1
|
Smith NW, Sindelar JJ, Rankin SA. AMP, ADP, and ATP Concentrations Differentially Affected by Meat Processing, Manufacturing, and Nonmeat Ingredients. J Food Prot 2024; 87:100287. [PMID: 38697482 DOI: 10.1016/j.jfp.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Given its presence in a wide spectrum of soils relevant to food process hygiene, the biological metabolite adenosine triphosphate (ATP) is used as a target for surface hygiene assessments in food processing facilities. Yet, ample evidence demonstrates that ATP is depleted into adenosine di- (ADP) and monophosphate (AMP) homologs resulting in a loss of sensitivity for ATP-based hygiene assays. Yet, there are few studies that denote the degree of these shifts under routine processing conditions such as those encountered during various meat processing steps that may likely alter redox potential and adenosine profiles (e.g., tissue/cellular disruption, application of reducing additives, fermentation, or thermal treatment steps). In this study, meat samples were collected from homogenized beef tissue treated with nonmeat ingredients (sodium chloride, sodium nitrite, sodium erythorbate, natural smoke condensate, and sodium acid pyrophosphate) during manufacture at predetermined steps, and from retail meat products purchased from local markets. Concentrations of ATP, ADP, AMP, and AXP (sum concentration of all homologs) in a lab setting and in situ meat processing venues were determined and compared. Greater differences in AXP were seen during manufacture, where ADP generally comprised ∼90% as a mole fraction of AXP across all treatments, with the exception of the final cook step where AMP predominated. ATP concentrations averaged 2 log values lower than ADP and AMP. Adenosine profiles in retail samples followed similar trends with minimal ATP concentrations with ADP predominant in uncooked samples and AMP predominant in cooked samples. Resultingly, meat processing steps during product manufacture will alter AXP-reliant test sensitivities which should be considered when such technologies are utilized for hygiene verification in meat processing.
Collapse
Affiliation(s)
- N W Smith
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53528, USA
| | - J J Sindelar
- Meat Science & Animal Biologics Discovery, Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - S A Rankin
- Department of Food Science, University of Wisconsin-Madison, Madison, WI 53528, USA.
| |
Collapse
|
2
|
Rajpurohit H, Eiteman MA. Nutrient-Limited Operational Strategies for the Microbial Production of Biochemicals. Microorganisms 2022; 10:2226. [PMID: 36363817 PMCID: PMC9695796 DOI: 10.3390/microorganisms10112226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 08/24/2023] Open
Abstract
Limiting an essential nutrient has a profound impact on microbial growth. The notion of growth under limited conditions was first described using simple Monod kinetics proposed in the 1940s. Different operational modes (chemostat, fed-batch processes) were soon developed to address questions related to microbial physiology and cell maintenance and to enhance product formation. With more recent developments of metabolic engineering and systems biology, as well as high-throughput approaches, the focus of current engineers and applied microbiologists has shifted from these fundamental biochemical processes. This review draws attention again to nutrient-limited processes. Indeed, the sophisticated gene editing tools not available to pioneers offer the prospect of metabolic engineering strategies which leverage nutrient limited processes. Thus, nutrient- limited processes continue to be very relevant to generate microbially derived biochemicals.
Collapse
Affiliation(s)
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Investigating the role of the transcriptional regulator Ure2 on the metabolism of Saccharomyces cerevisiae: a multi-omics approach. Appl Microbiol Biotechnol 2021; 105:5103-5112. [PMID: 34152451 DOI: 10.1007/s00253-021-11394-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/21/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022]
Abstract
Ure2 regulates nitrogen catabolite repression in Saccharomyces cerevisiae. Deletion of URE2 induces a physiological state mimicking the nitrogen starvation and autophagic responses. Previous work has shown that deletion of URE2 increases the fermentation rate of some wine-producing strains of S. cerevisiae. In this work, we investigated the effect of URE2 deletion (ΔURE2) on the metabolism of S. cerevisiae. During growth on glucose, the ΔURE2 mutant grew at a 40% slower rate than the wild type; however, it produced ethanol at a 31% higher rate. To better under the behavior of this mutant, we performed transcriptomics and metabolomics. Analysis of the RNA sequencing results and metabolite levels indicates that the mutant strain exhibited characteristics of both nitrogen starvation and autophagy, including the upregulation of allantoin, urea, and amino acid uptake and utilization pathways and selective autophagic machinery. In addition, pyruvate decarboxylase and alcohol dehydrogenase isoforms were expressed at higher rates than the wild type. The mutant also accumulated less trehalose and glycogen, and produced more lipids. The induction of a nitrogen starvation-like state and increase in lipid production in nitrogen-rich conditions suggest that URE2 may be a promising target for metabolic engineering in S. cerevisiae and other yeasts for the production of lipids and lipid-derived compounds. KEY POINTS: • Deletion of URE2 increases ethanol and lipid production in Saccharomyces cerevisiae. • Deletion of URE2 reduces glycogen and trehalose production. • Metabolic changes mimic nitrogen starvation and autophagic response.
Collapse
|
4
|
Abstract
Nucleotide metabolism plays a central role in bacterial physiology, producing the nucleic acids necessary for DNA replication and RNA transcription. Recent studies demonstrate that nucleotide metabolism also proactively contributes to antibiotic-induced lethality in bacterial pathogens and that disruptions to nucleotide metabolism contributes to antibiotic treatment failure in the clinic. As antimicrobial resistance continues to grow unchecked, new approaches are needed to study the molecular mechanisms responsible for antibiotic efficacy. Here we review emerging technologies poised to transform understanding into why antibiotics may fail in the clinic. We discuss how these technologies led to the discovery that nucleotide metabolism regulates antibiotic drug responses and why these are relevant to human infections. We highlight opportunities for how studies into nucleotide metabolism may enhance understanding of antibiotic failure mechanisms.
Collapse
Affiliation(s)
- Allison J Lopatkin
- Department of Biology, Barnard College, New York, NY, United States.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States.,Data Science Institute, Columbia University, New York, NY, United States
| | - Jason H Yang
- Ruy V. Lourenço Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark, NJ, United States.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
5
|
Tkachenko AG, Kashevarova NM, Sidorov RY, Nesterova LY, Akhova AV, Tsyganov IV, Vaganov VY, Shipilovskikh SA, Rubtsov AE, Malkov AV. A synthetic diterpene analogue inhibits mycobacterial persistence and biofilm formation by targeting (p)ppGpp synthetases. Cell Chem Biol 2021; 28:1420-1432.e9. [PMID: 33621482 DOI: 10.1016/j.chembiol.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 01/23/2023]
Abstract
Bacterial persistence coupled with biofilm formation is directly associated with failure of antibiotic treatment of tuberculosis. We have now identified 4-(4,7-DiMethyl-1,2,3,4-tetrahydroNaphthalene-1-yl)Pentanoic acid (DMNP), a synthetic diterpene analogue, as a lead compound that was capable of suppressing persistence and eradicating biofilms in Mycobacterium smegmatis. By using two reciprocal experimental approaches - ΔrelMsm and ΔrelZ gene knockout mutations versus relMsm and relZ overexpression technique - we showed that both RelMsm and RelZ (p)ppGpp synthetases are plausible candidates for serving as targets for DMNP. In vitro, DMNP inhibited (p)ppGpp-synthesizing activity of purified RelMsm in a concentration-dependent manner. These findings, supplemented by molecular docking simulation, suggest that DMNP targets the structural sites shared by RelMsm, RelZ, and presumably by a few others as yet unidentified (p)ppGpp producers, thereby inhibiting persister cell formation and eradicating biofilms. Therefore, DMNP may serve as a promising lead for development of antimycobacterial drugs.
