1
|
Toro-Ascuy D, Cárdenas M, Vásquez-Martínez Y, Cortez-San Martín M. Rescue of Infectious Salmon Anemia Virus (ISAV) from Cloned cDNA. Methods Mol Biol 2024; 2733:87-99. [PMID: 38064028 DOI: 10.1007/978-1-0716-3533-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The piscine orthomyxovirus called infectious salmon anemia virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral, and mammalian genetic elements included in the pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Laboratory of Virology, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Matías Cárdenas
- Department of Population Health College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Yesseny Vásquez-Martínez
- Escuela de Medicina, Faculty of Health Sciences, University of Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Laboratory of Molecular Virology and Pathogens Control, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Talkhoncheh MS, Baudet A, Ek F, Subramaniam A, Kao YR, Miharada N, Karlsson C, Oburoglu L, Rydström A, Zemaitis K, Alattar AG, Rak J, Pietras K, Olsson R, Will B, Larsson J. Ciclopirox ethanolamine preserves the immature state of human HSCs by mediating intracellular iron content. Blood Adv 2023; 7:7407-7417. [PMID: 37487020 PMCID: PMC10758717 DOI: 10.1182/bloodadvances.2023009844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Culture conditions in which hematopoietic stem cells (HSCs) can be expanded for clinical benefit are highly sought after. To elucidate regulatory mechanisms governing the maintenance and propagation of human HSCs ex vivo, we screened libraries of annotated small molecules in human cord blood cells using an optimized assay for detection of functional HSCs during culture. We found that the antifungal agent ciclopirox ethanolamine (CPX) selectively supported immature CD34+CD90+ cells during culture and enhanced their long-term in vivo repopulation capacity. Purified HSCs treated with CPX showed a reduced cell division rate and an enrichment of HSC-specific gene expression patterns. Mechanistically, we found that the HSC stimulating effect of CPX was directly mediated by chelation of the intracellular iron pool, which in turn affected iron-dependent proteins and enzymes mediating cellular metabolism and respiration. Our findings unveil a significant impact of iron homeostasis in regulation of human HSCs, with important implications for both basic HSC biology and clinical hematology.
Collapse
Affiliation(s)
| | - Aurélie Baudet
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Yun-Ruei Kao
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Natsumi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Christine Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Leal Oburoglu
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristijonas Zemaitis
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Abdul Ghani Alattar
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Justyna Rak
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Medicon Village, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Fleischmann J, Rocha MA, Hauser PV, Gowda BS, Pilapil MGD. Exonuclease resistant 18S and 25S ribosomal RNA components in yeast are possibly newly transcribed by RNA polymerase II. BMC Mol Cell Biol 2020; 21:59. [PMID: 32738873 PMCID: PMC7395337 DOI: 10.1186/s12860-020-00303-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Background We have previously reported 18S and 25S ribosomal RNA molecules in Candida albicans resistant to processive 5′ → 3′ exonuclease, appearing as cells approached stationary growth phase. Initial analysis pointed to extra phosphate(s) at their 5′- end raising the possibility that they were newly transcribed. Here we report on additional experiments exploring this possibility and try to establish which of the RNA polymerases may be transcribing them. Results Oligo-ligation and primer extension again showed the presence of extra phosphate at the 5′-end of the reported processing sites for both 18S and 25S ribosomal RNA components. Inhibition of Pol I with BMH-21 increased the presence of the molecules. Quantitation with an Agilent Bioanalyzer showed that resistant 18S and 25S molecules are primarily produced in the nucleus. Utilizing an RNA cap specific antibody, a signal could be detected on these molecules via immunoblotting; such signal could be eliminated by decapping reaction. Both the cap specific antibody and eIF4E cap-binding protein, increased fold enrichment upon quantitative amplification. Antibodies specific for the RNA Polymerase II c-terminal domain and TFIIB initiator factor showed the presence of Pol II on DNA sequences for both 18S and 25S molecules in chromatin precipitation and qPCR assays. Rapamycin inhibition of TOR complex also resulted in an increase of resistant 18S and 25S molecules. Conclusions These data raise the possibility of a role for RNA Polymerase II in the production of 18S and 25S molecules and indicate that efforts for more direct proof may be worthwhile. If definitively proven it will establish an additional role for RNA Polymerase II in ribosomal production.
