1
|
Warkad SD, Nimse SB, Song KS, Kim T. HCV Detection, Discrimination, and Genotyping Technologies. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3423. [PMID: 30322029 PMCID: PMC6210034 DOI: 10.3390/s18103423] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
According to the World Health Organization (WHO), 71 million people were living with Hepatitis C virus (HCV) infection worldwide in 2015. Each year, about 399,000 HCV-infected people succumb to cirrhosis, hepatocellular carcinoma, and liver failure. Therefore, screening of HCV infection with simple, rapid, but highly sensitive and specific methods can help to curb the global burden on HCV healthcare. Apart from the determination of viral load/viral clearance, the identification of specific HCV genotype is also critical for successful treatment of hepatitis C. This critical review focuses on the technologies used for the detection, discrimination, and genotyping of HCV in clinical samples. This article also focuses on advantages and disadvantages of the reported methods used for HCV detection, quantification, and genotyping.
Collapse
Affiliation(s)
- Shrikant Dashrath Warkad
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Keum-Soo Song
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
2
|
|
3
|
Abstract
AbstractBACKGROUNDOver the past 2 decades there have been substantial improvements in the methods used to quantify viral nucleic acid in body fluids and in our understanding of how to use viral load measurements in the diagnosis and management of patients with a number of viral infections. These methods are now integrated into a wide range of diagnostic and treatment guidelines and commonly deployed in a variety of clinical settings.CONTENTQuantitative nucleic acid amplification methods that are used to measure viral load are described along with key issues and important variables that affect their performance. Particular emphasis is placed on those methods used in clinical laboratories as US Food and Drug Administration–cleared or laboratory-developed tests. We discuss the clinical applications of these methods in patients with HIV-1, hepatitis C virus, hepatitis B virus, cytomegalovirus, Epstein-Barr virus, and BK polyomavirus infections. Finally, the current challenges and future directions of viral load testing are examined.SUMMARYQuantitative nucleic acid amplification tests provide important information that can be used to predict disease progression, distinguish symptomatic from asymptomatic infection, and assess the efficacy of antiviral therapy. Despite the advances in technology, large challenges remain for viral testing related to accuracy, precision, and standardization. Digital PCR, a direct method of quantification of nucleic acids that does not rely on rate-based measurements or calibration curves, may address many of the current challenges.
Collapse
Affiliation(s)
- Jonathan C Gullett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| | - Frederick S Nolte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
4
|
Heiat M, Ranjbar R, Alavian SM. Classical and modern approaches used for viral hepatitis diagnosis. HEPATITIS MONTHLY 2014; 14:e17632. [PMID: 24829586 PMCID: PMC4006100 DOI: 10.5812/hepatmon.17632] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
CONTEXT Viral hepatitis diagnosis is an important issue in the treatment procedure of this infection. Late diagnosis and delayed treatment of viral hepatitis infections can lead to irreversible liver damages and occurrence of liver cirrhosis and hepatocellular carcinoma. A variety of laboratory methods including old and new technologies are being applied to detect hepatitis viruses. Here we have tried to review, categorize, compare and illustrate the classical and modern approaches used for diagnosis of viral hepatitis. EVIDENCE ACQUISITION In order to achieve a comprehensive aspect in viral hepatitis detection methods, an extensive search using related keywords was done in major medical library and data were collected, categorized and summarized in different sections. RESULTS Analyzing of collected data resulted in the wrapping up the hepatitis virus detection methods in separate sections including 1) immunological methods such as enzyme immunoassay (EIA), radio-immunoassay (RIA) immuno-chromatographic assay (ICA), and immuno-chemiluminescence 2) molecular approaches including non-amplification and amplification based methods, and finally 3) advanced biosensors such as mass-sensitive, electrical, electrochemical and optical based biosensors and also new generation of detection methods. CONCLUSIONS Detection procedures in the clinical laboratories possess a large diversity; each has their individual advantages and facilities' differences.
