/j.carres.2017.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
|
27
|
Norberg O, Wu B, Thota N, Ge JT, Fauquet G, Saur AK, Aastrup T, Dong H, Yan M, Ramström O. Synthesis and binding affinity analysis of α1-2- and α1-6- O / S -linked dimannosides for the elucidation of sulfur in glycosidic bonds using quartz crystal microbalance sensors. Carbohydr Res 2017; 452:35-42. [DOI: 10.1016/j.carres.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023]
|
28
|
Yang W, Yang B, Ramadan S, Huang X. Preactivation-based chemoselective glycosylations: A powerful strategy for oligosaccharide assembly. Beilstein J Org Chem 2017; 13:2094-2114. [PMID: 29062430 PMCID: PMC5647719 DOI: 10.3762/bjoc.13.207] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/14/2017] [Indexed: 12/14/2022] Open
Abstract
Most glycosylation reactions are performed by mixing the glycosyl donor and acceptor together followed by the addition of a promoter. While many oligosaccharides have been synthesized successfully using this premixed strategy, extensive protective group manipulation and aglycon adjustment often need to be performed on oligosaccharide intermediates, which lower the overall synthetic efficiency. Preactivation-based glycosylation refers to strategies where the glycosyl donor is activated by a promoter in the absence of an acceptor. The subsequent acceptor addition then leads to the formation of the glycoside product. As donor activation and glycosylation are carried out in two distinct steps, unique chemoselectivities can be obtained. Successful glycosylation can be performed independent of anomeric reactivities of the building blocks. In addition, one-pot protocols have been developed that have enabled multiple-step glycosylations in the same reaction flask without the need for intermediate purification. Complex glycans containing both 1,2-cis and 1,2-trans linkages, branched oligosaccharides, uronic acids, sialic acids, modifications such as sulfate esters and deoxy glycosides have been successfully synthesized. The preactivation-based chemoselective glycosylation is a powerful strategy for oligosaccharide assembly complementing the more traditional premixed method.
Collapse
Affiliation(s)
- Weizhun Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Bo Yang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
| | - Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, MI 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Abstract
Syndecan-1 chondroitin sulfate glycopeptide was synthesized for the first time using the cassette approach. The sequence of glycosylation to form the octasaccharide serine cassette was critical. The glycopeptide was successfully assembled via a 2+ (3 + 3) glycosylation strategy followed by peptide chain elongation.
Collapse
Affiliation(s)
- Sherif Ramadan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Weizhun Yang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zeren Zhang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
30
|
Morita S, Matsuo JI. Synthesis of various 6-substituted 1,4,5,6-tetrahydropyridazines by substitution of a 1,4,5,6-tetrahydro-6-tosylhydrazinopyridazines. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Weng SS, Hsieh KY, Zeng ZJ. Dehydrative Thioglycosylation of 1-Hydroxyl Glycosides Catalyzed by In Situ-Generated AlI3. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shiue-Shien Weng
- Department of Chemistry; ROC Military Academy; Kaohsiung 830 Taiwan, ROC
| | - Kun-Yi Hsieh
- Department of Chemistry; ROC Military Academy; Kaohsiung 830 Taiwan, ROC
| | - Zih-Jian Zeng
- Department of Chemistry; ROC Military Academy; Kaohsiung 830 Taiwan, ROC
| |
Collapse
|
32
|
Verkhnyatskaya SA, Krylov VB, Nifantiev NE. Pyranoside-into-Furanoside Rearrangement of 4-Pentenyl Glycosides in the Synthesis of a Tetrasaccharide-Related to Galactan I ofKlebsiella pneumoniae. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stella A. Verkhnyatskaya
- Laboratory of Glycoconjugate Chemistry; N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Vadim B. Krylov
- Laboratory of Glycoconjugate Chemistry; N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry; N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky prospect 47 119991 Moscow Russian Federation
| |
Collapse
|
33
|
Bernardi S, Yi D, He N, Casnati A, Fessner WD, Sansone F. Complete tetraglycosylation of a calix[4]arene by a chemo-enzymatic approach. Org Biomol Chem 2017; 15:10064-10072. [DOI: 10.1039/c7ob02448g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It was demonstrated that a calixarene can be a substrate for glycosyltransferases and thanks to an exhaustive glycosylation a multivalent tetralactosaminyl calix[4]arene was obtained.