Collapse
Affiliation(s)
- Alexander G Tkachenko
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia.
| | - Natalya M Kashevarova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia
| | - Roman Yu Sidorov
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | - Larisa Yu Nesterova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | - Anna V Akhova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | - Ivan V Tsyganov
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, Ural Branch, Goleva 13, Perm, 614081, Perm Krai, Russia; Perm State University, Bukireva 15, Perm, 614990, Perm Krai, Russia
| | | | | | | | - Andrei V Malkov
- Department of Chemistry, Loughborough University Address: University Road, Loughborough, Leicestershire LE11 3TU, UK.
| |
Collapse
|
6
|
Mildenhall KB, Rankin SA. Implications of Adenylate Metabolism in Hygiene Assessment: A Review. J Food Prot 2020; 83:1619-1631. [PMID: 32338738 DOI: 10.4315/jfp-20-087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/24/2020] [Indexed: 11/11/2022]
Abstract
The assessment of a hygienic state or cleanliness of contact surfaces has significant implications for food and medical industries seeking to monitor sanitation and exert improved control over a host of operations affecting human health. Methods used to make such assessments commonly involve visual inspections, standard microbial plating practices, and the application of ATP-based assays. Visual methods for inspection of hygienic states are inherently subjective and limited in efficacy by the accuracy of human senses, the degree of task-specific work experience, and various sources of human bias. Standard microbial swabbing and plating techniques are limited in that they require hours or even days of incubation to generate results, with such steps as enrichment and colony outgrowth resulting in delays that are often incompatible with manufacturing or usage schedules. Rapid in conduct and considered more objective in operation than visual or tactile inspection techniques, swabbing surfaces using ATP-based assessments are relied on as routine, even standard, methods of hygienic assessment alone or in complement with microbial and visual inspection methods. Still, current ATP methods remain indirect methods of total hygiene assessment and have limitations that must be understood and considered if such methods are to be applied judiciously, especially under increasingly strict demands for the verification of hygiene state. Here, we present current methods of ATP-based bioluminescence assays and describe the limitations of such methods when applied to general food manufacturing or health care facilities.
Collapse
Affiliation(s)
- Kristen B Mildenhall
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53528, USA (ORCID: https://orcid.org/0000-0001-6784-6770 [S.A.R.])
| | - Scott A Rankin
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin 53528, USA (ORCID: https://orcid.org/0000-0001-6784-6770 [S.A.R.])
| |
Collapse
|
7
|
Chakraborti M, Schlachter S, Primus S, Wagner J, Sweet B, Carr Z, Cornell KA, Parveen N. Evaluation of Nucleoside Analogs as Antimicrobials Targeting Unique Enzymes in Borrelia burgdorferi. Pathogens 2020; 9:E678. [PMID: 32825529 PMCID: PMC7557402 DOI: 10.3390/pathogens9090678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The first line therapy for Lyme disease is treatment with doxycycline, amoxicillin, or cefuroxime. In endemic regions, the persistence of symptoms in many patients after completion of antibiotic treatment remains a major healthcare concern. The causative agent of Lyme disease is a spirochete, Borrelia burgdorferi, an extreme auxotroph that cannot exist under free-living conditions and depends upon the tick vector and mammalian hosts to fulfill its nutritional needs. Despite lacking all major biosynthetic pathways, B. burgdorferi uniquely possesses three homologous and functional methylthioadenosine/S-adenosylhomocysteine nucleosidases (MTANs: Bgp, MtnN, and Pfs) involved in methionine and purine salvage, underscoring the critical role these enzymes play in the life cycle of the spirochete. At least one MTAN, Bgp, is exceptional in its presence on the surface of Lyme spirochetes and its dual functionality in nutrient salvage and glycosaminoglycan binding involved in host-cell adherence. Thus, MTANs offer highly promising targets for discovery of new antimicrobials. Here we report on our studies to evaluate five nucleoside analogs for MTAN inhibitory activity, and cytotoxic or cytostatic effects on a bioluminescently engineered strain of B. burgdorferi. All five compounds were either alternate substrates and/or inhibitors of MTAN activity, and reduced B. burgdorferi growth. Two inhibitors: 5'-deoxy-5'-iodoadenosine (IADO) and 5'-deoxy-5'-ethyl-immucillin A (dEt-ImmA) showed bactericidal activity. Thus, these inhibitors exhibit high promise and form the foundation for development of novel and effective antimicrobials to treat Lyme disease.
Collapse
Affiliation(s)
- Monideep Chakraborti
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (M.C.); (S.S.); (S.P.)
| | - Samantha Schlachter
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (M.C.); (S.S.); (S.P.)
- Department of Biology, Saint Elizabeth University, 2 Convent Road, Henderson Hall Room 112C, Morristown, NJ 07960, USA
| | - Shekerah Primus
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (M.C.); (S.S.); (S.P.)
| | - Julie Wagner
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.W.); (B.S.); (Z.C.); (K.A.C.)
- Bridges to Baccalaureate Program, Boise State University, Boise, ID 83725, USA
| | - Brandi Sweet
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.W.); (B.S.); (Z.C.); (K.A.C.)
- Bridges to Baccalaureate Program, Boise State University, Boise, ID 83725, USA
| | - Zoey Carr
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.W.); (B.S.); (Z.C.); (K.A.C.)
- Bridges to Baccalaureate Program, Boise State University, Boise, ID 83725, USA
| | - Kenneth A. Cornell
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA; (J.W.); (B.S.); (Z.C.); (K.A.C.)
- Biomolecular Research Center; Boise State University, Boise, ID 83725, USA
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; (M.C.); (S.S.); (S.P.)
| |
Collapse
|
8
|
Ptushenko VV. Electric Cables of Living Cells. I. Energy Transfer along Coupling Membranes. BIOCHEMISTRY (MOSCOW) 2020; 85:820-832. [DOI: 10.1134/s000629792007010x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Smith NW, Sindelar JJ, Rankin SA. Quantities of Adenylate Homologues (ATP+ADP+AMP) Change over Time in Prokaryotic and Eukaryotic Cells. J Food Prot 2019; 82:2088-2093. [PMID: 31718327 DOI: 10.4315/0362-028x.jfp-19-223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rapid assays for the assessment of the hygienic state of surfaces in food and medical industries include the use of technologies designed to detect the presence of the metabolite ATP. ATP is a critical metabolite and energy source for most living organisms; therefore, the presence of ATP can be an indicator of surface hygiene based on the presence of soil or food residues associated with inadequate cleaning. The concentrations of ATP vary based on an organism's metabolic state, thus potentially influencing the sensitivity of ATP-based assays. However, little has been published detailing the quantitative changes of ATP to the adenylate homologues ADP and AMP nor the quantitative and cumulative fate of these homologues over time as the metabolic state remains in flux. The objective of this study was to quantify the individual and cumulative (AXP) concentrations of these three adenylate homologues over defined time periods in selected eukaryotic tissue and prokaryotic cell cultures of significance to hygiene. ATP concentrations differed substantially across these selected variables of time and source. The 1- to 3-log reductions in ATP concentrations over time were highly affected by organism type. In general, ADP became the predominate adenylate in eukaryotic tissue, and AMP was the predominate adenylate in the prokaryotic cells at later time points in each study. Total AXP concentrations dropped in general, reflective primarily of the loss of ATP. The results of ATP-based techniques for hygiene surveillance will vary as a function of the amount of cellular material present and the metabolic state of such material.
