1
|
Athmuri DN, Bhattacharyya J, Bhatnagar N, Shiekh PA. Alleviating hypoxia and oxidative stress for treatment of cardiovascular diseases: a biomaterials perspective. J Mater Chem B 2024; 12:10490-10515. [PMID: 39302443 DOI: 10.1039/d4tb01126k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
A state of hypoxia (lack of oxygen) persists in the initial and later phases of healing in cardiovascular diseases, which can alter the tissue's repair or regeneration, ultimately affecting the structure and functionality of the related organ. Consequently, this results in a cascade of events, leading to metabolic stress and the production of reactive oxygen species (ROS) and autophagy. This unwanted situation not only limits the oxygen supply to the needy tissues but also creates an inflammatory state, limiting the exchange of nutrients and other supplements. Consequently, biomaterials have gained considerable attention to alleviate hypoxia and oxidative stress in cardiovascular diseases. Numerous oxygen releasing and antioxidant biomaterials have been developed and proven to alleviate hypoxia and oxidative stress. This review article summarizes the mechanisms involved in cardiovascular pathologies due to hypoxia and oxidative stress, as well as the treatment modalities currently in practice. The applications, benefits and possible shortcomings of these approaches have been discussed. Additionally, the review explores the role of novel biomaterials in combating the limitations of existing approaches, primarily focusing on the development of oxygen-releasing and antioxidant biomaterials for cardiac repair and regeneration. It also directs attention to various other potential applications with critical insights for further advancement in this area.
Collapse
Affiliation(s)
- Durga Nandini Athmuri
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| | - Jayanta Bhattacharyya
- Bio-therapeutics Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Naresh Bhatnagar
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India
| | - Parvaiz Ahmad Shiekh
- SMART Lab, Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
2
|
Pérez-Campos Mayoral L, Matias-Cervantes CA, Pérez-Campos E, Romero Díaz C, Laguna Barrios LÁ, Pina Canseco MDS, Martínez Cruz M, Pérez-Campos Mayoral E, Solórzano Mata CJ, Rodal Canales FJ, Martínez Ruíz H, Hernández-Huerta MT. Associations of Dynapenic Obesity and Sarcopenic Obesity with the Risk of Complications in COVID-19. Int J Mol Sci 2022; 23:8277. [PMID: 35955411 PMCID: PMC9368708 DOI: 10.3390/ijms23158277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023] Open
Abstract
Ageing is associated with changes in body composition, such as low muscle mass (sarcopenia), decreased grip strength or physical function (dynapenia), and accumulation of fat mass. When the accumulation of fat mass synergistically accompanies low muscle mass or reduced grip strength, it results in sarcopenic obesity and dynapenic obesity, respectively. These types of obesity contribute to the increased risk of cardiovascular disease and mortality in the elderly, which could increase the damage caused by COVID-19. In this review, we associated factors that could generate a higher risk of COVID-19 complications in dynapenic obesity and sarcopenic obesity. For example, skeletal muscle regulates the expression of inflammatory cytokines and supports metabolic stress in pulmonary disease; hence, the presence of dynapenic obesity or sarcopenic obesity could be related to a poor prognosis in COVID-19 patients.
Collapse
Affiliation(s)
- Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (L.P.-C.M.); (L.Á.L.B.); (M.d.S.P.C.); (E.P.-C.M.); (C.J.S.M.); (F.J.R.C.); (H.M.R.)
| | - Carlos Alberto Matias-Cervantes
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (C.A.M.-C.); (C.R.D.)
| | | | - Carlos Romero Díaz
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (C.A.M.-C.); (C.R.D.)
| | - Luis Ángel Laguna Barrios
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (L.P.-C.M.); (L.Á.L.B.); (M.d.S.P.C.); (E.P.-C.M.); (C.J.S.M.); (F.J.R.C.); (H.M.R.)
| | - María del Socorro Pina Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (L.P.-C.M.); (L.Á.L.B.); (M.d.S.P.C.); (E.P.-C.M.); (C.J.S.M.); (F.J.R.C.); (H.M.R.)