Collapse
Affiliation(s)
- Silvia Bernardi
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università di Parma
- I-43124 Parma
- Italy
| | - Dong Yi
- Technische Universität Darmstadt
- Institute of Organic Chemistry & Biochemistry
- D-64287 Darmstadt
- Germany
| | - Ning He
- Technische Universität Darmstadt
- Institute of Organic Chemistry & Biochemistry
- D-64287 Darmstadt
- Germany
| | - Alessandro Casnati
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università di Parma
- I-43124 Parma
- Italy
| | - Wolf-Dieter Fessner
- Technische Universität Darmstadt
- Institute of Organic Chemistry & Biochemistry
- D-64287 Darmstadt
- Germany
| | - Francesco Sansone
- Dipartimento di Scienze Chimiche
- della Vita e della Sostenibilità Ambientale
- Università di Parma
- I-43124 Parma
- Italy
| |
Collapse
|
34
|
AuCl3-AgOTf promoted O-glycosylation using anomeric sulfoxides as glycosyl donors at room temperature. Carbohydr Res 2017; 437:43-49. [DOI: 10.1016/j.carres.2016.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
|
35
|
|
36
|
Xu H, Ren B, Zhao W, Xin X, Lu Y, Pei Y, Dong H, Pei Z. Regioselective mono and multiple alkylation of diols and polyols catalyzed by organotin and its applications on the synthesis of value-added carbohydrate intermediates. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
|
38
|
Shu P, Yao W, Xiao X, Sun J, Zhao X, Zhao Y, Xu Y, Tao J, Yao G, Zeng J, Wan Q. Glycosylation via remote activation of anomeric leaving groups: development of 2-(2-propylsulfinyl)benzyl glycosides as novel glycosyl donors. Org Chem Front 2016. [DOI: 10.1039/c5qo00359h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New glycosyl donors with recyclable and regenerable leaving groups, which could be activated via remote mode, were designed for latent-active glycosylation.
Collapse
|
39
|
Nikseresht A. SnCl4: An efficient and inexpensive promoter for synthesis of ω-functionalized alkyl 1,2-trans-glycosides from 1-O-pivaloyl donor. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216010266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Venkateswara Rao B, Manmode S, Hotha S. Propargyl 1,2-orthoesters for stereoselective synthesis of thioglycosides and 1-thiotrehaloses. Carbohydr Res 2015; 417:103-8. [DOI: 10.1016/j.carres.2015.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 01/07/2023]
|
41
|
Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM. Glycosylated Porphyrins, Phthalocyanines, and Other Porphyrinoids for Diagnostics and Therapeutics. Chem Rev 2015; 115:10261-306. [PMID: 26317756 PMCID: PMC6011754 DOI: 10.1021/acs.chemrev.5b00244] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Singh
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - Amit Aggarwal
- Department of Natural Sciences, LaGuardia Community College of the City University of New York, Long Island City, New York 11101, United States
| | - N. V. S. Dinesh K. Bhupathiraju
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Gianluca Arianna
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Kirran Tiwari
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
| | - Charles Michael Drain
- Department of Chemistry and Biochemistry, Hunter College of the City University of New York, New York, New York 10065, United States
- The Rockefeller University, New York, New York 10065, United States
| |
Collapse
|
42
|
Chittela S, Reddy TR, Radha Krishna P, Kashyap S. Ruthenium Catalyzed Stereo/Chemo/Regioselective One-Pot Synthesis of C(2)–C(3) Unsaturated and α-d-Mannopyranosyl Sulfones. J Org Chem 2015; 80:7108-16. [DOI: 10.1021/acs.joc.5b00975] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sravanthi Chittela
- D-207, Discovery Laboratory,
Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Thurpu Raghavender Reddy
- D-207, Discovery Laboratory,
Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Palakodety Radha Krishna
- D-207, Discovery Laboratory,
Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Sudhir Kashyap
- D-207, Discovery Laboratory,
Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India
| |
Collapse
|
43
|
Bera S, Mondal D, Martin JT, Singh M. Potential effect of ultrasound on carbohydrates. Carbohydr Res 2015; 410:15-35. [DOI: 10.1016/j.carres.2015.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
|
44
|
Polanki IK, Kurma SH, Bhattacharya AK. Direct Glycosylation of Unprotected and Unactivated Sugars Using Bismuth Nitrate Pentahydrate. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1028585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Lian G, Zhang X, Yu B. Thioglycosides in Carbohydrate Research. Carbohydr Res 2015; 403:13-22. [DOI: 10.1016/j.carres.2014.06.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/29/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022]
|
46
|
Synthesis of mixed glycosyl disulfides/selenenylsulfides using benzyltriethylammonium tetrathiomolybdate as a sulfur transfer reagent. Carbohydr Res 2015; 402:200-7. [PMID: 25498020 DOI: 10.1016/j.carres.2014.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/07/2014] [Accepted: 09/17/2014] [Indexed: 11/23/2022]
Abstract
An easy and mild method has been developed for the synthesis of mixed glycosyl disulfides/selenenylsulfides from glycosyl halides and diaryl/dialkyl dichalcogenides in the presence of benzyltriethylammonium tetrathiomolybdate [(BnEt3N)2MoS4]. The salient feature of this method is the sulfur transfer from [BnEt3N]2MoS4 to form glycosyl disulfides which with excess tetrathiomolybdate further undergo exchange reaction with other dichalcogenides in a one-pot operation.