Collapse
Affiliation(s)
- Mohammad Heiat
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding Author: Reza Ranjbar, Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran, Tel: +98-2182482556, Fax: +98-2188039883, E-mail:
| | | |
Collapse
|
5
|
Chang CM, Chang WH, Wang CH, Wang JH, Mai JD, Lee GB. Nucleic acid amplification using microfluidic systems. LAB ON A CHIP 2013; 13:1225-42. [PMID: 23407669 DOI: 10.1039/c3lc41097h] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In the post-human-genome-project era, the development of molecular diagnostic techniques has advanced the frontiers of biomedical research. Nucleic-acid-based technology (NAT) plays an especially important role in molecular diagnosis. However, most research and clinical protocols still rely on the manual analysis of individual samples by skilled technicians which is a time-consuming and labor-intensive process. Recently, with advances in microfluidic designs, integrated micro total-analysis-systems have emerged to overcome the limitations of traditional detection assays. These microfluidic systems have the capability to rapidly perform experiments in parallel and with a high-throughput which allows a NAT analysis to be completed in a few hours or even a few minutes. These features have a significant beneficial influence on many aspects of traditional biological or biochemical research and this new technology is promising for improving molecular diagnosis. Thus, in the foreseeable future, microfluidic systems developed for molecular diagnosis using NAT will become an important tool in clinical diagnosis. One of the critical issues for NAT is nucleic acid amplification. In this review article, recent advances in nucleic acid amplification techniques using microfluidic systems will be reviewed. Different approaches for fast amplification of nucleic acids for molecular diagnosis will be highlighted.
Collapse
Affiliation(s)
- Chen-Min Chang
- Institute of Oral Medicine, National Cheng Kung University, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
6
|
Cobo F. Application of molecular diagnostic techniques for viral testing. Open Virol J 2012; 6:104-14. [PMID: 23248732 PMCID: PMC3522074 DOI: 10.2174/1874357901206010104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid amplification techniques are commonly used currently to diagnose viral diseases and manage patients with this kind of illnesses. These techniques have had a rapid but unconventional route of development during the last 30 years, with the discovery and introduction of several assays in clinical diagnosis. The increase in the number of commercially available methods has facilitated the use of this technology in the majority of laboratories worldwide. This technology has reduced the use of some other techniques such as viral culture based methods and serological assays in the clinical virology laboratory. Moreover, nucleic acid amplification techniques are now the methods of reference and also the most useful assays for the diagnosis in several diseases. The introduction of these techniques and their automation provides new opportunities for the clinical laboratory to affect patient care. The main objectives in performing nucleic acid tests in this field are to provide timely results useful for high-quality patient care at a reasonable cost, because rapid results are associated with improvements in patients care. The use of amplification techniques such as polymerase chain reaction, real-time polymerase chain reaction or nucleic acid sequence-based amplification for virus detection, genotyping and quantification have some advantages like high sensitivity and reproducibility, as well as a broad dynamic range. This review is an up-to-date of the main nucleic acid techniques and their clinical applications, and special challenges and opportunities that these techniques currently provide for the clinical virology laboratory.
Collapse
Affiliation(s)
- Fernando Cobo
- Microbiology Unit (Biotechnology Area), Hospital de Poniente. Ctra de Almerimar S/N, El Ejido 04700, Almería, Spain
| |
Collapse
|
7
|
|
8
|
|
9
|
Hsia CC, Purcell RH, Farshid M, Lachenbruch PA, Yu MYW. Quantification of hepatitis B virus genomes and infectivity in human serum samples. Transfusion 2006; 46:1829-35. [PMID: 17002641 DOI: 10.1111/j.1537-2995.2006.00974.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infections are still a major health issue, with approximately 350 million people chronically infected with HBV worldwide. Information about the minimum copy number of HBV genomes required for infection would be useful as a reference for drug and vaccine development; for monitoring HBV patients during treatment; for screening of blood, organ, and tissue donors; and for regulating nucleic acid amplification assays for HBV. STUDY DESIGN AND METHODS Serum samples from chronic carriers (hepatitis B surface antigen-positive and antibody to HBV core antigen-positive) of the three most common subtypes of HBV were studied; their infectivity titers had been evaluated previously in chimpanzees. The genotypes of the HBV samples were determined by DNA sequences and type-specific amino acids of the S gene of HBV. Copy numbers of HBV DNA were quantified by real-time TaqMan polymerase chain reaction (PCR) and by nested PCR applied to limiting dilutions. The copy number determined for each inoculum was compared with previously defined chimpanzee infectivity titers. RESULTS The genotypes of the HBV adw, ayw, and adr inocula were A, D, and C, respectively. The concentration of HBV DNA was determined to be 5.4 x 10(9), 2.5 x 10(9), and 3.1 x 10(8) genome equivalents (geq) per mL for serum samples containing the adw, ayw, and adr, respectively. The chimpanzee infectivity titers per milliliter of these initial HBV-containing serum samples were previously determined to be 10(7.5) for adw, 10(7.5) for ayw (MS-2 strain), and 10(8) for adr. CONCLUSION The minimal copy number of HBV DNA in chronic carriers of HBV that can infect the chimpanzee model was estimated to be from 3 to 169 geq based upon the three well-characterized inocula.
