1
|
Nocka LM, Eisen TJ, Iavarone AT, Groves JT, Kuriyan J. Stimulation of the catalytic activity of the tyrosine kinase Btk by the adaptor protein Grb2. eLife 2023; 12:e82676. [PMID: 37159508 PMCID: PMC10132808 DOI: 10.7554/elife.82676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023] Open
Abstract
The Tec-family kinase Btk contains a lipid-binding Pleckstrin homology and Tec homology (PH-TH) module connected by a proline-rich linker to a 'Src module', an SH3-SH2-kinase unit also found in Src-family kinases and Abl. We showed previously that Btk is activated by PH-TH dimerization, which is triggered on membranes by the phosphatidyl inositol phosphate PIP3, or in solution by inositol hexakisphosphate (IP6) (Wang et al., 2015, https://doi.org/10.7554/eLife.06074). We now report that the ubiquitous adaptor protein growth-factor-receptor-bound protein 2 (Grb2) binds to and substantially increases the activity of PIP3-bound Btk on membranes. Using reconstitution on supported-lipid bilayers, we find that Grb2 can be recruited to membrane-bound Btk through interaction with the proline-rich linker in Btk. This interaction requires intact Grb2, containing both SH3 domains and the SH2 domain, but does not require that the SH2 domain be able to bind phosphorylated tyrosine residues - thus Grb2 bound to Btk is free to interact with scaffold proteins via the SH2 domain. We show that the Grb2-Btk interaction recruits Btk to scaffold-mediated signaling clusters in reconstituted membranes. Our findings indicate that PIP3-mediated dimerization of Btk does not fully activate Btk, and that Btk adopts an autoinhibited state at the membrane that is released by Grb2.
Collapse
Affiliation(s)
- Laura M Nocka
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Timothy J Eisen
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- College of Chemistry Mass Spectrometry Facility, University of California, BerkeleyBerkeleyUnited States
| | - Jay T Groves
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Institute for Digital Molecular Analytics and Science, Nanyang Technological UniversitySingaporeSingapore
| | - John Kuriyan
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
2
|
Gomes de Castro MA, Wildhagen H, Sograte-Idrissi S, Hitzing C, Binder M, Trepel M, Engels N, Opazo F. Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat Commun 2019; 10:820. [PMID: 30778055 PMCID: PMC6379438 DOI: 10.1038/s41467-019-08677-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 01/24/2019] [Indexed: 11/09/2022] Open
Abstract
Stimulation of the B cell antigen receptor (BCR) triggers signaling pathways that promote the differentiation of B cells into plasma cells. Despite the pivotal function of BCR in B cell activation, the organization of the BCR on the surface of resting and antigen-activated B cells remains unclear. Here we show, using STED super-resolution microscopy, that IgM-containing BCRs exist predominantly as monomers and dimers in the plasma membrane of resting B cells, but form higher oligomeric clusters upon stimulation. By contrast, a chronic lymphocytic leukemia-derived BCR forms dimers and oligomers in the absence of a stimulus, but a single amino acid exchange reverts its organization to monomers in unstimulated B cells. Our super-resolution microscopy approach for quantitatively analyzing cell surface proteins may thus help reveal the nanoscale organization of immunoreceptors in various cell types.
Collapse
MESH Headings
- B-Lymphocytes/metabolism
- Burkitt Lymphoma/pathology
- Cell Line, Tumor
- Cell Membrane/metabolism
- Humans
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin M/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Microscopy, Fluorescence/methods
- Protein Multimerization
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
Collapse
Affiliation(s)
- Maria Angela Gomes de Castro
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Hanna Wildhagen
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, von-Siebold-Straße 3a, 37075, Göttingen, Germany
| | - Christoffer Hitzing
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073, Göttingen, Germany
| | - Mascha Binder
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Martin Trepel
- Department of Oncology and Hematology, BMT with section Pneumology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Department of Hematology and Oncology, Augsburg Medical Center, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Niklas Engels
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Humboldtallee 34, 37073, Göttingen, Germany.