Collapse
Affiliation(s)
| | - J J Sindelar
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
10
|
Kokina A, Ozolina Z, Liepins J. Purine auxotrophy: Possible applications beyond genetic marker. Yeast 2019; 36:649-656. [PMID: 31334866 DOI: 10.1002/yea.3434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023] Open
Abstract
Exploring new drug candidates or drug targets against many illnesses is necessary as "traditional" treatments lose their effectivity. Cancer and sicknesses caused by protozoan parasites are among these diseases. Cell purine metabolism is an important drug target. Theoretically, inhibiting purine metabolism could stop the proliferation of unwanted cells. Purine metabolism is similar across all eukaryotes. However, some medically important organisms or cell lines rely on their host purine metabolism. Protozoans causing malaria, leishmaniasis, or toxoplasmosis are purine auxotrophs. Some cancer forms have also lost the ability to synthesize purines de novo. Budding yeast can serve as an effective model for eukaryotic purine metabolism, and thus, purine auxotrophic strains could be an important tool. In this review, we present the common principles of purine metabolism in eukaryotes, effects of purine starvation in eukaryotic cells, and purine-starved Saccharomyces cerevisiae as a model for purine depletion-elicited metabolic states with applications in evolution studies and pharmacology. Purine auxotrophic yeast strains behave differently when growing in media with sufficient supplementation with adenine or in media depleted of adenine (starvation). In the latter, they undergo cell cycle arrest at G1/G0 and become stress resistant. Importantly, similar effects have also been observed among parasitic protozoans or cancer cells. We consider that studies on metabolic changes caused by purine auxotrophy could reveal new options for parasite or cancer therapy. Further, knowledge on phenotypic changes will improve the use of auxotrophic strains in high-throughput screening for primary drug candidates.
Collapse
Affiliation(s)
- Agnese Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Zane Ozolina
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| | - Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Riga, Latvia
| |
Collapse
|
11
|
Biofilm aging in full-scale aerobic bioreactors from perspectives of metabolic activity and microbial community. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Yang JH, Wright SN, Hamblin M, McCloskey D, Alcantar MA, Schrübbers L, Lopatkin AJ, Satish S, Nili A, Palsson BO, Walker GC, Collins JJ. A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. Cell 2019; 177:1649-1661.e9. [PMID: 31080069 PMCID: PMC6545570 DOI: 10.1016/j.cell.2019.04.016] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/19/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Current machine learning techniques enable robust association of biological signals with measured phenotypes, but these approaches are incapable of identifying causal relationships. Here, we develop an integrated "white-box" biochemical screening, network modeling, and machine learning approach for revealing causal mechanisms and apply this approach to understanding antibiotic efficacy. We counter-screen diverse metabolites against bactericidal antibiotics in Escherichia coli and simulate their corresponding metabolic states using a genome-scale metabolic network model. Regression of the measured screening data on model simulations reveals that purine biosynthesis participates in antibiotic lethality, which we validate experimentally. We show that antibiotic-induced adenine limitation increases ATP demand, which elevates central carbon metabolism activity and oxygen consumption, enhancing the killing effects of antibiotics. This work demonstrates how prospective network modeling can couple with machine learning to identify complex causal mechanisms underlying drug efficacy.
Collapse
Affiliation(s)
- Jason H Yang
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah N Wright
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Meagan Hamblin
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Miguel A Alcantar
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lars Schrübbers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Allison J Lopatkin
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sangeeta Satish
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Amir Nili
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James J Collins
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Lee JS, Wang RX, Alexeev EE, Lanis JM, Battista KD, Glover LE, Colgan SP. Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem 2018; 293:6039-6051. [PMID: 29487135 PMCID: PMC5912467 DOI: 10.1074/jbc.ra117.000269] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Indexed: 12/15/2022] Open
Abstract
Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function.
Collapse
Affiliation(s)
- J Scott Lee
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Ruth X Wang
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Erica E Alexeev
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Jordi M Lanis
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Kayla D Battista
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| | - Louise E Glover
- the School of Medicine, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- From the Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado 80045 and
| |
Collapse
|
14
|
Tkachenko AG. Stress Responses of Bacterial Cells as Mechanism of Development of Antibiotic Tolerance (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818020114] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mochaba F, O'Connor-Cox ESC, Axcell BC. Practical Procedures to Measure Yeast Viability and Vitality Prior to Pitching. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-57-0001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- F. Mochaba
- The South African Breweries Beer Division, Brewing Research and Development Department, P.O. Box 782178, Sandton, 2146, South Africa
| | - E. S. C. O'Connor-Cox
- The South African Breweries Beer Division, Brewing Research and Development Department, P.O. Box 782178, Sandton, 2146, South Africa
| | - B. C. Axcell
- The South African Breweries Beer Division, Brewing Research and Development Department, P.O. Box 782178, Sandton, 2146, South Africa
| |
Collapse
|
16
|
Abstract
This review focuses on more recent studies concerning the systems biology of branched-chain amino acid biosynthesis, that is, the pathway-specific and global metabolic and genetic regulatory networks that enable the cell to adjust branched-chain amino acid synthesis rates to changing nutritional and environmental conditions. It begins with an overview of the enzymatic steps and metabolic regulatory mechanisms of the pathways and descriptions of the genetic regulatory mechanisms of the individual operons of the isoleucine-leucine-valine (ilv) regulon. This is followed by more-detailed discussions of recent evidence that global control mechanisms that coordinate the expression of the operons of this regulon with one another and the growth conditions of the cell are mediated by changes in DNA supercoiling that occur in response to changes in cellular energy charge levels that, in turn, are modulated by nutrient and environmental signals. Since the parallel pathways for isoleucine and valine biosynthesis are catalyzed by a single set of enzymes, and because the AHAS-catalyzed reaction is the first step specific for valine biosynthesis but the second step of isoleucine biosynthesis, valine inhibition of a single enzyme for this enzymatic step might compromise the cell for isoleucine or result in the accumulation of toxic intermediates. The operon-specific regulatory mechanisms of the operons of the ilv regulon are discussed in the review followed by a consideration and brief review of global regulatory proteins such as integration host factor (IHF), Lrp, and CAP (CRP) that affect the expression of these operons.
Collapse
|
17
|
Bains W, Xiao Y, Yu C. Prediction of the maximum temperature for life based on the stability of metabolites to decomposition in water. Life (Basel) 2015; 5:1054-100. [PMID: 25821932 PMCID: PMC4500130 DOI: 10.3390/life5021054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/01/2022] Open
Abstract
The components of life must survive in a cell long enough to perform their function in that cell. Because the rate of attack by water increases with temperature, we can, in principle, predict a maximum temperature above which an active terrestrial metabolism cannot function by analysis of the decomposition rates of the components of life, and comparison of those rates with the metabolites' minimum metabolic half-lives. The present study is a first step in this direction, providing an analytical framework and method, and analyzing the stability of 63 small molecule metabolites based on literature data. Assuming that attack by water follows a first order rate equation, we extracted decomposition rate constants from literature data and estimated their statistical reliability. The resulting rate equations were then used to give a measure of confidence in the half-life of the metabolite concerned at different temperatures. There is little reliable data on metabolite decomposition or hydrolysis rates in the literature, the data is mostly confined to a small number of classes of chemicals, and the data available are sometimes mutually contradictory because of varying reaction conditions. However, a preliminary analysis suggests that terrestrial biochemistry is limited to environments below ~150-180 °C. We comment briefly on why pressure is likely to have a small effect on this.