Collapse
Affiliation(s)
- Chu Chieh Hsia
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Bethesda, Maryland, USA.
| | | | | | | | | |
Collapse
|
10
|
Drosten C, Panning M, Drexler JF, Hänsel F, Pedroso C, Yeats J, de Souza Luna LK, Samuel M, Liedigk B, Lippert U, Stürmer M, Doerr HW, Brites C, Preiser W. Ultrasensitive monitoring of HIV-1 viral load by a low-cost real-time reverse transcription-PCR assay with internal control for the 5' long terminal repeat domain. Clin Chem 2006; 52:1258-66. [PMID: 16627558 PMCID: PMC7108179 DOI: 10.1373/clinchem.2006.066498] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Current HIV-1 viral-load assays are too expensive for resource-limited settings. In some countries, monitoring of antiretroviral therapy is now more expensive than treatment itself. In addition, some commercial assays have shown shortcomings in quantifying rare genotypes. METHODS We evaluated real-time reverse transcription-PCR with internal control targeting the conserved long terminal repeat (LTR) domain of HIV-1 on reference panels and patient samples from Brazil (n = 1186), South Africa (n = 130), India (n = 44), and Germany (n = 127). RESULTS The detection limit was 31.9 IU of HIV-1 RNA/mL of plasma (> 95% probability of detection, Probit analysis). The internal control showed inhibition in 3.7% of samples (95% confidence interval, 2.32%-5.9%; n = 454; 40 different runs). Comparative qualitative testing yielded the following: Roche Amplicor vs LTR assay (n = 431 samples), 51.7% vs 65% positives; Amplicor Ultrasensitive vs LTR (n = 133), 81.2% vs 82.7%; BioMerieux NucliSens HIV-1 QT (n = 453), 60.5% vs 65.1%; Bayer Versant 3.0 (n = 433), 57.7% vs 55.4%; total (n = 1450), 59.0% vs 63.8% positives. Intra-/interassay variability at medium and near-negative concentrations was 18%-51%. The quantification range was 50-10,000,000 IU/mL. Viral loads for subtypes A-D, F-J, AE, and AG yielded mean differences of 0.31 log(10) compared with Amplicor in the 10(3)-10(4) IU/mL range. HIV-1 N and O were not detected by Amplicor, but yielded up to 180 180.00 IU/mL in the LTR assay. Viral loads in stored samples from all countries, compared with Amplicor, NucliSens, or Versant, yielded regression line slopes (SD) of 0.9 (0.13) (P < 0.001 for all). CONCLUSIONS This method offers all features of commercial assays and covers all relevant genotypes. It could allow general monitoring of antiretroviral therapy in resource-limited settings.