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, von-Siebold-Straße 3a, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Affiliation(s)
- Niklas Engels
- Institute of Cellular & Molecular Immunology; University Medical Center Göttingen; Göttingen Germany
| | - Jürgen Wienands
- Institute of Cellular & Molecular Immunology; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
4
|
Moens L, Kane A, Tangye SG. Naïve and memory B cells exhibit distinct biochemical responses following BCR engagement. Immunol Cell Biol 2016; 94:774-86. [PMID: 27101923 DOI: 10.1038/icb.2016.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023]
Abstract
Immunological memory is characterized by the rapid reactivation of memory B cells that produce large quantities of high-affinity antigen-specific antibodies. This contrasts the response of naïve B cells, and the primary immune response, which is much slower and of lower affinity. Memory responses are critical for protection against infectious diseases and form the basis of most currently available vaccines. Although we have known about the phenomenon of long-lived memory for centuries, the biochemical differences underlying these diverse responses of naïve and memory B cells is incompletely resolved. Here we investigated the nature of B-cell receptor (BCR) signaling in human splenic naïve, IgM(+) memory and isotype-switched memory B cells following multivalent BCR crosslinking. We observed comparable rapid and transient phosphorylation kinetics for proximal (phosphotyrosine and spleen tyrosine kinase) and propagation (B-cell linker, phospholipase Cγ2) signaling components in these different B-cell subsets. However, the magnitude of activation of downstream components of the BCR signaling pathway were greater in memory compared with naïve cells. Although no differences were observed in the magnitude of Ca(2+) mobilization between subsets, IgM(+) memory B cells exhibited a more rapid Ca(2+) mobilization and a greater depletion of the Ca(2+) endoplasmic reticulum stores, while IgG(+) memory B cells had a prolonged Ca(2+) uptake. Collectively, our findings show that intrinsic signaling features of B-cell subsets contribute to the robust response of human memory B cells over naïve B cells. This has implications for our understanding of memory B-cell responses and provides a framework to modulate these responses in the setting of vaccination and immunopathologies, such as immunodeficiency and autoimmunity.
Collapse
Affiliation(s)
- Leen Moens
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alisa Kane
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| |
Collapse
|
5
|
|
6
|
Simma N, Bose T, Kahlfuss S, Mankiewicz J, Lowinus T, Lühder F, Schüler T, Schraven B, Heine M, Bommhardt U. NMDA-receptor antagonists block B-cell function but foster IL-10 production in BCR/CD40-activated B cells. Cell Commun Signal 2014; 12:75. [PMID: 25477292 PMCID: PMC4269920 DOI: 10.1186/s12964-014-0075-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND B cells are important effectors and regulators of adaptive and innate immune responses, inflammation and autoimmunity, for instance in anti-NMDA-receptor (NMDAR) encephalitis. Thus, pharmacological modulation of B-cell function could be an effective regimen in therapeutic strategies. Since the non-competitive NMDAR antagonist memantine is clinically applied to treat advanced Alzheimer`s disease and ketamine is supposed to improve the course of resistant depression, it is important to know how these drugs affect B-cell function. RESULTS Non-competitive NMDAR antagonists impaired B-cell receptor (BCR)- and lipopolysaccharide (LPS)-induced B-cell proliferation, reduced B-cell migration towards the chemokines SDF-1α and CCL21 and downregulated IgM and IgG secretion. Mechanistically, these effects were mediated through a blockade of Kv1.3 and KCa3.1 potassium channels and resulted in an attenuated Ca(2+)-flux and activation of Erk1/2, Akt and NFATc1. Interestingly, NMDAR antagonist treatment increased the frequency of IL-10 producing B cells after BCR/CD40 stimulation. CONCLUSIONS Non-competitive NMDAR antagonists attenuate BCR and Toll-like receptor 4 (TLR4) B-cell signaling and effector function and can foster IL-10 production. Consequently, NMDAR antagonists may be useful to target B cells in autoimmune diseases or pathological systemic inflammation. The drugs' additional side effects on B cells should be considered in treatments of neuronal disorders with NMDAR antagonists.
Collapse
Affiliation(s)
- Narasimhulu Simma
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Tanima Bose
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Judith Mankiewicz
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and The Hertie Foundation, Waldweg 33, 37073, Göttingen, Germany.
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany. .,Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| | - Martin Heine
- RG Molecular Physiology, Leibniz Institute of Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany.
