1
|
Yin B, Wang H, Weng S, Li S, He J, Li C. A simple sequence repeats marker of disease resistance in shrimp Litopenaeus vannamei and its application in selective breeding. Front Genet 2023; 14:1144361. [PMID: 37576558 PMCID: PMC10415038 DOI: 10.3389/fgene.2023.1144361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 08/15/2023] Open
Abstract
The polymorphism of the simple sequence repeat (SSR) in the 5' untranslated coding region (5'-UTR) of the antiviral gene IRF (LvIRF) has been shown to be implicated in the resistance to viral pathogens in shrimp Litopenaeus vannamei (L. vannamei). In this study, we explored the potential of this (CT)n-SSR marker in disease resistance breeding and the hereditary property of disease resistance traits in offspring. From 2018 to 2021, eight populations were generated through crossbreeding by selecting individuals according to microsatellite genotyping. Our results demonstrated that shrimp with the shorter (CT)n repeat exhibited higher resistance to white spot syndrome virus (WSSV) or Decapod iridescent virus 1 (DIV1); meanwhile, these resistance traits could be inherited in offspring. Interestingly, we observed that the longer (CT)n repeats were associated with bacterial resistance traits. Accordingly, shrimp with longer (CT)n repeats exhibited higher tolerance to Vibrio parahaemolyticus infection. Taken together, these results indicate that the single (CT)n-SSR marker could be used to selective breeding for both resistance to virus and bacteria in shrimps.
Collapse
Affiliation(s)
- Bin Yin
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Haiyang Wang
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
| | - Sedong Li
- Guangdong Evergreen Feed Industry Co., Ltd., Zhanjiang, China
| | - Jianguo He
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
2
|
Yin B, Wang H, Zhu P, Weng S, He J, Li C. A Polymorphic (CT) n-SSR Influences the Activity of the Litopenaeus vannamei IRF Gene Implicated in Viral Resistance. Front Genet 2019; 10:1257. [PMID: 31921300 PMCID: PMC6915115 DOI: 10.3389/fgene.2019.01257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Simple sequence repeats (SSRs) of short nucleotide motifs occur very frequently in the 5′ untranslated coding region (5′-UTR) of genes and have been implicated in the regulation of gene expression. In this study, we identified an SSR with a variable number of CT repeats in the 5′-UTR of the Litopenaeus vannamei IRF (LvIRF) gene that has been shown to mediate antiviral responses by inducing the expression of Vago, a functional homolog of mammalian IFN. We then explored the effects of varying the number of (CT)n repeats on the expression of LvIRF using both dual-luciferase reporter assays and Western blots. Our results demonstrate that the length of the (CT)n-SSR in this gene can influence the expressional level of LvIRF, in that a shorter (CT)n repeat had a stronger ability to induce the expression of LvIRF. Moreover, we found that the (CT)n repeat in LvIRF was associated with viral resistance in shrimp. Individual shrimps with shorter (CT)n repeats in the 5′-UTR of LvIRF exhibited high tolerance to white spot syndrome virus (WSSV), and this trait was inherited in offspring. Taken together, these results indicated that this (CT)n-SSR could be used as a molecular marker for shrimp breeding for WSSV resistance.
Collapse
Affiliation(s)
- Bin Yin
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haiyang Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gluf University, Qinzhou, China
| | - Shaoping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chaozheng Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)/School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C, Kocks C, Rajewsky N, Zinzen RP. The Drosophila embryo at single-cell transcriptome resolution. Science 2017; 358:194-199. [PMID: 28860209 DOI: 10.1126/science.aan3235] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/24/2017] [Indexed: 01/22/2023]
Abstract
By the onset of morphogenesis, Drosophila embryos consist of about 6000 cells that express distinct gene combinations. Here, we used single-cell sequencing of precisely staged embryos and devised DistMap, a computational mapping strategy to reconstruct the embryo and to predict spatial gene expression approaching single-cell resolution. We produced a virtual embryo with about 8000 expressed genes per cell. Our interactive Drosophila Virtual Expression eXplorer (DVEX) database generates three-dimensional virtual in situ hybridizations and computes gene expression gradients. We used DVEX to uncover patterned expression of transcription factors and long noncoding RNAs, as well as signaling pathway components. Spatial regulation of Hippo signaling during early embryogenesis suggests a mechanism for establishing asynchronous cell proliferation. Our approach is suitable to generate transcriptomic blueprints for other complex tissues.