Collapse
Affiliation(s)
- Jacob Fleischmann
- Research Division, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA. .,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | - Miguel A Rocha
- Research Division, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
| | - Peter V Hauser
- Research Division, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA.,Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, California, USA
| | - Bhavani S Gowda
- Research Division, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
| | - Mary Grace D Pilapil
- Research Division, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA
| |
Collapse
|
4
|
Aguilar-Rojas A, Castellanos-Castro S, Matondo M, Gianetto QG, Varet H, Sismeiro O, Legendre R, Fernandes J, Hardy D, Coppée JY, Olivo-Marin JC, Guillen N. Insights into amebiasis using a human 3D-intestinal model. Cell Microbiol 2020; 22:e13203. [PMID: 32175652 DOI: 10.1111/cmi.13203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/27/2020] [Accepted: 03/04/2020] [Indexed: 12/15/2022]
Abstract
Entamoeba histolytica is the causative agent of amebiasis, an infectious disease targeting the intestine and the liver in humans. Two types of intestinal infection are caused by this parasite: silent infection, which occurs in the majority of cases, and invasive disease, which affects 10% of infected persons. To understand the intestinal pathogenic process, several in vitro models, such as cell cultures, human tissue explants or human intestine xenografts in mice, have been employed. Nevertheless, our knowledge on the early steps of amebic intestinal infection and the molecules involved during human-parasite interaction is scarce, in part due to limitations in the experimental settings. In the present work, we took advantage of tissue engineering approaches to build a three-dimensional (3D)-intestinal model that is able to replicate the general characteristics of the human colon. This system consists of an epithelial layer that develops tight and adherens junctions, a mucus layer and a lamina propria-like compartment made up of collagen containing macrophages and fibroblast. By means of microscopy imaging, omics assays and the evaluation of immune responses, we show a very dynamic interaction between E. histolytica and the 3D-intestinal model. Our data highlight the importance of several virulence markers occurring in patients or in experimental models, but they also demonstrate the involvement of under described molecules and regulatory factors in the amoebic invasive process.
Collapse
Affiliation(s)
- Arturo Aguilar-Rojas
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Medicina Reproductiva, Ciudad de México, Mexico
| | - Silvia Castellanos-Castro
- Institut Pasteur, Bioimage Analysis Unit, Paris, France.,Universidad Autónoma de la Ciudad de México, Colegio de Ciencias y Humanidades, Ciudad de México, Mexico
| | - Mariette Matondo
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Plateforme Protéomique, Unité de Spectrométrie de Masse pour la Biologie (MSBio), Centrede Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - Rachel Legendre
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR3756 IP CNRS), Paris, France
| | - Julien Fernandes
- Institut Pasteur, UTechSPBI, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | - David Hardy
- Institut Pasteur, Experimental Neuropathology Unit, Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et EpiGenome, Biomics, Centre de Ressources et Recherches Technologiques (C2RT), Paris, France
| | | | - Nancy Guillen
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
5
|
Abstract
The piscine Orthomyxovirus called Infectious Salmon Anemia Virus (ISAV) is one of the most important emerging pathogens affecting the salmon industry worldwide. The first reverse genetics system for ISAV, which allows the generation of recombinant ISA virus (rISAV), is an important tool for the characterization and study of this fish virus. The plasmid-based reverse genetics system for ISAV includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). The salmon, viral and mammalian genetic elements included in pSS-URG vectors allow the expression of the eight viral RNA segments. In addition to four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex, the eight pSS-URG vectors allowed the generation of infectious rISAV in salmon cells.