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
7
|
Hauser JT, Lindner R. Coalescence of B cell receptor and invariant chain MHC II in a raft-like membrane domain. J Leukoc Biol 2014; 96:843-55. [PMID: 25024398 DOI: 10.1189/jlb.2a0713-353r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The BCR binds antigen for processing and subsequent presentation on MHC II molecules. Polyvalent antigen induces BCR clustering and targeting to endocytic processing compartments, which are also accessed by Ii-MHC II. Here, we report that clustered BCR is able to team up with Ii-MHC II already at the plasma membrane of mouse B-lymphocytes. Colocalization of BCR and Ii-MHC II on the cell surface required clustering of both types of molecules. The clustering of only one type did not trigger the recruitment of the other. Ii-bound MIF (a ligand of Ii) also colocalized with clustered BCR upon oligomerization of MIF on the surface of the B cell. Abundant surface molecules, such as B220 or TfnR, did not cocluster with the BCR. Some membrane raft-associated molecules, such as peptide-loaded MHC II, coclustered with the BCR, whereas others, such as GM1, did not. The formation of a BCR- and Ii-MHC II-containing membrane domain by antibody-mediated clustering was independent of F-actin and led to the coendocytosis of its constituents. With a rapid Brij 98 extraction method, it was possible to capture this membrane domain biochemically as a DRM. Ii and clustered BCR were present on the same DRM, as shown by immunoisolation. The coalescence of BCR and Ii-MHC II increased tyrosine phosphorylation, indicative of enhanced BCR signaling. Our work suggests a novel role for MIF and Ii-MHC II in BCR-mediated antigen processing.
Collapse
Affiliation(s)
- Julian T Hauser
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| | - Robert Lindner
- Hannover Medical School, Department of Cell Biology, Center for Anatomy, Hannover, Germany
| |
Collapse
|
8
|
Nourse A, Mittag T. The cytoplasmic domain of the T-cell receptor zeta subunit does not form disordered dimers. J Mol Biol 2013; 426:62-70. [PMID: 24120941 DOI: 10.1016/j.jmb.2013.09.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 01/14/2023]
Abstract
Intrinsically disordered regions in proteins play active roles in recognition, signaling and molecular sorting. They often undergo coupled folding and binding giving rise to largely ordered interfaces with their binding partners. The cytoplasmic region of the T-cell receptor zeta subunit (ζcyt) has been previously proposed to specifically dimerize in the absence of a disorder-to-order transition, suggesting an intriguing dimerization mechanism that may involve multiple transient interfaces. We show here using analytical ultracentrifugation, NMR, size-exclusion chromatography (SEC) and multi-angle light scattering that neither ζcyt nor the cytoplasmic region of CD3ε significantly populates a dimeric state but that they are mostly monomers in solution up to millimolar concentrations. They experience a salt- and concentration-dependent shift of their elution volume in SEC previously interpreted as dimerization. Our data show that ζcyt does not form a highly disordered protein complex and leaves open the question as to whether completely disordered dimers (or other oligomers) exist in nature.
Collapse
Affiliation(s)
- Amanda Nourse
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 311, Memphis, TN 38105, USA.
| | - Tanja Mittag
- Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 311, Memphis, TN 38105, USA.
| |
Collapse
|
9
|
Lösing M, Goldbeck I, Manno B, Oellerich T, Schnyder T, Bohnenberger H, Stork B, Urlaub H, Batista FD, Wienands J, Engelke M. The Dok-3/Grb2 protein signal module attenuates Lyn kinase-dependent activation of Syk kinase in B cell antigen receptor microclusters. J Biol Chem 2013; 288:2303-13. [PMID: 23223229 PMCID: PMC3554902 DOI: 10.1074/jbc.m112.406546] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/20/2012] [Indexed: 02/02/2023] Open
Abstract
Recruitment of the growth factor receptor-bound protein 2 (Grb2) by the plasma membrane-associated adapter protein downstream of kinase 3 (Dok-3) attenuates signals transduced by the B cell antigen receptor (BCR). Here we describe molecular details of Dok-3/Grb2 signal integration and function, showing that the Lyn-dependent activation of the BCR transducer kinase Syk is attenuated by Dok-3/Grb2 in a site-specific manner. This process is associated with the SH3 domain-dependent translocation of Dok-3/Grb2 complexes into BCR microsignalosomes and augmented phosphorylation of the inhibitory Lyn target SH2 domain-containing inositol 5' phosphatase. Hence, our findings imply that Dok-3/Grb2 modulates the balance between activatory and inhibitory Lyn functions with the aim to adjust BCR signaling efficiency.