Collapse
Affiliation(s)
- William Bains
- Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139, USA.
| | - Yao Xiao
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.
| | - Changyong Yu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.
| |
Collapse
|
18
|
Dissection of the PHO pathway in Schizosaccharomyces pombe using epistasis and the alternate repressor adenine. Curr Genet 2014; 61:175-83. [DOI: 10.1007/s00294-014-0466-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 12/27/2022]
|
19
|
De la Fuente IM, Cortés JM, Valero E, Desroches M, Rodrigues S, Malaina I, Martínez L. On the dynamics of the adenylate energy system: homeorhesis vs homeostasis. PLoS One 2014; 9:e108676. [PMID: 25303477 PMCID: PMC4193753 DOI: 10.1371/journal.pone.0108676] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022] Open
Abstract
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Granada, Spain
- Department of Mathematics, University of the Basque Country UPV/EHU, Leioa, Spain
- Unit of Biophysics (CSIC, UPV/EHU), and Department of Biochemistry and Molecular Biology University of the Basque Country, Bilbao, Spain
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Jesús M. Cortés
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
- Ikerbasque: The Basque Foundation for Science, Bilbao, Basque Country, Spain
| | - Edelmira Valero
- Department of Physical Chemistry, School of Industrial Engineering, University of Castilla-La Mancha, Albacete, Spain
| | | | - Serafim Rodrigues
- School of Computing and Mathematics, University of Plymouth, Plymouth, United Kingdom
| | - Iker Malaina
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
- Department of Physiology, University of the Basque Country UPV/EHU, Bilbao, Spain
| | - Luis Martínez
- Department of Mathematics, University of the Basque Country UPV/EHU, Leioa, Spain
- Biocruces Health Research Institute, Hospital Universitario de Cruces, Barakaldo, Spain
| |
Collapse
|
20
|
Zeth K, Fokina O, Forchhammer K. Structural basis and target-specific modulation of ADP sensing by the Synechococcus elongatus PII signaling protein. J Biol Chem 2014; 289:8960-72. [PMID: 24519945 DOI: 10.1074/jbc.m113.536557] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII signaling proteins comprise one of the most versatile signaling devices in nature and have a highly conserved structure. In cyanobacteria, PipX and N-acetyl-L-glutamate kinase are receptors of PII signaling, and these interactions are modulated by ADP, ATP, and 2-oxoglutarate. These effector molecules bind interdependently to three anti-cooperative binding sites on the trimeric PII protein and thereby affect its structure. Here we used the PII protein from Synechococcus elongatus PCC 7942 to reveal the structural basis of anti-cooperative ADP binding. Furthermore, we clarified the mutual influence of PII-receptor interaction and sensing of the ATP/ADP ratio. The crystal structures of two forms of trimeric PII, one with one ADP bound and the other with all three ADP-binding sites occupied, revealed significant differences in the ADP binding mode: at one site (S1) ADP is tightly bound through side-chain and main-chain interactions, whereas at the other two sites (S2 and S3) the ADP molecules are only bound by main-chain interactions. In the presence of the PII-receptor PipX, the affinity of ADP to the first binding site S1 strongly increases, whereas the affinity for ATP decreases due to PipX favoring the S1 conformation of PII-ADP. In consequence, the PII-PipX interaction is highly sensitive to subtle fluctuations in the ATP/ADP ratio. By contrast, the PII-N-acetyl-L-glutamate kinase interaction, which is negatively affected by ADP, is insensitive to these fluctuations. Modulation of the metabolite-sensing properties of PII by its receptors allows PII to differentially perceive signals in a target-specific manner and to perform multitasking signal transduction.
Collapse
Affiliation(s)
- Kornelius Zeth
- From the Max Planck Institute for Developmental Biology, Department of Protein Evolution, Spemannstrasse 35, 72076 Tübingen, Germany and
| | | | | |
Collapse
|
21
|
Matsushika A, Nagashima A, Goshima T, Hoshino T. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS One 2013; 8:e69005. [PMID: 23874849 PMCID: PMC3706439 DOI: 10.1371/journal.pone.0069005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
In the present study, comprehensive, quantitative metabolome analysis was carried out on the recombinant glucose/xylose-cofermenting S. cerevisiae strain MA-R4 during fermentation with different carbon sources, including glucose, xylose, or glucose/xylose mixtures. Capillary electrophoresis time-of-flight mass spectrometry was used to determine the intracellular pools of metabolites from the central carbon pathways, energy metabolism pathways, and the levels of twenty amino acids. When xylose instead of glucose was metabolized by MA-R4, glycolytic metabolites including 3- phosphoglycerate, 2- phosphoglycerate, phosphoenolpyruvate, and pyruvate were dramatically reduced, while conversely, most pentose phosphate pathway metabolites such as sedoheptulose 7- phosphate and ribulose 5-phosphate were greatly increased. These results suggest that the low metabolic activity of glycolysis and the pool of pentose phosphate pathway intermediates are potential limiting factors in xylose utilization. It was further demonstrated that during xylose fermentation, about half of the twenty amino acids declined, and the adenylate/guanylate energy charge was impacted due to markedly decreased adenosine triphosphate/adenosine monophosphate and guanosine triphosphate/guanosine monophosphate ratios, implying that the fermentation of xylose leads to an inefficient metabolic state where the biosynthetic capabilities and energy balance are severely impaired. In addition, fermentation with xylose alone drastically increased the level of citrate in the tricarboxylic acid cycle and increased the aromatic amino acids tryptophan and tyrosine, strongly supporting the view that carbon starvation was induced. Interestingly, fermentation with xylose alone also increased the synthesis of the polyamine spermidine and its precursor S-adenosylmethionine. Thus, differences in carbon substrates, including glucose and xylose in the fermentation medium, strongly influenced the dynamic metabolism of MA-R4. These results provide a metabolic explanation for the low ethanol productivity on xylose compared to glucose.
Collapse
Affiliation(s)
- Akinori Matsushika
- Biomass Refinery Research Center, National Institute of Advanced Industrial Science and Technology, Hiroshima, Japan.
| | | | | | | |
Collapse
|
22
|
Xu YF, Létisse F, Absalan F, Lu W, Kuznetsova E, Brown G, Caudy AA, Yakunin AF, Broach JR, Rabinowitz JD. Nucleotide degradation and ribose salvage in yeast. Mol Syst Biol 2013; 9:665. [PMID: 23670538 PMCID: PMC4039369 DOI: 10.1038/msb.2013.21] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/08/2013] [Indexed: 12/30/2022] Open
Abstract
Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Willetts JC, Seward R, Dinsdale MG, Suller MTE, Hill B, Lloyd D. VITALITY OF CIDER YEAST GROWN MICRO-AEROBICALLY WITH ADDED ETHANOL, BUTAN-J-OL ORISO-BUTANOL. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1997.tb00938.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Seward R, Willetts JC, Dinsdale MG, Lloyd D. THE EFFECTS OF ETHANOL, HEXAN-1-OL, AND 2-PHENYLETHANOL ON CIDER YEAST GROWTH, VIABILITY, AND ENERGY STATUS; SYNERGISTIC INHIBITION. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/j.2050-0416.1996.tb00928.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre. ISME JOURNAL 2012; 7:603-14. [PMID: 23096403 DOI: 10.1038/ismej.2012.126] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic, that is, potentially enhance uptake of scarce organic molecules using the available solar radiation to energise appropriate transport systems. Here, we assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions using (33)P-ATP, (3)H-ATP and (35)S-methionine tracers. Light-stimulated uptake of these substrates was assessed in two dominant bacterioplankton groups discriminated by flow cytometric sorting of tracer-labelled cells and identified using catalysed reporter deposition fluorescence in situ hybridisation. One group of cells, encompassing 48% of all bacterioplankton, were identified as members of the SAR11 clade, whereas the other group (24% of all bacterioplankton) was Prochlorococcus. When exposed to light, SAR11 cells took 31% more ATP and 32% more methionine, whereas the Prochlorococcus cells took 33% more ATP and 34% more methionine. Other bacterioplankton did not demonstrate light stimulation. Thus, the SAR11 and Prochlorococcus groups, with distinctly different light-harvesting mechanisms, used light equally to enhance, by approximately one-third, the uptake of different types of organic molecules. Our findings indicate the significance of light-driven uptake of essential organic nutrients by the dominant bacterioplankton groups in the surface waters of one of the less productive, vast regions of the world's oceans-the oligotrophic North Atlantic subtropical gyre.