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (L.P.-C.M.); (L.Á.L.B.); (M.d.S.P.C.); (E.P.-C.M.); (C.J.S.M.); (F.J.R.C.); (H.M.R.)
| | - Carlos Josué Solórzano Mata
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (L.P.-C.M.); (L.Á.L.B.); (M.d.S.P.C.); (E.P.-C.M.); (C.J.S.M.); (F.J.R.C.); (H.M.R.)
- Facultad de Odontología, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico
| | - Francisco Javier Rodal Canales
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (L.P.-C.M.); (L.Á.L.B.); (M.d.S.P.C.); (E.P.-C.M.); (C.J.S.M.); (F.J.R.C.); (H.M.R.)
| | - Héctor Martínez Ruíz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (L.P.-C.M.); (L.Á.L.B.); (M.d.S.P.C.); (E.P.-C.M.); (C.J.S.M.); (F.J.R.C.); (H.M.R.)
| | - María Teresa Hernández-Huerta
- CONACyT, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68020, Mexico; (C.A.M.-C.); (C.R.D.)
| |
Collapse
|
3
|
Leal V, Ribeiro CF, Oliveiros B, António N, Silva S. Intrinsic Vascular Repair by Endothelial Progenitor Cells in Acute Coronary Syndromes: an Update Overview. Stem Cell Rev Rep 2020; 15:35-47. [PMID: 30345477 DOI: 10.1007/s12015-018-9857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) play a key role in the maintenance of endothelial homeostasis and endothelial repair at areas of vascular damage. The quantification of EPCs in peripheral blood by flow cytometry is a strategy to assess this reparative capacity. The number of circulating EPCs is inversely correlated with the number of cardiovascular risk factors and to the occurrence of cardiovascular events. Therefore, monitoring EPCs levels may provide an accurate assessment of susceptibility to cardiovascular injury, greatly improving risk stratification of patients with high cardiovascular risk, such as those with an acute myocardial infarction. However, there are many issues in the field of EPC identification and quantification that remain unsolved. In fact, there have been conflicting protocols used to the phenotypic identification of EPCs and there is still no consensual immunophenotypical profile that corresponds exactly to EPCs. In this paper we aim to give an overview on EPCs-mediated vascular repair with special focus on acute coronary syndromes and to discuss the different phenotypic profiles that have been used to identify and quantify circulating EPCs in several clinical studies. Finally, we will synthesize evidence on the prognostic role of EPCs in patients with high cardiovascular risk.
Collapse
Affiliation(s)
- Vânia Leal
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - Carlos Fontes Ribeiro
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Bárbara Oliveiros
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Natália António
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Cardiology Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - Sónia Silva
- Group of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.,Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Li H, Liu Y, Huang J, Liu Y, Zhu Y. Association of genetic variants in lncRNA GAS5/miR-21/mTOR axis with risk and prognosis of coronary artery disease among a Chinese population. J Clin Lab Anal 2020; 34:e23430. [PMID: 32557866 PMCID: PMC7595889 DOI: 10.1002/jcla.23430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Background Allowing for the significance of single nucleotide polymorphisms (SNPs) in reflecting disease risk, this investigation attempted to uncover whether SNPs situated in lncRNA GAS5/miR‐21/mTOR axis were associated with risk and prognosis of coronary heart disease (CHD) among a Chinese Han population. Methods Altogether 436 patients with CHD were recruited as cases, and meanwhile, 471 healthy volunteers were included into the control group. Besides, SNPs of GAS5/MIR‐21/mTOR axis were genotyped utilizing mass spectrometry. Chi‐square test was applied to figure out SNPs that were strongly associated with CHD risk and prognosis, and combined effects of SNPs and environmental parameters on CHD risk were evaluated through multifactor dimensionality reduction (MDR) model. Results Single nucleotide polymorphisms of GAS5 (ie, rs2067079 and rs6790), MIR‐21 (ie, rs1292037), and mTOR (rs2295080, rs2536, and rs1034528) were associated with susceptibility to CHD, and also Gensini score change of patients with CHD (P < .05). MDR results further demonstrated that rs2067079 and rs2536 were strongly interactive in elevating CHD risk (P < .05), while smoking, rs6790 and rs2295080 showed powerful reciprocity in predicting Gensini score change of patients with CHD (P < .05). Conclusion Single nucleotide polymorphisms of lncRNA GAS5/miR‐21/mTOR axis might interact with smoking to regulate CHD risk, which was conducive to diagnosis and prognostic anticipation of CHD.