Collapse
Affiliation(s)
- Daniela Toro-Ascuy
- Laboratory of Molecular Virology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Laboratory of Molecular Virology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| |
Collapse
|
6
|
Development of a reverse genetic system for infectious salmon anemia virus: rescue of recombinant fluorescent virus by using salmon internal transcribed spacer region 1 as a novel promoter. Appl Environ Microbiol 2016; 81:1210-24. [PMID: 25480750 DOI: 10.1128/aem.03153-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Infectious salmon anemia (ISA) is a serious disease of marine-farmed Atlantic salmon (Salmo salar) caused by ISA virus (ISAV), belonging to the genus Isavirus, family Orthomyxoviridae. There is an urgent need to understand the virulence factors and pathogenic mechanisms of ISAV and to develop new vaccine approaches. Using a recombinant molecular biology approach, we report the development of a plasmid-based reverse genetic system for ISAV, which includes the use of a novel fish promoter, the Atlantic salmon internal transcribed spacer region 1 (ITS-1). Salmon cells cotransfected with pSS-URG-based vectors expressing the eight viral RNA segments and four cytomegalovirus (CMV)-based vectors that express the four proteins of the ISAV ribonucleoprotein complex allowed the generation of infectious recombinant ISAV (rISAV). We generated three recombinant viruses, wild-type rISAV(901_09) and rISAVr(S6-NotI-HPR) containing a NotI restriction site and rISAV(S6/EGFP-HPR) harboring the open reading frame of enhanced green fluorescent protein (EGFP), both within the highly polymorphic region (HPR) of segment 6. All rescued viruses showed replication activity and cytopathic effect in Atlantic salmon kidney-infected cells. The fluorescent recombinant viruses also showed a characteristic cytopathic effect in salmon cells, and the viruses replicated to a titer of 6.5105 PFU/ml,similar to that of the wild-type virus. This novel reverse genetics system offers a powerful tool to study the molecular biology of ISAV and to develop a new generation of ISAV vaccines to prevent and mitigate ISAV infection, which has had a profound effect on the salmon industry.
Collapse
|
7
|
Nguyen LXT, Raval A, Garcia JS, Mitchell BS. Regulation of Ribosomal Gene Expression in Cancer. J Cell Physiol 2015; 230:1181-8. [DOI: 10.1002/jcp.24854] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Le Xuan Truong Nguyen
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Aparna Raval
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Jacqueline S. Garcia
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| | - Beverly S. Mitchell
- Departments of Medicine and Chemical and Systems Biology; Stanford Cancer Institute; Stanford University School of Medicine; Stanford California
| |
Collapse
|
8
|
Rothblum K, Hu Q, Penrod Y, Rothblum LI. Selective inhibition of rDNA transcription by a small-molecule peptide that targets the interface between RNA polymerase I and Rrn3. Mol Cancer Res 2014; 12:1586-96. [PMID: 25033839 DOI: 10.1158/1541-7786.mcr-14-0229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
UNLABELLED The interface between the polymerase I-associated factor Rrn3 and the 43-kDa subunit of RNA polymerase I is essential to the recruitment of Pol I to the preinitiation complex on the rDNA promoter. In silico analysis identified an evolutionarily conserved 22 amino acid peptide within rpa43 that is both necessary and sufficient to mediate the interaction between rpa43 and Rrn3. This peptide inhibited rDNA transcription in vitro, while a control peptide did not. To determine the effect of the peptide in cultured cells, the peptide was coupled to the HIV TAT peptide to facilitate transduction into cells. The wild-type peptide, but not control peptides, inhibited Pol I transcription and cell division. In addition, the peptide induced cell death, consistent with other observations that "nucleolar stress" results in the death of tumor cells. The 22mer is a small-molecule inhibitor of rDNA transcription that is specific for the interaction between Rrn3 and rpa43, as such it represents an original way to interfere with cell growth. IMPLICATIONS These results demonstrate a potentially novel pharmaceutical target for the therapeutic treatment of cancer cells.
Collapse
Affiliation(s)
- Katrina Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Qiyue Hu
- South Cove Community Health Care Center, Quincy, Massachusetts
| | - Yvonne Penrod
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma
| | - Lawrence I Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma.