Collapse
|
11
|
Konnick EQ, Erali M, Ashwood ER, Hillyard DR. Evaluation of the COBAS amplicor HBV monitor assay and comparison with the ultrasensitive HBV hybrid capture 2 assay for quantification of hepatitis B virus DNA. J Clin Microbiol 2005; 43:596-603. [PMID: 15695651 PMCID: PMC548123 DOI: 10.1128/jcm.43.2.596-603.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Performance characteristics of the COBAS Amplicor HBV Monitor test (Roche Diagnostics), which measures hepatitis B virus (HBV) DNA quantitatively, were evaluated and compared with the Ultrasensitive HBV Hybrid Capture 2 (HC2; Digene Corporation) assay. Linearity and within-run precision were assessed for both methods by using eight HBV DNA-positive samples serially diluted to obtain a range of <100 to 500,000 HBV DNA copies/ml and run in triplicate. Agreement between the methods was studied with 100 clinical samples. HC2 assay performance near the limit of detection was investigated through repeat testing of 149 samples with HC2 and testing of 37 samples with HC2 results of <4,700 HBV DNA copies/ml by Amplicor assay and a qualitative PCR assay. The linearity experiment for Amplicor had regression of observed values compared to expected values (y = 1.073x - 0.247; R(2) = 0.993, n = 32; for HC2, y = 0.855x + 0.759, R(2) = 0.729, n = 18). Within-run standard deviation of log HBV DNA copies/ml ranged from 0.003 to 0.348 (Amplicor) and 0.027 to 0.253 (HC2). Agreement assessed by Deming regression was poor [Amplicor = 1.197(HC2) - 0.961; R(2) = 0.799, standard error of the estimate (SEE) = 0.710, n = 94]. Near the lower limit of detection, 32 of 149 repeat HC2 results were <4,700 HBV DNA copies/ml. Of the 37 samples with HC2 results of <4,700 HBV DNA copies/ml, HBV DNA was not detected in 15 samples, while HBV DNA was detected by at least one PCR method in 12 samples. Amplicor is linear from 200 to 200,000 HBV DNA copies/ml with undiluted samples, and this range can be expanded through dilution. Inconsistent HC2 results near the limit of detection justify use of a grey zone.
Collapse
Affiliation(s)
- Eric Q Konnick
- ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108, USA.
| | | | | | | |
Collapse
|
12
|
Yao JDC, Beld MGHM, Oon LLE, Sherlock CH, Germer J, Menting S, Se Thoe SY, Merrick L, Ziermann R, Surtihadi J, Hnatyszyn HJ. Multicenter evaluation of the VERSANT hepatitis B virus DNA 3.0 assay. J Clin Microbiol 2004; 42:800-6. [PMID: 14766856 PMCID: PMC344493 DOI: 10.1128/jcm.42.2.800-806.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The VERSANT hepatitis B virus (HBV) 3.0 Assay (branched DNA [bDNA]) (referred to herein as VERSANT 3.0) was evaluated at four external sites for analytical sensitivity, specificity, reproducibility, linearity of quantification, and limits of detection. In addition, each of the test evaluation sites provided HBV DNA-positive clinical samples that were previously analyzed by one of three commercially available HBV DNA quantitative tests: Digene Hybrid Capture II HBV DNA Test (Digene); VERSANT HBV DNA 1.0 Assay (bDNA) (VERSANT 1.0); and COBAS AMPLICOR HBV Monitor Test (COBAS AMPLICOR). These samples were reexamined using VERSANT 3.0. The results from these studies showed that VERSANT 3.0 has high specificity (99.3%), excellent reproducibility (between-run coefficient of variation [CV] = 1.6 to 9.4%; within-run CV = 6.5 to 20.7%), and a broad linear range of quantification (2.0 x 10(3) to 1.0 x 10(8) HBV DNA copies/ml) that facilitate the monitoring of HBV DNA levels at diagnosis and throughout the course of treatment. In general, correlation was very good between results obtained from clinical samples analyzed by VERSANT 3.0 and the comparative HBV DNA quantitative assays (VERSANT 1.0, R(2) = 0.900; Digene, R(2) = 0.985; COBAS AMPLICOR, R(2) = 0.771). The greatest differences in comparative quantitation occurred at HBV DNA levels approaching the limits of the dynamic ranges for the comparative assays. The performance characteristics of the new VERSANT 3.0 assay demonstrated that it provides a reliable and robust method for routinely monitoring serum HBV DNA levels in assessing disease activity and determining response to antiviral treatment.