Collapse
Affiliation(s)
- Hu Li
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yingxue Liu
- Department of Outpatient, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Jinyan Huang
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yu Liu
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| | - Yufeng Zhu
- Department of Cardiology, The First Naval Hospital of Southern Theater Command, Zhanjiang City, China
| |
Collapse
|
5
|
Noninvasive Imaging Biomarkers of Vulnerable Coronary Plaques – a Clinical Update. JOURNAL OF INTERDISCIPLINARY MEDICINE 2019. [DOI: 10.2478/jim-2019-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Atherosclerosis is a slow, progressive disease, its most common manifestation and most severe consequence being coronary artery disease, one of the main causes of mortality and morbidity worldwide. The vast majority of cardiovascular deaths are caused by complications of atherosclerosis, most often being represented by the rupture of an unstable coronary plaque, regularly triggered by inflammation. A vulnerable plaque is characterized by a large, lipid-rich necrotic core, a thin fibrous cap with macrophage infiltration, and the presence of multiple specific biomarkers such as positive remodeling, irregular calcifications, and low attenuation visible with coronary computed tomography angiography (CCTA). Identifying biomarkers that could predict the risk of plaque rupture with high accuracy would be a significant advance in predicting acute cardiac events in asymptomatic patients, furthermore guiding treatment of patients with this disease. The main indication of noninvasive imaging is to identify patients at risk based on the presence or absence of symptoms that can be related to myocardial ischemia. The diagnostic objective is to confirm or to exclude the presence of coronary plaques. Coronary imaging in asymptomatic individuals is used to estimate the risk of future cardiac events through the identification of non-obstructive high-risk plaques. The possibility to monitor the evolution of vulnerable plaques via noninvasive imaging techniques, prior to the occurrence of an acute clinical event, is the main goal in plaque imaging. This manuscript will be focusing on recent advances of noninvasive imaging of vulnerable coronary plaques.
Collapse
|
6
|
Masud R, Baqai HZ. The communal relation ofMTHFR,MTR,ACEgene polymorphisms and hyperhomocysteinemia as conceivable risk of coronary artery disease. Appl Physiol Nutr Metab 2017; 42:1009-1014. [DOI: 10.1139/apnm-2017-0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Homocysteine and its modulating genes have strongly emerged as novel biomarkers for coronary artery disease (CAD). In the present study, we investigated whether polymorphisms in homocysteine pathway genes and the plasma levels of homocysteine, folate, and vitamin B12, independently or in combination, are associated with CAD risk. A total of 504 participants were recruited (cases, n = 254; controls, n = 250, respectively). Tetra primer allele refractory mutation system polymerase chain reaction (PCR) was used for resolving the genotypes of 5′10′ methylenetetrahydrofolate reductase ‘MTHFR’ polymorphisms (rs1801133, rs1801131), 5′ methyl tetrahydrofolate homocysteine methyltransferase ‘MTR’ polymorphism (rs1805087), paroxanse1 ‘PON1’ polymorphism (rs662), and cystathionine beta synthase ‘CBS’ polymorphism (rs5742905). Conventional PCR amplification was carried out for resolving angiotensin converting enzyme ‘ACE’ insertion/deletion (I/D) polymorphism (rs4646994). ANOVA analysis, adjusted for the covariates, revealed that rs1801133, rs1805087 polymorphisms and homocysteine levels were associated with CAD. Logistic regression analysis (adjusted) revealed similar findings. Logistic regression analysis after applying factorial design to the studied single nucleotide polymorphisms (SNPs) revealed that homocysteine levels and heterozygous and mutant alleles at rs1801133, rs1805087, along with mutant alleles at rs1801131, rs4646994, conferred higher risk for CAD. Our results provide insight into the multifactorial nature of coronary artery disease. We highlight that SNPs in folate pathway genes and homocysteine have role in disease causation and can be used in disease prediction strategies.