Collapse
|
47
|
Thadke SA, Hotha S. Efficient synthesis of oligosaccharyl 1,2-O-orthoesters from n-pentenyl glycosides and application to the pentaarabinofuranoside of the mycobacterial cell surface. Org Biomol Chem 2014; 12:9914-20. [DOI: 10.1039/c4ob01395f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Komor R, Kasprzycka A, Pastuch-Gawołek G, Szeja W. Simple synthesis of glycosylthiols and thioglycosides by rearrangement of O-glycosyl thionocarbamates. Carbohydr Res 2014; 396:37-42. [DOI: 10.1016/j.carres.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 11/16/2022]
|
49
|
Veleti SK, Lindenberger JJ, Thanna S, Ronning DR, Sucheck SJ. Synthesis of a poly-hydroxypyrolidine-based inhibitor of Mycobacterium tuberculosis GlgE. J Org Chem 2014; 79:9444-50. [PMID: 25137149 PMCID: PMC4201354 DOI: 10.1021/jo501481r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Long treatment times, poor drug compliance, and natural selection
during treatment of Mycobacterium tuberculosis (Mtb) have given rise to extensively drug-resistant tuberculosis
(XDR-TB). As a result, there is a need to identify new antituberculosis
drug targets. Mtb GlgE is a maltosyl transferase
involved in α-glucan biosynthesis. Mutation of GlgE in Mtb increases the concentration of maltose-1-phosphate (M1P),
one substrate for GlgE, causing rapid cell death. We have designed
2,5-dideoxy-3-O-α-d-glucopyranosyl-2,5-imino-d-mannitol (9) to act as an inhibitor of GlgE.
Compound 9 was synthesized using a convergent synthesis
by coupling thioglycosyl donor 14 and 5-azido-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (23) to form disaccharide 24. A reduction and intramolecular reductive amination transformed
the intermediate disaccharide 24 to the desired pyrolidine 9. Compound 9 inhibited both Mtb GlgE and a variant of Streptomyces coelicolor (Sco) GlgEI with Ki = 237 ±
27 μM and Ki = 102 ± 7.52 μM,
respectively. The results confirm that a Sco GlgE-V279S
variant can be used as a model for Mtb GlgE. In conclusion,
we designed a lead transition state inhibitor of GlgE, which will
be instrumental in further elucidation of the enzymatic mechanism
of Mtb GlgE.
Collapse
Affiliation(s)
- Sri Kumar Veleti
- Department of Chemistry and Biochemistry, School of Green Chemistry and Engineering, The University of Toledo , 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | | | | | | | | |
Collapse
|
50
|
Thadke SA, Mishra B, Hotha S. Gold(III)-catalyzed glycosidations for 1,2-trans and 1,2-cis furanosides. J Org Chem 2014; 79:7358-71. [PMID: 25020110 DOI: 10.1021/jo501052y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Stereoselective synthesis of furanosides is still a daunting task, unlike the pyranosides, for which several methods exist. Herein, a unified stereoselective strategy for the synthesis of 1,2-trans and 1,2-cis furanosides is revealed for seven out of eight possible isomers of pentoses. The identified protocol gives access to diastereoselective synthesis of α- and β-araf, ribf, lyxf, and α-xylf furanosides. 1,2-trans glycosides were synthesized by the use of propargyl 1,2-orthoesters under gold-catalyzed glycosidation conditions, and subsequently, they are converted into 1,2-cis glycosides through oxidation-reduction as the key functional group transformation. All the reactions are found to be fully diastereoselective, mild, and high yielding.
Collapse
Affiliation(s)
- Shivaji A Thadke
- Department of Chemistry, Indian Institute of Science Education and Research , Pune, Maharashtra 411008, India
| | | | | |
Collapse
|