Collapse
|
26
|
Lee HY, Kim JM, Byun MJ, Kang KS, Kim TH, Hong KC, Lee KT. Structure and polymorphisms of the 5′ regulatory region of porcine adenylate kinase 3-like 1 gene and effect on trait of meat quality. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0091-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Holert J, Hahnke S, Cypionka H. Influence of light and anoxia on chemiosmotic energy conservation in Dinoroseobacter shibae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:136-141. [PMID: 21461053 PMCID: PMC3064978 DOI: 10.1111/j.1758-2229.2010.00199.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 06/07/2010] [Indexed: 05/30/2023]
Abstract
In the present study we have investigated the influence of light and anoxia on the energetic state of the aerobic anoxygenic phototroph (AAP) Dinoroseobacter shibae. Respiration, chemiosmotic proton translocation and the adenylate energy charge (AEC) of the cells were measured comparing light versus dark and oxic versus anoxic conditions. Light caused a decrease of the respiration rates of washed cells. This might be a substitution rather than a direct inhibitory effect, because both photosynthesis and respiration contribute to the proton-motive force. As known from other AAPs, light alone did not induce proton translocation if applied to anoxic cell suspensions. However, additions of small oxygen pulses to anoxic cell suspensions caused two times more proton translocation in the light than in the dark. The AEC of the cells was measured by means of a modified luciferin-luciferase method. Growing cells of D. shibae kept an AEC of 0.93, indicating that the adenylate pool was highly phosphorylated. After harvesting and storing the cells under anoxic conditions for 2 h, the AEC dropped to 0.12. However, the cells remained reactive. Upon addition of oxygen, the AEC increased to its original value within 40 s by the formation of about 12 mM of intracellular ATP. There were no differences whether this recovery experiment was carried out in the dark or in the light. We conclude that D. shibae is able to change its energetic state not only in response to the light regime but also during oxic-anoxic transitions. Both responses appear suited to save in situ organic substrates and endogenous electron donors, thus enhancing the role of photosynthetic energy conservation.
Collapse
Affiliation(s)
| | | | - Heribert Cypionka
- *For correspondence. E-mail: ; Tel. (+49) 441 798 5360; Fax (+49) 441 798 3404
| |
Collapse
|
28
|
Tranvik LJ, Höfle MG. Bacterial growth in mixed cultures on dissolved organic carbon from humic and clear waters. Appl Environ Microbiol 2010; 53:482-8. [PMID: 16347296 PMCID: PMC203692 DOI: 10.1128/aem.53.3.482-488.1987] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between bacterial assemblages and dissolved organic carbon (DOC) from different sources were investigated. Mixed batch cultures were set up with water from a humic and a clear-water lake by a 1:20 dilution of the bacterial assemblage (1.0 mum of prefiltered lake water) with natural medium (sterile filtered lake water) in all four possible combinations of the two waters and their bacterial assemblages. Bacterial numbers and biomass, DOC, thymidine incorporation, ATP, and uptake of glucose and phenol were followed in these cultures. Growth curves and exponential growth rates were similar in all cultures, regardless of inoculum or medium. However, bacterial biomass produced was double in cultures based on water from the humic lake. The fraction of DOC consumed by heterotrophic bacteria during growth was in the same range, 15 to 22% of the total DOC pool, in all cultures. Bacterial growth efficiency, calculated from bacterial biomass produced and DOC consumed, was in the order of 20%. Glucose uptake reached a peak during exponential growth in all cultures. Phenol uptake was insignificant in the cultures based on the clear-water medium, but occurred in humic medium cultures after exponential growth. The similarity in the carbon budgets of all cultures indicated that the source of the bacterial assemblage did not have a significant effect on the overall carbon flux. However, fluxes of specific organic compounds differed, as reflected by glucose and phenol uptake, depending on the nature of the DOC and the bacterial assemblage.
Collapse
Affiliation(s)
- L J Tranvik
- Max-Planck-Institut für Limnologie, Abteilung Mikrobenökologie, D-2320 Plön, Federal Republic of Germany
| | | |
Collapse
|
29
|
Karl DM, Bossard P. Measurement of Microbial Nucleic Acid Synthesis and Specific Growth Rate by PO(4) and [H]Adenine: Field Comparison. Appl Environ Microbiol 2010; 50:706-9. [PMID: 16346891 PMCID: PMC238696 DOI: 10.1128/aem.50.3.706-709.1985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We compared two radiotracer methods for measuring total microbial nucleic acid synthesis and specific growth rate. Using a sample from an oligotrophic environment, we found that there was excellent agreement between the two methods.
Collapse
Affiliation(s)
- D M Karl
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822
| | | |
Collapse
|
30
|
Winn CD, Karl DM. Laboratory calibrations of the [h]adenine technique for measuring rates of RNA and DNA synthesis in marine microorganisms. Appl Environ Microbiol 2010; 47:835-42. [PMID: 16346522 PMCID: PMC239773 DOI: 10.1128/aem.47.4.835-842.1984] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleic acid synthesis rates of several marine phytoplankton and bacteria grown in chemostat and batch cultures were measured by using [H]adenine. The [H]adenine synthesis rates showed excellent agreement with the known rates of synthesis estimated from chemical RNA and DNA data. Under certain conditions, RNA turnover and ATP pool compartmentalization produce inaccuracies in synthesis measurements made with [H]adenine. However, accurate measurements of the rates of microbial RNA and DNA synthesis can be made in any environmental situation provided a few simple precautions are observed. First, time course experiments are recommended. Second, experiments should be conducted for periods long enough to avoid problems arising from disequilibria of internal ATP pools. Finally, exogenous [H]adenine should remain in the medium over the length of the time course.
Collapse
Affiliation(s)
- C D Winn
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii 96822
| | | |
Collapse
|
31
|
Walther T, Novo M, Rössger K, Létisse F, Loret MO, Portais JC, François JM. Control of ATP homeostasis during the respiro-fermentative transition in yeast. Mol Syst Biol 2010; 6:344. [PMID: 20087341 PMCID: PMC2824524 DOI: 10.1038/msb.2009.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 11/07/2009] [Indexed: 11/09/2022] Open
Abstract
Respiring Saccharomyces cerevisiae cells respond to a sudden increase in glucose concentration by a pronounced drop of their adenine nucleotide content ([ATP]+[ADP]+[AMP]=[AXP]). The unknown fate of 'lost' AXP nucleotides represented a long-standing problem for the understanding of the yeast's physiological response to changing growth conditions. Transient accumulation of the purine salvage pathway intermediate, inosine, accounted for the apparent loss of adenine nucleotides. Conversion of AXPs into inosine was facilitated by AMP deaminase, Amd1, and IMP-specific 5'-nucleotidase, Isn1. Inosine recycling into the AXP pool was facilitated by purine nucleoside phosphorylase, Pnp1, and joint action of the phosphoribosyltransferases, Hpt1 and Xpt1. Analysis of changes in 24 intracellular metabolite pools during the respiro-fermentative growth transition in wild-type, amd1, isn1, and pnp1 strains revealed that only the amd1 mutant exhibited significant deviations from the wild-type behavior. Moreover, mutants that were blocked in inosine production exhibited delayed growth acceleration after glucose addition. It is proposed that interconversion of adenine nucleotides and inosine facilitates rapid and energy-cost efficient adaptation of the AXP pool size to changing environmental conditions.