| |
Collapse
|
9
|
Colis L, Ernst G, Sanders S, Liu H, Sirajuddin P, Peltonen K, DePasquale M, Barrow JC, Laiho M. Design, synthesis, and structure-activity relationships of pyridoquinazolinecarboxamides as RNA polymerase I inhibitors. J Med Chem 2014; 57:4950-61. [PMID: 24847734 PMCID: PMC4059246 DOI: 10.1021/jm5004842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
RNA polymerase I (Pol I) is a dedicated
polymerase that transcribes
the 45S ribosomal (r) RNA precursor. The 45S rRNA precursor is subsequently
processed into the mature 5.8S, 18S, and 28S rRNAs and assembled into
ribosomes in the nucleolus. Pol I activity is commonly deregulated
in human cancers. On the basis of the discovery of lead molecule BMH-21,
a series of pyridoquinazolinecarboxamides have been evaluated
as inhibitors of Pol I and activators of the destruction of RPA194,
the Pol I large catalytic subunit protein. Structure–activity
relationships in assays of nucleolar stress and cell viability demonstrate
key pharmacophores and their physicochemical properties required for
potent activation of Pol I stress and cytotoxicity. This work identifies
a set of bioactive compounds that potently cause RPA194 degradation
that function in a tightly constrained chemical space. This work has
yielded novel derivatives that contribute to the development of Pol
I inhibitory cancer therapeutic strategies.
Collapse
Affiliation(s)
- Laureen Colis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine , 1550 Orleans Street, Baltimore, Maryland 21287, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Peltonen K, Colis L, Liu H, Trivedi R, Moubarek MS, Moore HM, Bai B, Rudek MA, Bieberich CJ, Laiho M. A targeting modality for destruction of RNA polymerase I that possesses anticancer activity. Cancer Cell 2014; 25:77-90. [PMID: 24434211 PMCID: PMC3930145 DOI: 10.1016/j.ccr.2013.12.009] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
We define the activity and mechanisms of action of a small molecule lead compound for cancer targeting. We show that the compound, BMH-21, has wide and potent antitumorigenic activity across NCI60 cancer cell lines and represses tumor growth in vivo. BMH-21 binds GC-rich sequences, which are present at a high frequency in ribosomal DNA genes, and potently and rapidly represses RNA polymerase I (Pol I) transcription. Strikingly, we find that BMH-21 causes proteasome-dependent destruction of RPA194, the large catalytic subunit protein of Pol I holocomplex, and this correlates with cancer cell killing. Our results show that Pol I activity is under proteasome-mediated control, which reveals an unexpected therapeutic opportunity.
Collapse
Affiliation(s)
- Karita Peltonen
- Molecular Cancer Biology Program and Centre for Drug Research, University of Helsinki, Helsinki 00014, Finland
| | - Laureen Colis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Hester Liu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rishi Trivedi
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael S Moubarek
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Henna M Moore
- Molecular Cancer Biology Program and Centre for Drug Research, University of Helsinki, Helsinki 00014, Finland
| | - Baoyan Bai
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michelle A Rudek
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Marikki Laiho
- Molecular Cancer Biology Program and Centre for Drug Research, University of Helsinki, Helsinki 00014, Finland; Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
11
|
Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 2011; 411:416-25. [PMID: 21324503 PMCID: PMC3057228 DOI: 10.1016/j.virol.2011.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 10/25/2022]
Abstract
Several arenaviruses, chiefly Lassa virus, cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. On the other hand the prototypic arenavirus LCMV is a superb workhorse for the investigation of virus-host interactions and associated disease. The development of novel antiviral strategies to combat pathogenic arenaviruses would be facilitated by a detailed understanding of the arenavirus molecular and cell biology. To this end, the development of reverse genetic systems for several arenaviruses has provided investigators with novel and powerful approaches to dissect the functions of arenavirus proteins and their interactions with host factors required to complete each of the steps of the virus life cycle, as well as to cause disease.
Collapse
|
12
|
Jiménez-Vidal M, Srivastava J, Putney LK, Barber DL. Nuclear-localized calcineurin homologous protein CHP1 interacts with upstream binding factor and inhibits ribosomal RNA synthesis. J Biol Chem 2010; 285:36260-6. [PMID: 20720019 DOI: 10.1074/jbc.m110.165555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Calcineurin homologous protein 1 (CHP1) is a widely expressed, 22-kDa myristoylated EF-hand Ca(2+)-binding protein that shares a high degree of similarity with the regulatory B subunit of calcineurin (65%) and with calmodulin (59%). CHP1 localizes to the plasma membrane, the Golgi apparatus, and the nucleus and functions to regulate trafficking of early secretory vesicles, activation of T cells, and expression and transport of the Na-H exchanger NHE1. Although CHP1 contains nuclear export signals, whether its nuclear and cytoplasmic localization is regulated and has distinct functions remain unknown. We show that CHP1 is predominantly in the nucleus in quiescent fibroblasts, is translocated to cytoplasmic compartments with growth medium, and that translocation is inhibited by mutations in the nuclear export motifs. In a screen for proteins co-precipitating with CHP1 in quiescent cells we identified the upstream binding factor UBF, a DNA-binding protein and component of the RNA polymerase I complex regulating RNA synthesis. The CHP1-UBF interaction is restricted to the nucleus and inhibited by Ca(2+). Nuclear retention of CHP1 attenuates the abundance of UBF in the nucleolus and inhibits RNA synthesis when quiescent cells are transferred to growth medium. These data show UBF as a newly identified CHP1-binding protein and regulation of RNA synthesis as a newly identified function for nuclear-localized CHP1, which is distinct from CHP1 functions in the cytosol.