Collapse
Affiliation(s)
- Rizwan Masud
- Division of Physiology, Department of Biomedical Sciences, College of Medicine, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | | |
Collapse
|
7
|
Immunoglobulin G (IgG)-Based Imaging Probe Accumulates in M1 Macrophage-Infiltrated Atherosclerotic Plaques Independent of IgG Target Molecule Expression. Mol Imaging Biol 2016; 19:531-539. [PMID: 27981470 DOI: 10.1007/s11307-016-1036-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Vulnerable plaques are key factors for ischemic diseases. Thus, their precise detection is necessary for the diagnosis of such diseases. Immunoglobulin G (IgG)-based imaging probes have been developed for imaging biomolecules related to plaque formation for the diagnosis of atherosclerosis. However, IgG accumulates nonspecifically in atherosclerotic regions, and its accumulation mechanisms have not yet been clarified in detail. Therefore, we explored IgG accumulation mechanisms in atherosclerotic lesions and examined images of radiolabeled IgG for the diagnosis of atherosclerosis. PROCEDURES Mouse IgG without specificity to biomolecules was labeled with technetium-99m via 6-hydrazinonicotinate to yield [99mTc]IgG. ApoE-/- or C57BL/6J mice were injected intravenously with [99mTc]IgG, and their aortas were excised 24 h after injection. After radioactivity measurement, serial aortic sections were autoradiographically and histopathologically examined. RAW264.7 macrophages were polarized into M1 or M2 and then treated with [99mTc]IgG. The radioactivities in the cells were measured after 1 h of incubation. [99mTc]IgG uptake in M1 macrophages was also evaluated after the pretreatment with an anti-Fcγ receptor (FcγR) antibody. The expression levels of FcγRs in the cells were measured by western blot analysis. RESULTS [99mTc]IgG accumulation levels in the aortas were significantly higher in apoE-/- mice than in C57BL/6J mice (5.1 ± 1.4 vs 2.8 ± 0.5 %ID/g, p < 0.05). Autoradiographic images showed that the accumulation areas highly correlated with the macrophage-infiltrated areas. M1 macrophages showed significantly higher levels of [99mTc]IgG than M2 or M0 (nonpolarized) macrophages [2.2 ± 0.3 (M1) vs 0.5 ± 0.1 (M2), 0.4 ± 0.1 (M0) %dose/mg protein, p < 0.01] and higher expression levels of FcγRI and FcγRII. [99mTc]IgG accumulation in M1 macrophages was suppressed by pretreatment with the anti-FcγR antibody [2.2 ± 0.3 (nonpretreatment) vs 1.2 ± 0.2 (pretreatment) %ID/mg protein, p < 0.01]. CONCLUSIONS IgG accumulated in pro-inflammatory M1 macrophages via FcγRs in atherosclerotic lesions. Thus, the target biomolecule-independent imaging of active inflammation should be taken into account in the diagnosis of atherosclerosis using IgG-based probes.
Collapse
|
8
|
Hanzawa H, Sakamoto T, Kaneko A, Manri N, Zhao Y, Zhao S, Tamaki N, Kuge Y. Combined Plasma and Tissue Proteomic Study of Atherogenic Model Mouse: Approach To Elucidate Molecular Determinants in Atherosclerosis Development. J Proteome Res 2015; 14:4257-69. [PMID: 26323832 DOI: 10.1021/acs.jproteome.5b00405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Atherogenic cardiovascular diseases are the major cause of mortality. Prevention and prediction of incidents is important; however, biomarkers that directly reflect the disease progression remain poorly investigated. To elucidate molecular determinants of atherogenesis, proteomic approaches are advantageous by using model animals for comparing changes occurring systematically (bloodstream) and locally (lesion) in accordance with the disease progression stages. We conducted differential mass spectrometric analysis between apolipoprotein E deficient (apoED) and wild-type (wt) mice using the plasma and arterial tissue of both types of mice obtained at four pathognomonic time points of the disease. A total of 100 proteins in the plasma and 390 in the arterial tissues were continuously detected throughout the four time points; 29 were identified in common. Of those, 13 proteins in the plasma and 36 in the arterial tissues showed significant difference in abundance between the apoED and wt mice at certain time points. Importantly, we found that quantitative variation patterns regarding the pathognomonic time points did not always correspond between the plasma and arterial tissues, resulting in gaining insight into atherosclerotic plaque progression. These characteristic proteins were found to be components of inflammation, thrombus formation, and vascular remodeling, suggesting drastic and integrative alteration in accordance with atherosclerosis development.