Collapse
Affiliation(s)
- Thomas Walther
- Université de Toulouse, INSA, UPS, INP, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang NS, Stephanopoulos GN, Erickson LE. Computer Applications to Fermentation Processes. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388558409084661] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Guimarães PMR, Londesborough J. The adenylate energy charge and specific fermentation rate of brewer's yeasts fermenting high- and very high-gravity worts. Yeast 2008; 25:47-58. [PMID: 17944006 DOI: 10.1002/yea.1556] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Intracellular and extracellular ATP, ADP and AMP (i.e. 5'-AMP) were measured during fermentations of high- (15 degrees P) and very high-gravity (VHG, 25 degrees P) worts by two lager yeasts. Little extracellular ATP and ADP but substantial amounts of extracellular AMP were found. Extracellular AMP increased during fermentation and reached higher values (3 microM) in 25 degrees P than 15 degrees P worts (1 microM). More AMP (13 microM at 25 degrees P) was released during fermentation with industrially cropped yeast than with the same strain grown in the laboratory. ATP was the dominant intracellular adenine nucleotide and the adenylate energy charge (EC = ([ATP] + 0.5*[ADP])/([ATP] + [ADP] + [AMP])) remained high (>0.8) until residual sugar concentrations were low and specific rates of ethanol production were < 5% of the maximum values in early fermentation. The high ethanol concentrations (>85 g/l) reached in VHG fermentations did not decrease the EC below values that permit synthesis of new proteins. The results suggest that, during wort fermentations, the ethanol tolerance of brewer's strains is high so long as fermentation continues. Under these conditions, maintenance of the EC seems to depend upon active transport of alpha-glucosides, which in turn depends upon maintenance of the EC. Therefore, the collapse of the EC and cell viability when residual alpha-glucoside concentrations no longer support adequate rates of fermentation can be very abrupt. This emphasizes the importance of early cropping of yeast for recycling.
Collapse
|
34
|
WOLSTRUP J, JENSEN K. Adenosine Triphosphate and Deoxyribonucleic Acid in the Alimentary Tract of Cattle Fed Different Nitrogen Sources. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1978.tb04197.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Pimkin M, Markham GD. The CBS subdomain of inosine 5'-monophosphate dehydrogenase regulates purine nucleotide turnover. Mol Microbiol 2008; 68:342-59. [PMID: 18312263 DOI: 10.1111/j.1365-2958.2008.06153.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyses the rate-limiting step in guanine nucleotide biosynthesis. IMPDH has an evolutionary conserved CBS subdomain of unknown function. The subdomain can be deleted without impairing the in vitro IMPDH catalytic activity and is the site for mutations associated with human retinitis pigmentosa. A guanine-prototrophic Escherichia coli strain, MP101, was constructed with the subdomain sequence deleted from the chromosomal gene for IMPDH. The ATP content was substantially elevated in MP101 whereas the GTP content was slighty reduced. The activities of IMPDH, adenylosuccinate synthetase and GMP reductase were two to threefold lower in MP101 crude extracts compared with the BW25113 wild-type strain. Guanine induced a threefold reduction in the MP101 ATP pool and a fourfold increase in the GTP pool within 10 min of addition to growing cells; this response does not result from the reduced IMPDH activity or starvation for guanylates. In vivo kinetic analysis using 14-C tracers and 33-P pulse-chasing revealed mutation-associated changes in purine nucleotide fluxes and turnover rates. We conclude that the CBS subdomain of IMPDH may coordinate the activities of the enzymes of purine nucleotide metabolism and is essential for maintaining the normal ATP and GTP pool sizes in E. coli.
Collapse
Affiliation(s)
- Maxim Pimkin
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
36
|
Miranda K, de Souza W, Plattner H, Hentschel J, Kawazoe U, Fang J, Moreno SNJ. Acidocalcisomes in Apicomplexan parasites. Exp Parasitol 2008; 118:2-9. [PMID: 17761167 DOI: 10.1016/j.exppara.2007.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 07/19/2007] [Accepted: 07/21/2007] [Indexed: 10/23/2022]
Abstract
Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to man. They posses an acidic matrix that contains several cations bound to phosphates, mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. The calcium uptake occurs through a Ca2+/H+ counter transporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. In this paper, we review the structural, biochemical and physiological aspects of acidocalcisomes in Apicomplexan parasites and discuss their functional roles in the maintenance of intracellular ion homeostasis.
Collapse
Affiliation(s)
- Kildare Miranda
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, 350 Paul D. Coverdell Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Cordier H, Mendes F, Vasconcelos I, François JM. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng 2007; 9:364-78. [PMID: 17500021 DOI: 10.1016/j.ymben.2007.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 01/15/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Towards a global objective to produce chemical derivatives by microbial processes, this work dealt with a metabolic engineering of the yeast Saccharomyces cerevisiae for glycerol production. To accomplish this goal, overexpression of GPD1 was introduced in a tpi1delta mutant defective in triose phosphate isomerase. This strategy alleviated the inositol-less phenotype of this mutant, by reducing the levels of dihydroxyacetone phosphate and glycerol-3-P, two potent inhibitors of myo-inositol synthase that catalyzes the formation of inositol-6-phosphate from glucose-6-phosphate. Further deletion of ADH1 and overexpression of ALD3, encoding, respectively, the major NAD+-dependent alcohol dehydrogenase and a cytosolic NAD+-dependent aldehyde dehydrogenase yielded a yeast strain able to produce 0.46 g glycerol (g glucose)(-1) at a maximal rate of 3.1 mmol (g dry mass)(-1) h(-1) in aerated batch cultures. At the metabolic level, this genetic strategy shifted the flux control coefficient of the pathway to the level of the glycerol efflux, with a consequent intracellular accumulation of glycerol that could be partially reduced by the overproduction of glycerol exporter encoded by FPS1. At the transcriptomic level, this metabolic reprogramming brought about the upregulation of genes encoding NAD+/NADP+ binding proteins, a partial derepression of genes coding for TCA cycle and respiratory enzymes, and a downregulation of genes implicated in protein biosynthesis and ribosome biogenesis. Altogether, these metabolic and molecular alterations stand for major hurdles that may represent potential targets for further optimizing glycerol production in yeast.
Collapse
Affiliation(s)
- Hélène Cordier
- Laboratoire de Biotechnologie et Bioprocédés, UMR-CNRS 5504 & INRA 792, Toulouse, France
| | | | | | | |
Collapse
|
38
|
Kresnowati MTAP, van Winden WA, Almering MJH, ten Pierick A, Ras C, Knijnenburg TA, Daran-Lapujade P, Pronk JT, Heijnen JJ, Daran JM. When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2006; 2:49. [PMID: 16969341 PMCID: PMC1681515 DOI: 10.1038/msb4100083] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 07/04/2006] [Indexed: 12/04/2022] Open
Abstract
Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships between the changes at these two levels. Transcriptome as well as metabolite changes reflected a major investment in two processes: adaptation from fully respiratory to respiro-fermentative metabolism and preparation for growth acceleration. At the metabolite level, a severe drop of the AXP pools directly after glucose addition was not accompanied by any of the other three NXP. To counterbalance this loss, purine biosynthesis and salvage pathways were transcriptionally upregulated in a concerted manner, reflecting a sudden increase of the purine demand. The short-term dynamics of the transcriptome revealed a remarkably fast decrease in the average half-life of downregulated genes. This acceleration of mRNA decay can be interpreted both as an additional nucleotide salvage pathway and an additional level of glucose-induced regulation of gene expression.