Collapse
Affiliation(s)
- Maite Jiménez-Vidal
- Department of Cell and Tissue Biology, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
13
|
Tseng H, Chou W, Wang J, Zhang X, Zhang S, Schultz RM. Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS One 2008; 3:e1843. [PMID: 18365001 PMCID: PMC2266999 DOI: 10.1371/journal.pone.0001843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/12/2008] [Indexed: 11/22/2022] Open
Abstract
Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants) and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA). The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs), which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs) in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active), two are expressed in some tissues (selectively active), and two are not expressed (silent). These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | |
Collapse
|
14
|
Louvet E, Percipalle P. Transcriptional control of gene expression by actin and myosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:107-47. [PMID: 19121817 DOI: 10.1016/s1937-6448(08)01603-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent years have witnessed a new turn in the field of gene expression regulation. Actin and an ever-growing family of actin-associated proteins have been accepted as members of the nuclear crew, regulating eukaryotic gene transcription. In complex with heterogeneous nuclear ribonucleoproteins and certain myosin species, actin has been shown to be an important regulator in RNA polymerase II transcription. Furthermore, actin-based molecular motors are believed to facilitate RNA polymerase I transcription and possibly downstream events during rRNA biogenesis. Probably these findings represent the tip of the iceberg of a rapidly expanding area within the functional architecture of the cell nucleus. Further studies will contribute to clarify how actin mediates nuclear functions with a glance to cytoplasmic signalling. These discoveries have the potential to define novel regulatory networks required to control gene expression at multiple levels.
Collapse
Affiliation(s)
- Emilie Louvet
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
15
|
Abstract
Ribosomal RNA transcription was one of the first model systems for molecular characterization of a transcription regulatory mechanism and certainly one of the best studied in the widest range of organisms. In multicellular organisms, however, the issue of cell-type-specific regulation of rRNA transcription has not been well addressed. Here I propose that a systematic study of cell-type-specific regulation of rRNA transcription may reveal new regulatory mechanisms that have not been previously realized. Specifically, issues concerning the cell-type-specific requirement for rRNA production, the universality of Pol I transcription complex and the division of rDNA into regulatory subdomains are discussed.
Collapse
Affiliation(s)
- Hung Tseng
- Department of Dermatology, Department of Cell and Developmental Biology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, CRB Room 242B, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Lin CY, Navarro S, Reddy S, Comai L. CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction. Nucleic Acids Res 2006; 34:4752-66. [PMID: 16971462 PMCID: PMC1635259 DOI: 10.1093/nar/gkl581] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High levels of rRNA synthesis by RNA polymerase I are important for cell growth and proliferation. In vitro studies have indicated that the formation of a stable complex between the HMG box factor [Upstream binding factor (UBF)] and SL1 at the rRNA gene promoter is necessary to direct multiple rounds of Pol I transcription initiation. The recruitment of SL1 to the promoter occurs through protein interactions with UBF and is regulated by phosphorylation of UBF. Here we show that the protein kinase CK2 co-immunoprecipitates with the Pol I complex and is associated with the rRNA gene promoter. Inhibition of CK2 kinase activity reduces Pol I transcription in cultured cells and in vitro. Significantly, CK2 regulates the interaction between UBF and SL1 by counteracting the inhibitory effect of HMG boxes five and six through the phosphorylation of specific serines located at the C-terminus of UBF. Transcription reactions with immobilized templates indicate that phosphorylation of CK2 phosphoacceptor sites in the C-terminal domain of UBF is important for promoting multiple rounds of Pol I transcription. These data demonstrate that CK2 is recruited to the rRNA gene promoter and directly regulates Pol I transcription re-initiation by stabilizing the association between UBF and SL1.