Collapse
Affiliation(s)
- Hiroko Hanzawa
- Center for Exploratory Research, Research & Development Group, Hitachi, Ltd. , 350-0395 Hatoyama, Saitama Japan.,Central Institute of Isotope Science, Hokkaido University , 060-0814 Sapporo, Japan
| | - Takeshi Sakamoto
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi, Ltd. , 185-8601 Kokubunji, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Akihito Kaneko
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi, Ltd. , 185-8601 Kokubunji, Japan
| | - Naomi Manri
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi, Ltd. , 185-8601 Kokubunji, Japan.,Central Institute of Isotope Science, Hokkaido University , 060-0814 Sapporo, Japan
| | - Yan Zhao
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Songji Zhao
- Department of Tracer Kinetics & Bio-analysis, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University , 060-0814 Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University , 060-8638 Sapporo, Japan
| |
Collapse
|
9
|
Abstract
Stenosed segments of arteries significantly alter the blood flow known from healthy vessels. In particular, the wall shear stress at critically stenosed arteries is at least an order of magnitude higher than in healthy situations. This alteration represents a change in physical force and might be used as a trigger signal for drug delivery. Mechano-sensitive drug delivery systems that preferentially release their payload under increased shear stress are discussed. Therefore, besides biological or chemical markers, physical triggers are a further principle approach for targeted drug delivery. We hypothesize that such a physical trigger is much more powerful to release drugs for vasodilation, plaque stabilization, or clot lysis at stenosed arteries than any known biological or chemical ones.
Collapse
Affiliation(s)
- Till Saxer
- Cardiology, University Hospitals of Geneva, Rue Gabrielle Perret-Gentil 4, Geneva, Switzerland.
| | | | | |
Collapse
|
10
|
Ragino YI, Chernjavski AM, Polonskaya YV, Volkov AM, Kashtanova EV, Tikhonov AV, Tcimbal SY. Oxidation and endothelial dysfunction biomarkers of atherosclerotic plaque instability. Studies of the vascular wall and blood. Bull Exp Biol Med 2012; 153:331-5. [PMID: 22866304 DOI: 10.1007/s10517-012-1708-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The concentrations of LPO products (including those present in LDL), oxidative modification of proteins, paraoxonase activity, concentrations of antioxidants, lipid values and biomarkers of endothelial dysfunction were studied in the blood and coronary artery intima/media of male patients with coronary atherosclerosis without acute coronary syndrome. Blood levels of LDL oxidized apolipoproteins and lipoprotein (a) were higher, while the content of NO metabolites, sVCAM endothelial adhesion molecules, and LDL oxidation resistance were lower in men with mainly unstable atherosclerotic plaques in the coronary arteries in comparison with men with mainly stable plaques in the coronary arteries. Of these blood biomarkers, only NO metabolites, oxidized proteins, and sVCAM correlated with the presence of unstable atherosclerotic plaques. A significant correlation between the levels of biomarkers in the vascular wall and blood was detected only for LPO parameters.