Collapse
Affiliation(s)
- Joseph D C Yao
- Division of Clinical Microbiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qian X, Lloyd RV. Recent developments in signal amplification methods for in situ hybridization. DIAGNOSTIC MOLECULAR PATHOLOGY : THE AMERICAN JOURNAL OF SURGICAL PATHOLOGY, PART B 2003; 12:1-13. [PMID: 12605030 DOI: 10.1097/00019606-200303000-00001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In situ hybridization (ISH) allows for the histologic and cytologic localization of DNA and RNA targets. However, the application of ISH techniques can be limited by their inability to detect targets with low copies of DNA and RNA. During the last few years, several strategies have been developed to improve the sensitivity of ISH by amplification of either target nucleic acid sequences prior to ISH or signal detection after the hybridization is completed. Current approaches involving target amplification (in situ PCR, primed labeling, self-sustained sequence replication), signal amplification (tyramide signal amplification, branched DNA amplification), and probe amplification (padlock probes and rolling circle amplification) are reviewed with emphasis on their applications to bright field microscopy. More recent developments such as molecular beacons and in situ strand displacement amplification continue to increase the sensitivity of in situ hybridization methods. Application of some of these techniques has extended the utility of ISH in diagnostic pathology and in research because of the ability to detect targets with low copy numbers of DNA and RNA.
Collapse
Affiliation(s)
- Xiang Qian
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
14
|
Hänfler J, Kreuzer KA, Laurisch K, Rayes N, Neuhaus P, Schmidt CA, Oettle H. Quantitation of cytomegalovirus (hCMV) DNA and beta-actin DNA by duplex real-time fluorescence PCR in solid organ (liver) transplant recipients. Med Microbiol Immunol 2003; 192:197-204. [PMID: 14615888 DOI: 10.1007/s00430-002-0166-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Indexed: 10/26/2022]
Abstract
Even now rare human cytomegalovirus (hCMV) reactivation is still a life-threatening complication after solid organ transplantation. Although PCR techniques are regarded as the most sensitive detection methods for hCMV, their accuracy and reproducibility are limited. This is a major disadvantage with quantitative PCR assays, which are thought to provide valuable information about hCMV latency or active viral replication in transplant patients. To enhance the diagnostic safety of quantitative hCMV PCR, we developed a duplex real-time fluorescence PCR that is capable of quantifying hCMV DNA and beta-actin DNA as internal control simultaneously within one reaction. By the use of 6-carboxyfluorescein and hexa-chloro-6-carboxyfluorescein as reporter fluorophores and 4-(4'-dimethylamino-phenylazo) benzoic acid as dark quencher dye, hCMV DNA and beta-actin DNA could be quantified in parallel in a wide linear range from 10(1) to 10(7) copies, each. To test the clinical applicability of this approach, we investigated hCMV DNA kinetics in peripheral leukocytes of three hCMV antigen-positive and four antigen-negative patients after liver transplantation, as assessed by intracellular hCMV pp65 alkaline phosphate-anti-alkaline phosphate (APAAP) complex. While all APAAP-negative individuals remained PCR negative, kinetics of HCMV DNA in leukocyte DNA samples of APAAP-positive patients correlated closely with hCMV antigen tests. Here, comparison of separate and simultaneous target quantitation revealed identical results. It is of interest that, while single hCMV antigen positivity is commonly not regarded as a reliable parameter of viral reactivation, in our study a viral load greater than 10(4) copies/2x10(5) beta-actin DNA copies clearly indicated a subsequent increase in APAAP-positive leukocytes. We conclude that with the presented method the reliability of hCMV quantitation via real-time PCR can be substantially increased and may be used to monitor hCMV kinetics in vivo.