Collapse
Affiliation(s)
- Marion Lösing
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
The B-cell antigen receptor signals through a preformed transducer module of SLP65 and CIN85. EMBO J 2011; 30:3620-34. [PMID: 21822214 PMCID: PMC3181483 DOI: 10.1038/emboj.2011.251] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 07/05/2011] [Indexed: 12/27/2022] Open
Abstract
Spleen tyrosine kinase Syk and its substrate SLP65 (also called BLNK) are proximal signal transducer elements of the B-cell antigen receptor (BCR). Yet, our understanding of signal initiation and processing is limited owing to the incomplete list of SLP65 interaction partners and our ignorance of their association kinetics. We have now determined and quantified the in vivo interactomes of SLP65 in resting and stimulated B cells by mass spectrometry. SLP65 orchestrated a complex signal network of about 30 proteins that was predominantly based on dynamic interactions. However, a stimulation-independent and constant association of SLP65 with the Cbl-interacting protein of 85 kDa (CIN85) was requisite for SLP65 phosphorylation and its inducible plasma membrane translocation. In the absence of a steady SLP65/CIN85 complex, BCR-induced Ca(2+) and NF-κB responses were abrogated. Finally, live cell imaging and co-immunoprecipitation experiments further confirmed that both SLP65 and CIN85 are key components of the BCR-associated primary transducer module required for the onset and progression phases of BCR signal transduction.
Collapse
|
11
|
Bohnenberger H, Oellerich T, Engelke M, Hsiao HH, Urlaub H, Wienands J. Complex phosphorylation dynamics control the composition of the Syk interactome in B cells. Eur J Immunol 2011; 41:1550-62. [PMID: 21469132 DOI: 10.1002/eji.201041326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/14/2011] [Accepted: 03/25/2011] [Indexed: 11/08/2022]
Abstract
Spleen tyrosine kinase Syk provides critical transducer functions for a number of immune cell receptors and has been implicated in the generation of several forms of leukemias. Catalytic activity and the ability of Syk to interact with other signaling elements depend on the phosphorylation status of Syk. We have now identified and quantified the full spectrum of phosphoacceptor sites in human Syk as well as the interactome of Syk in resting and activated B cells by high-resolution mass spectrometry. While the majority of inducible phosphorylations occurred on tyrosine residues, one of the most frequently detected phosphosites encompassed serine 297 located within the linker insert distinguishing the long and short isoforms of Syk. Full-length Syk can associate with more than 25 distinct ligands including the 14-3-3γ adaptor protein, which binds directly to phosphoserine 297. The latter complex attenuates inducible plasma membrane recruitment of Syk, thereby limiting antigen receptor-proximal signaling pathways. Collectively, the established ligand library provides a basis to understand the complexity of the Syk signaling network.
Collapse
Affiliation(s)
- Hanibal Bohnenberger
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Neumann K, Oellerich T, Heine I, Urlaub H, Engelke M. Fc gamma receptor IIb modulates the molecular Grb2 interaction network in activated B cells. Cell Signal 2011; 23:893-900. [DOI: 10.1016/j.cellsig.2011.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/14/2011] [Indexed: 12/13/2022]
|
13
|
Engels N, Wienands J. The signaling tool box for tyrosine-based costimulation of lymphocytes. Curr Opin Immunol 2011; 23:324-9. [PMID: 21324660 DOI: 10.1016/j.coi.2011.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 12/31/2022]
Abstract
Triggering lymphocyte effector functions is controlled by a diverse array of immune cell coreceptors that dampen or potentiate the primary activation signal from antigen receptors. Attenuation of lymphocyte activation has been shown to be accomplished by immunoreceptor tyrosine-based inhibition motifs that upon phosphorylation recruit protein or lipid phosphatases. By contrast, a general concept of signal amplification and/or diversification is still out. However, the recent discovery of antigen receptor-intrinsic costimulation by membrane-bound immunoglobulins in class-switched memory B cells identified a consensus phosphorylation motif that can boost antigen-induced signal chains and is also employed by costimulatory receptors on T and Natural Killer cells to provide secondary signals for cellular activation. Here we define a common basis of tyrosine-based lymphocyte costimulation comprising immunoglobulin tail tyrosine (ITT)-like phosphorylation motifs and their proximal effectors, growth factor receptor-bound protein (Grb) 2 and phosphatidylinositol-3 kinase (PI3K) enzymes of class IA.