Collapse
Affiliation(s)
- Yu I Ragino
- Institute of Therapy, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
11
|
Activity of the Inflammatory Process in Different Types of Unstable Atherosclerotic Plaques. Bull Exp Biol Med 2012; 153:186-9. [DOI: 10.1007/s10517-012-1672-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Puig O, Yuan J, Stepaniants S, Zieba R, Zycband E, Morris M, Coulter S, Yu X, Menke J, Woods J, Chen F, Ramey DR, He X, O'Neill EA, Hailman E, Johns DG, Hubbard BK, Yee Lum P, Wright SD, Desouza MM, Plump A, Reiser V. A gene expression signature that classifies human atherosclerotic plaque by relative inflammation status. ACTA ACUST UNITED AC 2011; 4:595-604. [PMID: 22010137 DOI: 10.1161/circgenetics.111.960773] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Atherosclerosis is a complex disease requiring improvements in diagnostic techniques and therapeutic treatments. Both improvements will be facilitated by greater exploration of the biology of atherosclerotic plaque. To this end, we carried out large-scale gene expression analysis of human atherosclerotic lesions. METHODS AND RESULTS Whole genome expression analysis of 101 plaques from patients with peripheral artery disease identified a robust gene signature (1514 genes) that is dominated by processes related to Toll-like receptor signaling, T-cell activation, cholesterol efflux, oxidative stress response, inflammatory cytokine production, vasoconstriction, and lysosomal activity. Further analysis of gene expression in microdissected carotid plaque samples revealed that this signature is differentially expressed in macrophage-rich and smooth muscle cell-containing regions. A quantitative PCR gene expression panel and inflammatory composite score were developed on the basis of the atherosclerotic plaque gene signature. When applied to serial sections of carotid plaque, the inflammatory composite score was observed to correlate with histological and morphological features related to plaque vulnerability. CONCLUSIONS The robust mRNA expression signature identified in the present report is associated with pathological features of vulnerable atherosclerotic plaque and may be useful as a source of biomarkers and targets of novel antiatherosclerotic therapies.
Collapse
Affiliation(s)
- Oscar Puig
- Department of Molecular Profiling,, Merck Research Laboratories, Rahway, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kihara Y. After the triumph of cardiovascular medicine over acute myocardial infarction at the end of the 20th Century. -Can we predict the onset of acute coronary syndrome? (Con)-. Circ J 2011; 75:2019-26; discussion 2018. [PMID: 21737947 DOI: 10.1253/circj.cj-11-0573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting acute cardiovascular ischemic events is a crucial and urgent issue in the current cardiovascular field. An enormous effort to develop methodologies to achieve this purpose is being undertaken in cardiovascular institutes worldwide. However, currently, there is no established method of determining acute cardiovascular ischemic events in advance. This article reviews the latest progress on understanding how these events occur and how they can be detected. This goal represents a great dream that has realistic expectations.
Collapse
Affiliation(s)
- Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Japan.
| |
Collapse
|
14
|
Bigalke B, Lindemann S, Schönberger T, Pohlmeyer I, Chiribiri A, Schuster A, Botnar RM, Griessinger CM, Pichler BJ, Gawaz M. Ex vivoimaging of injured arteries in rabbits using fluorescence-labelled glycoprotein VI-Fc. Platelets 2011; 23:1-6. [DOI: 10.3109/09537104.2011.585258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Huck O, Saadi-Thiers K, Tenenbaum H, Davideau JL, Romagna C, Laurent Y, Cottin Y, Roul JG. Evaluating periodontal risk for patients at risk of or suffering from atherosclerosis: recent biological hypotheses and therapeutic consequences. Arch Cardiovasc Dis 2011; 104:352-8. [PMID: 21693372 DOI: 10.1016/j.acvd.2011.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
Abstract
Cardiovascular disease, such as atherosclerosis, is the main cause of mortality in developed countries. Most atherosclerosis risk factors have been identified and are treated, improving patient cardiovascular status and reducing mortality, but some remain unknown. Periodontal disease is generally defined as inflammatory disease initiated by accumulation of dental bacterial plaque, leading to the destruction of tissues that support the teeth. Severe forms have a high prevalence (15% of the population) and are associated with the presence of virulent pathogens such as Porphyromonas gingivalis. Epidemiological studies have shown that severe periodontal disease negatively influences cardiovascular status. The aim of this paper was to present a synthesis of the most recent biological data related to the link between periodontal and cardiovascular disease. The potential biological mechanisms involved in these two inflammatory diseases (bacteriological theory, inflammatory theory, immune theory) were developed. According to the observed positive effects of periodontal treatment on systemic conditions, the benefit of a reinforced collaboration between dentists and cardiologists was discussed, especially for patients at risk for cardiovascular disease.
Collapse
Affiliation(s)
- Olivier Huck
- Service de parodontologie, faculté de chirurgie dentaire, Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|