Collapse
Affiliation(s)
- Nikos Karaiskos
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Philipp Wahle
- Systems Biology of Neural Tissue Differentiation, BIMSB, MDC, 13125 Berlin, Germany
| | - Jonathan Alles
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Anastasiya Boltengagen
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Salah Ayoub
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Claudia Kipar
- Systems Biology of Neural Tissue Differentiation, BIMSB, MDC, 13125 Berlin, Germany
| | - Christine Kocks
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany.
| | - Robert P Zinzen
- Systems Biology of Neural Tissue Differentiation, BIMSB, MDC, 13125 Berlin, Germany.
| |
Collapse
|
4
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
5
|
Kumar S, Bhatia S. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci Rep 2016; 6:33280. [PMID: 27623355 PMCID: PMC5020687 DOI: 10.1038/srep33280] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
Simple Sequence Repeats (SSRs) of polypurine-polypyrimidine type motifs occur very frequently in the 5' flanks of genes in plants and have recently been implicated to have a role in regulation of gene expression. In this study, 2 accessions of Catharanthus roseus having (CT)8 and (CT)21 varying motifs in the 5'UTR of Tryptophan decarboxylase (Tdc) gene, were investigated for its role in regulation of gene expression. Extensive Tdc gene expression analysis in the 2 accessions was carried out both at the level of transcription and translation. Transcript abundance was estimated using Northern analysis and qRT-PCR, whereas the rate of Tdc gene transcription was assessed using in-situ nuclear run-on transcription assay. Translation status of Tdc gene was monitored by quantification of polysome associated Tdc mRNA using qRT-PCR. These observations were validated through transient expression analysis using the fusion construct [CaM35S:(CT)8-21:GUS]. Our study demonstrated that not only does the length of (CT)n -SSRs influences the promoter activity, but the presence of SSRs per se in the 5'-UTR significantly enhances the level of gene expression. We termed this phenomenon as "microsatellite mediated enhancement" (MME) of gene expression. Results presented here will provide leads for engineering plants with enhanced amounts of medicinally important alkaloids.
Collapse
Affiliation(s)
- Santosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box 10531, New Delhi 110067, India
| |
Collapse
|
6
|
Naval-Sánchez M, Potier D, Hulselmans G, Christiaens V, Aerts S. Identification of Lineage-Specific Cis-Regulatory Modules Associated with Variation in Transcription Factor Binding and Chromatin Activity Using Ornstein-Uhlenbeck Models. Mol Biol Evol 2015; 32:2441-55. [PMID: 25944915 PMCID: PMC4540964 DOI: 10.1093/molbev/msv107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Scoring the impact of noncoding variation on the function of cis-regulatory regions, on their chromatin state, and on the qualitative and quantitative expression levels of target genes is a fundamental problem in evolutionary genomics. A particular challenge is how to model the divergence of quantitative traits and to identify relationships between the changes across the different levels of the genome, the chromatin activity landscape, and the transcriptome. Here, we examine the use of the Ornstein-Uhlenbeck (OU) model to infer selection at the level of predicted cis-regulatory modules (CRMs), and link these with changes in transcription factor binding and chromatin activity. Using publicly available cross-species ChIP-Seq and STARR-Seq data we show how OU can be applied genome-wide to identify candidate transcription factors for which binding site and CRM turnover is correlated with changes in regulatory activity. Next, we profile open chromatin in the developing eye across three Drosophila species. We identify the recognition motifs of the chromatin remodelers, Trithorax-like and Grainyhead as mostly correlating with species-specific changes in open chromatin. In conclusion, we show in this study that CRM scores can be used as quantitative traits and that motif discovery approaches can be extended towards more complex models of divergence.