Collapse
Affiliation(s)
- Joachim Hänfler
- Department of Medicine, Division of Hematology and Oncology, Charité Campus Virchow-Klinikum, Humboldt University Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- B Gold
- Human Genetics Section, Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
16
|
Tillmann HL, Manns MP. GB virus-C infection in patients infected with the human immunodeficiency virus. Antiviral Res 2001; 52:83-90. [PMID: 11672817 DOI: 10.1016/s0166-3542(01)00172-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatitis virus infections are frequent in patients suffering from HIV infection due to similar transmission routes of these viruses. In addition, hepatitis virus infections lead to impaired survival in HIV positive patients. The recently discovered flavivirus GB virus C (alias Hepatitis G Virus) was initially believed to be another hepatitis virus. While there is still some minor discussion whether GB virus C (GBV-C) plays a role in fulminant hepatic failure, there is no evidence that this virus is responsible for chronic liver disease. Thus this 'orphan virus' still seeks its disease. In this review we concentrate on the published data concerning the co-infection of GBV-C and HIV. By summarizing the studies available, we show evidence for a beneficial influence of GBV-C on HIV infection. Many studies demonstrated a high prevalence of GBV-C infection in HIV positive patients due to its parenteral and sexual transmission. However, in contrast to the expectations, GBV-C does not aggravate the course of patients suffering from HIV infection. Even though not uniformly found, one often sees higher CD4 counts in patients with ongoing GBV-C viral replication. Likewise, a lower viral load appears to be accompanied by the presence of GBV-C RNA in the serum. In addition, longitudinal studies indicate that GBV-C infection slows down the progression to AIDS and eventually to death. GBV-C probably influences HIV infection associated disease by either directly inhibiting HIV replication or enhancing the immune competence to cope with HIV. Still the definitive mechanism how GBV-C could inhibit the progression to AIDS and eventually death needs to be identified.
Collapse
Affiliation(s)
- H L Tillmann
- Department of Gastroenterology and Hepatology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | |
Collapse
|
17
|
Fluit AC, Visser MR, Schmitz FJ. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 2001; 14:836-71, table of contents. [PMID: 11585788 PMCID: PMC89006 DOI: 10.1128/cmr.14.4.836-871.2001] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The determination of antimicrobial susceptibility of a clinical isolate, especially with increasing resistance, is often crucial for the optimal antimicrobial therapy of infected patients. Nucleic acid-based assays for the detection of resistance may offer advantages over phenotypic assays. Examples are the detection of the methicillin resistance-encoding mecA gene in staphylococci, rifampin resistance in Mycobacterium tuberculosis, and the spread of resistance determinants across the globe. However, molecular assays for the detection of resistance have a number of limitations. New resistance mechanisms may be missed, and in some cases the number of different genes makes generating an assay too costly to compete with phenotypic assays. In addition, proper quality control for molecular assays poses a problem for many laboratories, and this results in questionable results at best. The development of new molecular techniques, e.g., PCR using molecular beacons and DNA chips, expands the possibilities for monitoring resistance. Although molecular techniques for the detection of antimicrobial resistance clearly are winning a place in routine diagnostics, phenotypic assays are still the method of choice for most resistance determinations. In this review, we describe the applications of molecular techniques for the detection of antimicrobial resistance and the current state of the art.
Collapse
Affiliation(s)
- A C Fluit
- Eijkman-Winkler Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
18
|
Krafft AE, Kulesh DA. Applying Molecular Biological Techniques to Detecting Biological Agents. Clin Lab Med 2001. [DOI: 10.1016/s0272-2712(18)30026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Abstract
Several tools, differing in their technical and practical parameters, are available for the detection of point mutations as well as small deletions and insertions. In this article, a dictionary featuring over fifty methods for detection of mutation is presented. The distinguishing principle for each method is briefly explained. Sorting of and discussion on the methods give the reader a brief introduction to the field of genotyping.
Collapse
Affiliation(s)
- J Drábek
- Department of Immunology, Olomouc, Czech Republic.