Collapse
Affiliation(s)
| | | | - Sita Reddy
- Department of Biochemistry and Molecular Biology, Institute for Genetic Medicine, Keck School of Medicine, University of Southern California2250 Alcazar Street, Los Angeles, CA, 90033, USA
| | - Lucio Comai
- To whom correspondence should be addressed. Tel: +1 323 442 3950; Fax: +1 323 441 2764;
| |
Collapse
|
17
|
Panov KI, Friedrich JK, Russell J, Zomerdijk JCBM. UBF activates RNA polymerase I transcription by stimulating promoter escape. EMBO J 2006; 25:3310-22. [PMID: 16858408 PMCID: PMC1523182 DOI: 10.1038/sj.emboj.7601221] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/09/2006] [Indexed: 01/10/2023] Open
Abstract
Ribosomal RNA gene transcription by RNA polymerase I (Pol I) is the driving force behind ribosome biogenesis, vital to cell growth and proliferation. The key activator of Pol I transcription, UBF, has been proposed to act by facilitating recruitment of Pol I and essential basal factor SL1 to rDNA promoters. However, we found no evidence that UBF could stimulate recruitment or stabilization of the pre-initiation complex (PIC) in reconstituted transcription assays. In this, UBF is fundamentally different from archetypal activators of transcription. Our data imply that UBF exerts its stimulatory effect on RNA synthesis, after PIC formation, promoter opening and first phosphodiester bond formation and before elongation. We provide evidence to suggest that UBF activates transcription in the transition between initiation and elongation, at promoter escape by Pol I. This novel role for UBF in promoter escape would allow control of rRNA synthesis at active rDNA repeats, independent of and complementary to the promoter-specific targeting of SL1 and Pol I during PIC assembly. We posit that stimulation of promoter escape could be a general mechanism of activator function.
Collapse
Affiliation(s)
- Kostya I Panov
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - J Karsten Friedrich
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Jackie Russell
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Joost C B M Zomerdijk
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
- Division of Gene Regulation and Expression, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK. Tel.: +44 1382 384242; Fax: +44 1382 388072; E-mail:
| |
Collapse
|
18
|
Abstract
The rRNAs constitute the catalytic and structural components of the ribosome, the protein synthesis machinery of cells. The level of rRNA synthesis, mediated by Pol I (RNA polymerase I), therefore has a major impact on the life and destiny of a cell. In order to elucidate how cells achieve the stringent control of Pol I transcription, matching the supply of rRNA to demand under different cellular growth conditions, it is essential to understand the components and mechanics of the Pol I transcription machinery. In this review, we discuss: (i) the molecular composition and functions of the Pol I enzyme complex and the two main Pol I transcription factors, SL1 (selectivity factor 1) and UBF (upstream binding factor); (ii) the interplay between these factors during pre-initiation complex formation at the rDNA promoter in mammalian cells; and (iii) the cellular control of the Pol I transcription machinery.
Collapse
|
19
|
Raska I, Shaw PJ, Cmarko D. New Insights into Nucleolar Architecture and Activity. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:177-235. [PMID: 17178467 DOI: 10.1016/s0074-7696(06)55004-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nucleolus is the most obvious and clearly differentiated nuclear subcompartment. It is where ribosome biogenesis takes place and has been the subject of research over many decades. In recent years progress in our understanding of ribosome biogenesis has been rapid and is accelerating. This review discusses current understanding of how the biochemical processes of ribosome biosynthesis relate to an observable nucleolar structure. Emerging evidence is also described that points to other, unconventional roles for the nucleolus, particularly in the biogenesis of other RNA-containing cellular machinery, and in stress sensing and the control of cellular activity. Striking recent observations show that the nucleolus and its components are highly dynamic, and that the steady state structure observed by microscopical methods must be interpreted as the product of these dynamic processes. We still do not have detailed enough information to understand fully the organization and regulation of the various processes taking place in the nucleolus. However, the present power of light and electron microscopy (EM) techniques means that a description of nucleolar processes at the molecular level is now achievable, and the time is ripe for such an effort.