Collapse
Affiliation(s)
- Marina Naval-Sánchez
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Delphine Potier
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Gert Hulselmans
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Valerie Christiaens
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Computational Biology, Department of Human Genetics, University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Fritsch C, Sawala A, Harris R, Maartens A, Sutcliffe C, Ashe HL, Ray RP. Different requirements for proteolytic processing of bone morphogenetic protein 5/6/7/8 ligands in Drosophila melanogaster. J Biol Chem 2011; 287:5942-53. [PMID: 22199351 PMCID: PMC3285362 DOI: 10.1074/jbc.m111.316745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are synthesized as proproteins that undergo proteolytic processing by furin/subtilisin proprotein convertases to release the active ligand. Here we study processing of BMP5/6/7/8 proteins, including the Drosophila orthologs Glass Bottom Boat (Gbb) and Screw (Scw) and human BMP7. Gbb and Scw have three functional furin/subtilisin proprotein convertase cleavage sites; two between the prodomain and ligand domain, which we call the Main and Shadow sites, and one within the prodomain, which we call the Pro site. In Gbb each site can be cleaved independently, although efficient cleavage at the Shadow site requires cleavage at the Main site, and remarkably, none of the sites is essential for Gbb function. Rather, Gbb must be processed at either the Pro or Main site to produce a functional ligand. Like Gbb, the Pro and Main sites in Scw can be cleaved independently, but cleavage at the Shadow site is dependent on cleavage at the Main site. However, both Pro and Main sites are essential for Scw function. Thus, Gbb and Scw have different processing requirements. The BMP7 ligand rescues gbb mutants in Drosophila, but full-length BMP7 cannot, showing that functional differences in the prodomain limit the BMP7 activity in flies. Furthermore, unlike Gbb, cleavage-resistant BMP7, although non-functional in rescue assays, activates the downstream signaling cascade and thus retains some functionality. Our data show that cleavage requirements evolve rapidly, supporting the notion that changes in post-translational processing are used to create functional diversity between BMPs within and between species.
Collapse
Affiliation(s)
- Cornelia Fritsch
- School of Life Sciences, University of Sussex, Falmer Brighton BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
O'Connell LA, Hofmann HA. Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front Neuroendocrinol 2011; 32:320-35. [PMID: 21163292 DOI: 10.1016/j.yfrne.2010.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 12/23/2022]
Abstract
Tremendous progress has been made in our understanding of the ultimate and proximate mechanisms underlying social behavior, yet an integrative evolutionary analysis of its underpinnings has been difficult. In this review, we propose that modern genomic approaches can facilitate such studies by integrating four approaches to brain and behavior studies: (1) animals face many challenges and opportunities that are ecologically and socially equivalent across species; (2) they respond with species-specific, yet quantifiable and comparable approach and avoidance behaviors; (3) these behaviors in turn are regulated by gene modules and neurochemical codes; and (4) these behaviors are governed by brain circuits such as the mesolimbic reward system and the social behavior network. For each approach, we discuss genomic and other studies that have shed light on various aspects of social behavior and its underpinnings and suggest promising avenues for future research into the evolution of neuroethological systems.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | | |
Collapse
|
9
|
Venkataram S, Fay JC. Is transcription factor binding site turnover a sufficient explanation for cis-regulatory sequence divergence? Genome Biol Evol 2010; 2:851-8. [PMID: 21068212 PMCID: PMC2997565 DOI: 10.1093/gbe/evq066] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular evolution of cis-regulatory sequences is not well understood. Comparisons of closely related species show that cis-regulatory sequences contain a large number of sites constrained by purifying selection. In contrast, there are a number of examples from distantly related species where cis-regulatory sequences retain little to no sequence similarity but drive similar patterns of gene expression. Binding site turnover, whereby the gain of a redundant binding site enables loss of a previously functional site, is one model by which cis-regulatory sequences can diverge without a concurrent change in function. To determine whether cis-regulatory sequence divergence is consistent with binding site turnover, we examined binding site evolution within orthologous intergenic sequences from 14 yeast species defined by their syntenic relationships with adjacent coding sequences. Both local and global alignments show that nearly all distantly related orthologous cis-regulatory sequences have no significant level of sequence similarity but are enriched for experimentally identified binding sites. Yet, a significant proportion of experimentally identified binding sites that are conserved in closely related species are absent in distantly related species and so cannot be explained by binding site turnover. Depletion of binding sites depends on the transcription factor but is detectable for a quarter of all transcription factors examined. Our results imply that binding site turnover is not a sufficient explanation for cis-regulatory sequence evolution.
Collapse
|
10
|
Chen K, Zhang Y, Tang T, Shi S. Cis-regulatory change and expression divergence between duplicate genes formed by genome duplication of Arabidopsis thaliana. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-3027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|