Collapse
Affiliation(s)
- M T A P Kresnowati
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - W A van Winden
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - M J H Almering
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
| | - A ten Pierick
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - C Ras
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - T A Knijnenburg
- Information and Communication Theory Group, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - P Daran-Lapujade
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
| | - J T Pronk
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
| | - J J Heijnen
- Department of Biotechnology, Bioprocess Technology Section, Delft University of Technology, Delft, The Netherlands
| | - J M Daran
- Department of Biotechnology, Industrial Microbiology Section, Delft University of Technology, Delft, The Netherlands
- Department of Biotechnology, Section of Industrial Microbiology, TU Delft, Industrial Microbiology, Julianalaan 67, Delft 2628BC, The Netherlands. Tel.: +31 152782412; Fax: +31 152782355; E-mail:
| |
Collapse
|
39
|
Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Haiss A, Kümmerer K. Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge micro-organisms. CHEMOSPHERE 2006; 62:294-302. [PMID: 16039694 DOI: 10.1016/j.chemosphere.2005.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 05/04/2005] [Accepted: 05/04/2005] [Indexed: 05/03/2023]
Abstract
Pharmaceuticals and contrast media have been detected in hospital effluents, sewage treatment plants, surface water, and ground water. Only little is known about their elimination during sewage treatment and effects of possible biotransformation products against bacteria. The modified Zahn-Wellens test (ZWT, OECD 302 B) and a test simulating biological sewage treatment (modified OECD 303 A test) were used to assess the biodegradability of the widely used ionic iodinated contrast agent diatrizoic acid (diatrizoate). Effects against sewage sludge bacteria were studied in the two test systems by monitoring the biomarkers quinones, polyamines, phospholipids and adenosine triphosphate. Diatrizoate was biotransformed into 2,4,6-triiodo-3,5-diamino-benzoic acid in the ZWT. 2,4,6-Triiodo-3,5-diamino-benzoic acid was stable under the test conditions of the ZWT. Diatrizoate was not eliminated in the OECD 303 A simulation test. It was not adsorbed by the sewage sludge. No effects of the test compound or its aerobic transformation products against the bacteria present in the sewage sludge were detected using phospholipids, quinones, polyamines, and adenosine triphosphate as biomarkers.
Collapse
Affiliation(s)
- Anette Haiss
- Institute of Environmental Medicine and Hospital Epidemiology, Hugstetter Strasse 55, D-79102 Freiburg, Germany
| | | |
Collapse
|
41
|
Abstract
The role of natural selection in the optimal design of organisms is controversial. Optimal forms, functions, or behaviors of organisms have long been claimed without knowledge of how genotype contributes to phenotype, delineation of design constraints, or reference to alternative designs. Moreover, arguments for optimal designs have been often based on models that were difficult, if not impossible, to test. Here, we begin to address these issues by developing and probing a kinetic model for the intracellular growth of bacteriophage Q beta in Escherichia coli. The model accounts for the energetic costs of all template-dependent polymerization reactions, in ATP equivalents, including RNA-dependent RNA elongation by the phage replicase and synthesis of all phage proteins by the translation machinery of the E. coli host cell. We found that translation dominated phage growth, requiring 85% of the total energy expenditure. Only 10% of the total energy was applied to activities other than the direct synthesis of progeny phage components, reflecting primarily the cost of making the negative-strand RNA template that is needed for replication of phage genomic RNA. Further, we defined an energy efficiency of phage growth and showed its direct relationship to the yield of phage progeny. Finally, we performed a sensitivity analysis and found that the growth of wild-type phage was optimized for progeny yield or energy efficiency, suggesting that phage Q beta has evolved to optimally utilize the finite resources of its host cells.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | |
Collapse
|
42
|
Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SNJ. Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol 2005; 3:251-61. [PMID: 15738951 DOI: 10.1038/nrmicro1097] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent work has shown that acidocalcisomes, which are electron-dense acidic organelles rich in calcium and polyphosphate, are the only organelles that have been conserved during evolution from prokaryotes to eukaryotes. Acidocalcisomes were first described in trypanosomatids and have been characterized in most detail in these species. Acidocalcisomes have been linked with several functions, including storage of cations and phosphorus, polyphosphate metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis and osmoregulation. Here, we review acidocalcisome ultrastructure, composition and function in different trypanosomatids and other organisms.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology and Center for Tropical and Global Emerging Diseases, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | |
Collapse
|
43
|
Schaechter M. Escherichia coli and Salmonella 2000: the View From Here. EcoSal Plus 2004; 1. [PMID: 26443369 DOI: 10.1128/ecosalplus.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Indexed: 06/05/2023]
Abstract
In 1995, an editorial in Science (267:1575) commented that predictions made some 25 years previously regarding "Biology and the Future of Man" were largely fulfilled but that "the most revolutionary and unexpected findings were not predicted." We would be glad to do as well! As we stated at the beginning, our work as editors of the Escherichia coli and Salmonella book did not endow us with special powers of prophecy but it does permit us to express our excitement for the future. In our opinion, E. coli and S. enterica will continue to play a central role in biological research. This is not because they are intrinsically more interesting than any other bacteria, as we believe that all bacteria are equally interesting. However, knowledge builds on knowledge, and it is here that these two species continue to have a large edge not only over other microorganisms but also, for some time to come, over all other forms of life. It is interesting in this connection that biotechnology, having made detours through other microorganisms, always seems to return to E. coli.
Collapse
|
44
|
Shimazu M, Vetcher L, Galazzo JL, Licari P, Santi DV. A sensitive and robust method for quantification of intracellular short-chain coenzyme A esters. Anal Biochem 2004; 328:51-9. [PMID: 15081907 DOI: 10.1016/j.ab.2004.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Indexed: 11/23/2022]
Abstract
A procedure for the analysis of short-chain intracellular coenzyme A (CoA) esters and adenine nucleotide pools in microbial cells is described. The simultaneous isolation of bacterial cells from media, quenching of their metabolism, and extraction of metabolites was accomplished by centrifugation of cells through a layer of silicone oil into a denser solution of trichloroacetic acid. The acid was neutralized by extraction into Freon containing tri-n-octylamine to provide a salt-free solution of cell metabolites. After high-performance liquid chromatography separation, CoA, CoA esters, and adenine-containing nucleotides were derivatized by postcolumn reaction with bromoacetaldehyde to form the fluorescent 1,N6-ethenoadenine adducts which were analyzed by a fluorescence detector at picomolar levels.
Collapse
Affiliation(s)
- Mark Shimazu
- Kosan Biosciences, Inc., 3832 Bay Center Place, Hayward, CA 94545, USA
| | | | | | | | | |
Collapse
|
45
|
King DA, Hannum DM, Qi JS, Hurst JK. HOCl-mediated cell death and metabolic dysfunction in the yeast Saccharomyces cerevisiae. Arch Biochem Biophys 2004; 423:170-81. [PMID: 14871479 DOI: 10.1016/j.abb.2003.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/09/2003] [Indexed: 10/26/2022]
Abstract
The nature of oxidative damage to Saccharomyces cerevisiae caused by levels of HOCl that inhibit cell replication was explored with the intent of identifying the loci of lethal lesions. Functions of cytosolic enzymes and organelles that are highly sensitive to inactivation by HOCl, including aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the mitochondrion, were only marginally affected by exposure of the yeast to levels of HOCl that completely inhibited colony formation. Loss of function in membrane-localized proteins, including the hexose transporters and PMA1 H(+)-ATPase, which is the primary proton pump located within the S. cerevisiae plasma membrane, was also marginal and K(+) leak rates to the extracellular medium increased only slowly with exposure to increasing amounts of HOCl, indicating that the plasma membrane retained its intrinsic impermeability to ions and metabolites. Adenylate phosphorylation levels in fermenting yeast declined in parallel with viability; however, yeast grown on respiratory substrates maintained near-normal phosphorylation levels at HOCl doses several-fold greater than that required for killing. This overall pattern of cellular response to HOCl differs markedly from that previously reported for bacteria, which appear to be killed by inhibition of plasma membrane proteins involved in energy transduction. The absence of significant loss of function in critical oxidant-sensitive cellular components and retention of ATP-synthesizing capabilities in respiring yeast cells exposed to lethal levels of HOCl suggests that toxicity in this case may arise by programmed cell death.