Collapse
Affiliation(s)
- Ivan Raska
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | | | | |
Collapse
|
20
|
Sheng Z, Liang Y, Lin CY, Comai L, Chirico WJ. Direct regulation of rRNA transcription by fibroblast growth factor 2. Mol Cell Biol 2005; 25:9419-26. [PMID: 16227592 PMCID: PMC1265826 DOI: 10.1128/mcb.25.21.9419-9426.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/17/2005] [Accepted: 08/14/2005] [Indexed: 01/25/2023] Open
Abstract
Fibroblast growth factor 2 (FGF-2), which is highly expressed in developing tissues and malignant cells, regulates cell growth, differentiation, and migration. Five isoforms (18 to approximately 34 kDa) of FGF-2 are derived from alternative initiation codons of a single mRNA. The 18-kDa FGF-2 isoform is released from cells by a nonclassical secretory pathway and regulates gene expression by binding to cell surface receptors. This isoform also localizes to the nucleolus, raising the possibility that it may directly regulate ribosome biogenesis, a rate-limiting process in cell growth. Although several growth factors have been shown to accumulate in the nucleolus, their function and mechanism of action remain unclear. Here we show that 18-kDa FGF-2 interacts with upstream binding factor (UBF), an architectural transcription factor essential for rRNA transcription. The maximal activation of rRNA transcription in vitro by 18-kDa FGF-2 requires UBF. The 18-kDa FGF-2 localizes to rRNA genes and is necessary for the full activation of pre-rRNA synthesis in vivo. Our results demonstrate that 18-kDa FGF-2 directly regulates rRNA transcription.
Collapse
Affiliation(s)
- Zhi Sheng
- Molecular and Cellular Biology Program, State University of New York, Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
21
|
Zhang C, Comai L, Johnson DL. PTEN represses RNA Polymerase I transcription by disrupting the SL1 complex. Mol Cell Biol 2005; 25:6899-911. [PMID: 16055704 PMCID: PMC1190253 DOI: 10.1128/mcb.25.16.6899-6911.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PTEN is a tumor suppressor whose function is frequently lost in human cancer. It possesses a lipid phosphatase activity that represses the activation of PI3 kinase/Akt signaling, leading to decreased cell growth, proliferation, and survival. The potential for PTEN to regulate transcription of the large rRNAs by RNA polymerase I (RNA Pol I) was investigated. As increased synthesis of rRNAs is a hallmark of neoplastic transformation, the ability of PTEN to control the transcription of rRNAs might be crucial for its tumor suppressor function. The expression of PTEN in PTEN-deficient cells represses RNA Pol I transcription, while decreasing PTEN expression enhances transcription. PTEN-mediated repression requires its lipid phosphatase activity and is independent of the p53 status of the cell. This event can be uncoupled from PTEN's ability to regulate the cell cycle. RNA Pol I is regulated through PI3 kinase/Akt/mammalian target of rapamycin/S6 kinase, and the expression of constitutively activated S6 kinase is able to abrogate transcription repression by PTEN. No change in the expression of the RNA Pol I transcription components, upstream binding factor or SL1, was observed upon PTEN expression. However, chromatin immunoprecipitation assays demonstrate that PTEN differentially reduces the occupancy of the SL1 subunits on the rRNA gene promoter. Furthermore, PTEN induces dissociation of the SL1 subunits. Together, these results demonstrate that PTEN represses RNA Pol I transcription through a novel mechanism that involves disruption of the SL1 complex.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemistry and Molecular Biology, University of Southern California, Keck School of Medicine, Los Angeles, 90033, USA
| | | | | |
Collapse
|
22
|
Abstract
In the extensive network of interdependent biochemical processes required for cell growth and division, there is mounting evidence that ribosomal DNA transcription by RNA polymerase I (pol I) not only drives cell growth via its direct role in production of the ribosomal RNA (rRNA) component of the protein-synthesis machinery, but that it is also crucial in determining the fate of the cell. Considerable progress has been made in recent years towards understanding both the function of components of the pol I transcription machinery and how cells accomplish the tight control of pol I transcription, balancing the supply of rRNA with demand under different growth conditions.
Collapse
Affiliation(s)
- Jackie Russell
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|