Collapse
Affiliation(s)
- Niklas Engels
- Georg August University of Göttingen, Institute of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | | |
Collapse
|
14
|
Atamas SP. The principles of adaptive immunity. Rheumatology (Oxford) 2011. [DOI: 10.1016/b978-0-323-06551-1.00015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Yang J, Reth M. The dissociation activation model of B cell antigen receptor triggering. FEBS Lett 2010; 584:4872-7. [PMID: 20920502 DOI: 10.1016/j.febslet.2010.09.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
To detect its cognate antigen, each B lymphocyte contains up to 120000 B cell antigen receptor (BCR) complexes on its cell surface. How these abundant receptors remain silent on resting B cells and how they can be activated by a molecularly diverse set of ligands is poorly understood. The antigen-specific activation of the BCR is currently explained by the cross-linking model (CLM). This model predicts that the many BCR complexes on the surface of a B cell are dispersed signalling-inert monomers and that it is BCR dimerization that initiates signalling from the receptor. The finding that the BCR forms auto-inhibited oligomers on the surface of resting B cells falsifies these predictions of the CLM. We propose the dissociation activation model (DAM), which fits better with the existing body of experimental data.
Collapse
Affiliation(s)
- Jianying Yang
- Centre of Biological Signalling Studies BIOSS, University Freiburg, Freiburg, Germany
| | | |
Collapse
|
16
|
Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 2010; 467:465-9. [DOI: 10.1038/nature09357] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/14/2010] [Indexed: 11/09/2022]
|
17
|
Schell MJ. Inositol trisphosphate 3-kinases: focus on immune and neuronal signaling. Cell Mol Life Sci 2010; 67:1755-78. [PMID: 20066467 PMCID: PMC11115942 DOI: 10.1007/s00018-009-0238-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
The localized control of second messenger levels sculpts dynamic and persistent changes in cell physiology and structure. Inositol trisphosphate [Ins(1,4,5)P(3)] 3-kinases (ITPKs) phosphorylate the intracellular second messenger Ins(1,4,5)P(3). These enzymes terminate the signal to release Ca(2+) from the endoplasmic reticulum and produce the messenger inositol tetrakisphosphate [Ins(1,3,4,5)P(4)]. Independent of their enzymatic activity, ITPKs regulate the microstructure of the actin cytoskeleton. The immune phenotypes of ITPK knockout mice raise new questions about how ITPKs control inositol phosphate lifetimes within spatial and temporal domains during lymphocyte maturation. The intense concentration of ITPK on actin inside the dendritic spines of pyramidal neurons suggests a role in signal integration and structural plasticity in the dendrite, and mice lacking neuronal ITPK exhibit memory deficits. Thus, the molecular and anatomical features of ITPKs allow them to regulate the spatiotemporal properties of intracellular signals, leading to the formation of persistent molecular memories.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA.
| |
Collapse
|
18
|
Al-Alwan M, Hou S, Zhang TT, Makondo K, Marshall AJ. Bam32/DAPP1 promotes B cell adhesion and formation of polarized conjugates with T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6961-9. [PMID: 20495066 DOI: 10.4049/jimmunol.0904176] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B cell Ag receptors function in both signaling activation of Ag-specific cells and in collecting specific Ag for presentation to T lymphocytes. Signaling via PI3K is required for BCR-mediated activation and Ag presentation functions; however, the relevant downstream targets of PI3K in B cells are incompletely defined. In this study, we have investigated the roles of the PI3K effector molecule Bam32/DAPP1 in BCR signaling and BCR-mediated Ag presentation functions. In mouse primary B cells, Bam32 was required for efficient activation of the GTPase Rac1 and downstream signaling to JNK, but not activation of BLNK, phospholipase C gamma2, or calcium responses. Consistent with a role of this adaptor in Rac-mediated cytoskeletal rearrangement, Bam32 was required for BCR-induced cell adhesion and spreading responses on ICAM-1 or fibronectin-coated surfaces. The function of Bam32 in promoting Rac activation and adhesion required tyrosine 139, a known site of phosphorylation by Lyn kinase. After BCR crosslinking by Ag, Bam32-deficient B cells are able to carry out the initial steps of Ag endocytosis and processing, but show diminished ability to form Ag-specific conjugates with T cells and polarize F-actin at the B-T interface. As a result, Bam32-deficient B cells were unable to efficiently activate Ag-specific T cells. Together, these results indicate that Bam32 serves to integrate PI3K and Src kinase signaling to promote Rac-dependent B cell adhesive interactions important for Ag presentation function.
Collapse
Affiliation(s)
- Monther Al-Alwan
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|