Collapse
Affiliation(s)
- David A King
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | | | | | | |
Collapse
|
46
|
Chohnan S, Takamura Y. Malonate Decarboxylase in Bacteria and Its Application for Determination of Intracellular Acyl-CoA Thioesters. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.179] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shigeru Chohnan
- Department of Bioresource Science, College of Agriculture, Ibaraki University
| | - Yoshichika Takamura
- Department of Bioresource Science, College of Agriculture, Ibaraki University
| |
Collapse
|
47
|
Abstract
Because the level of DNA superhelicity varies with the cellular energy charge, it can change rapidly in response to a wide variety of altered nutritional and environmental conditions. This is a global alteration, affecting the entire chromosome and the expression levels of all operons whose promoters are sensitive to superhelicity. In this way, the global pattern of gene expression may be dynamically tuned to changing needs of the cell under a wide variety of circumstances. In this article, we propose a model in which chromosomal superhelicity serves as a global regulator of gene expression in Escherichia coli, tuning expression patterns across multiple operons, regulons, and stimulons to suit the growth state of the cell. This model is illustrated by the DNA supercoiling-dependent mechanisms that coordinate basal expression levels of operons of the ilv regulon both with one another and with cellular growth conditions.
Collapse
Affiliation(s)
- G Wesley Hatfield
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
48
|
Manome I, Ikedo M, Saito Y, Ishii KK, Kaku M. Evaluation of a novel automated chemiluminescent assay system for antimicrobial susceptibility testing. J Clin Microbiol 2003; 41:279-84. [PMID: 12517861 PMCID: PMC149581 DOI: 10.1128/jcm.41.1.279-284.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The newly developed Rapid Lumi Eiken/IS60 (RL/IS60) system automatically determines MICs by detecting chemiluminescence produced in the reaction of a chemiluminescent probe and oxygen metabolites from living microorganisms. The present study evaluated this system for accuracy in antimicrobial susceptibility testing. Chemiluminescence intensities after 4 h of cultivation of clinically important strains were plotted against various concentrations of antimicrobial agents, which resulted in curves reflecting the levels of susceptibility. Sixty-percent inhibitory concentrations based on the susceptibility curves agreed with MICs determined by the reference microdilution method. When the MICs of antimicrobial agents for four quality control (QC) strains (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa) were determined by the RL/IS60 system, most (91.1%) of them were within the QC limits proposed by the National Committee for Clinical Laboratory Standards. The system was further assessed for a total of 162 clinical isolates, including E. coli, Citrobacter freundii, Enterobacter cloacae, Klebsiella pneumoniae, Serratia marcescens, Proteus mirabilis, Morganella morganii, P. aeruginosa, Haemophilus influenzae, S. aureus, coagulase-negative staphylococci, Enterococcus faecalis, Enterococcus faecium, and Streptococcus pneumoniae. Overall, there was 90.6% agreement between the RL/IS60 system and the reference microdilution method. Our results suggest that the RL/IS60 system provides rapid and reliable MICs of a variety of antimicrobial agents for clinical isolates as well as QC strains.
Collapse
|
49
|
Rodrigues CO, Ruiz FA, Rohloff P, Scott DA, Moreno SNJ. Characterization of isolated acidocalcisomes from Toxoplasma gondii tachyzoites reveals a novel pool of hydrolyzable polyphosphate. J Biol Chem 2002; 277:48650-6. [PMID: 12379647 DOI: 10.1074/jbc.m208990200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii tachyzoites were fractionated by modification of an iodixanol density gradient method previously used for acidocalcisome isolation from Trypanosoma cruzi epimastigotes. Fractions were characterized using electron microscopy, x-ray microanalysis, and enzymatic markers, and it was demonstrated that the heaviest (pellet) fraction contains electron-dense vacuoles rich in phosphorus, calcium, and magnesium, as found before for acidocalcisomes. Staining with 4',6-diamidino-2-phenylindole (DAPI) indicated that poly- phosphate (polyP) was preferentially localized in this fraction together with pyrophosphate (PP(i)). Using an enzyme-based method, millimolar levels (in terms of P(i) residues) of polyP chains of less than 50 residues long and micromolar levels in polyP chains of about 700-800 residues long were found to be preferentially localized in this fraction. The fraction also contained the pyrophosphatase and polyphosphatase activities characteristic of acidocalcisomes. Western blot analysis using antibodies against proteins from micronemes, dense granules, rhoptries, and plasma membrane showed that the acidocalcisomal fraction was not contaminated by these other organelles. T. gondii polyP levels rapidly decreased upon exposure of the parasites to a calcium ionophore (ionomycin), to an inhibitor of the V-H(+)-ATPase (bafilomycin A(1)), or to the alkalinizing agent NH(4)Cl. These changes were in parallel to an increase in intracellular Ca(2+) concentration, suggesting a close association between polyP hydrolysis and Ca(2+) release from the acidocalcisome. These results provide a useful method for the isolation and characterization of acidocalcisomes, showing that they are distinct from other previously recognized organelles present in T. gondii, and provide evidence for the role of polyP metabolism in response to cellular stress.
Collapse
Affiliation(s)
- Claudia O Rodrigues
- Laboratory of Molecular Parasitology, Department of Veterinary Pathobiology, University of Illinois at Urbana-Champaign, 61802, USA
| | | | | | | | | |
Collapse
|
50
|
Yamashoji S, Takeda M. Menadione-catalyzed luminol chemiluminescent assay for the viability of Escherichia coli ATCC 25922. Microbiol Immunol 2002; 45:737-41. [PMID: 11791666 DOI: 10.1111/j.1348-0421.2001.tb01309.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli ATCC 25922 produced O2- in the presence of menadione, and O2- -dependent luminol chemiluminescence intensity was proportional to colony-forming unit (CFU) in the exponential phase. CFU was determined by using a 96-well plate at a range of 3 X 10(3) to 8 x 10(7) CFU /well (0.1 ml) after a 10-min incubation with menadione, followed by chemiluminescent assay for 5 s. After a 4-hr incubation of E. coli (10(5) CFU/0.1 ml) with menadione and an antimicrobial agent inhibiting the synthesis of peptidoglycan, protein, and DNA, the inhibitory concentration (IC) of the antimicrobial agent determined by menadione-catalyzed luminol chemiluminescent assay was in good agreement with minimal inhibitory concentration (MIC) of the NCCLS (National Committee for Clinical Laboratory Standard) method requiring 18 hr. Menadione-catalyzed luminol chemiluminescent assay is expected to be useful for the rapid determination of cell viability under the conditions of various cell growths and stresses.
Collapse
Affiliation(s)
- S Yamashoji
- Nikken Biomedical Laboratory, Kuze-gun, Kyoto, Japan
| | | |
Collapse
|