| |
Collapse
|
20
|
Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO, Halvorsen YD, Gimble JM. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem 2001; 81:312-9. [PMID: 11241671 DOI: 10.1002/1097-4644(20010501)81:2<312::aid-jcb1046>3.0.co;2-q] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The current study was done to assess if heterogeneity existed in the degree of adipogenesis in stromal cells (preadipocytes) from multiple donors. In addition to conventional lipid-based methods, we have employed a novel signal amplification technology, known as branched DNA, to monitor expression of an adipocyte specific gene product aP2. The fatty acid binding protein aP2 increases during adipocyte differentiation and is induced by thiazolidinediones and other peroxisome proliferator activated receptor gamma ligands. The current work examined the adipogenic induction of aP2 mRNA levels in human adipose tissue stromal cells derived from 12 patients (mean age +/- SEM, 38.9 +/- 3.1) with mild to moderate obesity (mean body mass index +/- SEM, 27.8 +/- 2.4). Based on branched DNA technology, a rapid and sensitive measure of specific RNAs, the relative aP2 level in adipocytes increased by 679 +/- 93-fold (mean +/- SEM, n=12) compared to preadipocytes. Normalization of the aP2 mRNA levels to the housekeeping gene, glyceraldehyde phosphate dehydrogenase, did not significantly alter the fold induction in a subset of 4 patients (803.6 +/- 197.5 vs 1118.5 +/- 308.1). Independent adipocyte differentiation markers were compared between adipocytes and preadipocytes in parallel studies. Leptin secretion increased by up to three-orders of magnitude while measurements of neutral lipid accumulation by Oil Red O and Nile Red staining increased by 8.5-fold and 8.3-fold, respectively. These results indicate that preadipocytes isolated from multiple donors displayed varying degrees of differentiation in response to an optimal adipogenic stimulus in vitro. This work also demonstrates that branched DNA measurement of aP2 is a rapid and sensitive measure of adipogenesis in human stromal cells. The linear range of this assay extends up to three-orders of magnitude and correlates directly with independent measures of cellular differentiation.
Collapse
Affiliation(s)
- A Sen
- Zen-Bio, Inc., Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Murphy DG, Côté L, Fauvel M, René P, Vincelette J. Multicenter comparison of Roche COBAS AMPLICOR MONITOR version 1.5, Organon Teknika NucliSens QT with Extractor, and Bayer Quantiplex version 3.0 for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 2000; 38:4034-41. [PMID: 11060065 PMCID: PMC87538 DOI: 10.1128/jcm.38.11.4034-4041.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The performance and characteristics of Roche COBAS AMPLICOR HIV-1 MONITOR version 1.5 (CA MONITOR 1.5) UltraSensitive (usCA MONITOR 1. 5) and Standard (stCA MONITOR 1.5) procedures, Organon Teknika NucliSens HIV-1 RNA QT with Extractor (NucliSens), and Bayer Quantiplex HIV RNA version 3.0 (bDNA 3.0) were compared in a multicenter trial. Samples used in this study included 460 plasma specimens from human immunodeficiency virus (HIV) type 1 (HIV-1)-infected persons, 100 plasma specimens from HIV antibody (anti-HIV)-negative persons, and culture supernatants of HIV-1 subtype A to E isolates diluted in anti-HIV-negative plasma. Overall, bDNA 3.0 showed the least variation in RNA measures upon repeat testing. For the Roche assays, usCA MONITOR 1.5 displayed less variation in RNA measures than stCA MONITOR 1.5. NucliSens, at an input volume of 2 ml, showed the best sensitivity. Deming regression analysis indicated that the results of all three assays were significantly correlated (P < 0.0001). However, the mean difference in values between CA MONITOR 1.5 and bDNA 3.0 (0.274 log(10) RNA copies/ml; 95% confidence interval, 0.192 to 0.356) was significantly different from 0, indicating that CA MONITOR 1.5 values were regularly higher than bDNA 3.0 values. Upon testing of 100 anti-HIV-negative plasma specimens, usCA MONITOR 1.5 and NucliSens displayed 100% specificity, while bDNA 3.0 showed 98% specificity. NucliSens quantified 2 of 10 non-subtype B viral isolates at 1 log(10) lower than both CA MONITOR 1.5 and bDNA 3.0. For NucliSens, testing of specimens with greater than 1,000 RNA copies/ml at input volumes of 0.1, 0.2, and 2.0 ml did not affect the quality of results. Additional factors differing between assays included specimen throughput and volume requirements, limit of detection, ease of execution, instrument work space, and costs of disposal. These characteristics, along with assay performance, should be considered when one is selecting a viral load assay.
Collapse
Affiliation(s)
- D G Murphy
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Montréal, Canada
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- M Clementi
- Department of Biomedical Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
23
|
Pérez-Olmeda M, García-Samaniego J, Soriano V. Hepatitis C viraemia in HIV-HCV co-infected patients having immune restoration with highly active antiretroviral therapy. AIDS 2000; 14:212. [PMID: 10708298 DOI: 10.1097/00002030-200001280-00023] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|