1
|
Naudé M, Faller P, Lebrun V. A Closer Look at Type I Left-Handed β-Helices Provides a Better Understanding in Their Sequence-Structure Relationship: Toward Their Rational Design. Proteins 2024; 92:1318-1328. [PMID: 38980225 DOI: 10.1002/prot.26726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Understanding the sequence-structure relationship in protein is of fundamental interest, but has practical applications such as the rational design of peptides and proteins. This relationship in the Type I left-handed β-helix containing proteins is updated and revisited in this study. Analyzing the available experimental structures in the Protein Data Bank, we could describe, further in detail, the structural features that are important for the stability of this fold, as well as its nucleation and termination. This study is meant to complete previous work, as it provides a separate analysis of the N-terminal and C-terminal rungs of the helix. Particular sequence motifs of these rungs are described along with the structural element they form.
Collapse
Affiliation(s)
- Maxime Naudé
- Institute of Chemistry of Strasbourg (UMR 7177), University of Strasbourg-CNRS, Strasbourg, France
| | - Peter Faller
- Institute of Chemistry of Strasbourg (UMR 7177), University of Strasbourg-CNRS, Strasbourg, France
| | - Vincent Lebrun
- Institute of Chemistry of Strasbourg (UMR 7177), University of Strasbourg-CNRS, Strasbourg, France
| |
Collapse
|
2
|
Renzer G, de Almeida Ribeiro I, Guo HB, Fröhlich-Nowoisky J, Berry RJ, Bonn M, Molinero V, Meister K. Hierarchical assembly and environmental enhancement of bacterial ice nucleators. Proc Natl Acad Sci U S A 2024; 121:e2409283121. [PMID: 39418308 PMCID: PMC11513900 DOI: 10.1073/pnas.2409283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Bacterial ice nucleating proteins (INPs) are exceptionally effective in promoting the kinetically hindered transition of water to ice. Their efficiency relies on the assembly of INPs into large functional aggregates, with the size of ice nucleation sites determining activity. Experimental freezing spectra have revealed two distinct, defined aggregate sizes, typically classified as class A and C ice nucleators (INs). Despite the importance of INPs and years of extensive research, the precise number of INPs forming the two aggregate classes, and their assembly mechanism have remained enigmatic. Here, we report that bacterial ice nucleation activity emerges from more than two prevailing aggregate species and identify the specific number of INPs responsible for distinct crystallization temperatures. We find that INP dimers constitute class C INs, tetramers class B INs, and hexamers and larger multimers are responsible for the most efficient class A activity. We propose a hierarchical assembly mechanism based on tyrosine interactions for dimers, and electrostatic interactions between INP dimers to produce larger aggregates. This assembly is membrane-assisted: Increasing the bacterial outer membrane fluidity decreases the population of the larger aggregates, while preserving the dimers. Inversely, Dulbecco's Phosphate-Buffered Saline buffer increases the population of multimeric class A and B aggregates 200-fold and endows the bacteria with enhanced stability toward repeated freeze-thaw cycles. Our analysis suggests that the enhancement results from the better alignment of dimers in the negatively charged outer membrane, due to screening of their electrostatic repulsion. This demonstrates significant enhancement of the most potent bacterial INs.
Collapse
Affiliation(s)
- Galit Renzer
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | | | - Hao-Bo Guo
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH45433
| | | | - Rajiv J. Berry
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH45433
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, UT84112-0850
| | - Konrad Meister
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Mainz55128, Germany
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID83725
| |
Collapse
|
3
|
Aggarwal T, Kondabagil K. Proteome-scale structural prediction of the giant Marseillevirus reveals conserved folds and putative homologs of the hypothetical proteins. Arch Virol 2024; 169:222. [PMID: 39414627 DOI: 10.1007/s00705-024-06155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/02/2024] [Indexed: 10/18/2024]
Abstract
A significant proportion of the highly divergent and novel proteins of giant viruses are termed "hypothetical" due to the absence of detectable homologous sequences in the existing databases. The quality of genome and proteome annotations often relies on the identification of signature sequences and motifs in order to assign putative functions to the gene products. These annotations serve as the first set of information for researchers to develop workable hypotheses for further experimental research. The structure-function relationship of proteins suggests that proteins with similar functions may also exhibit similar folding patterns. Here, we report the first proteome-wide structure prediction of the giant Marseillevirus. We use AlphaFold-predicted structures and their comparative analysis with the experimental structures in the PDB database to preliminarily annotate the viral proteins. Our work highlights the conservation of structural folds in proteins with highly divergent sequences and reveals potentially paralogous relationships among them. We also provide evidence for gene duplication and fusion as contributing factors to giant viral genome expansion and evolution. With the easily accessible AlphaFold and other advanced bioinformatics tools for high-confidence de novo structure prediction, we propose a combined sequence and predicted-structure-based proteome annotation approach for the initial characterization of novel and complex organisms or viruses.
Collapse
Affiliation(s)
- Tanvi Aggarwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
4
|
Suladze S, Sarkar R, Rodina N, Bokvist K, Krewinkel M, Scheps D, Nagel N, Bardiaux B, Reif B. Atomic resolution structure of full-length human insulin fibrils. Proc Natl Acad Sci U S A 2024; 121:e2401458121. [PMID: 38809711 PMCID: PMC11161806 DOI: 10.1073/pnas.2401458121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two β-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.
Collapse
Affiliation(s)
- Saba Suladze
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Riddhiman Sarkar
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| | - Natalia Rodina
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
| | - Krister Bokvist
- Sanofi-Aventis Deutschland GmbH, Diabetes Research, Industriepark Höchst, Frankfurt65926, Germany
| | - Manuel Krewinkel
- Sanofi-Aventis Deutschland GmbH, Manufacturing Science and Technology, Industriepark Höchst, Frankfurt65926, Germany
| | - Daniel Scheps
- Chemistry Manufacturing & Controls Microbial Platform, Sanofi-Aventis Deutschland GmbH, Microbial Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Norbert Nagel
- Sanofi-Aventis Deutschland GmbH, Tides Platform, Industriepark Höchst, Frankfurt65926, Germany
| | - Benjamin Bardiaux
- Institut Pasteur, Department of Structural Biology and Chemistry, Structural Bioinformatics Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
- Institut Pasteur, Department of Structural Biology and Chemistry, Bacterial Transmembrane Systems Unit, CNRS UMR 3528, Université Paris Cité, Paris75015, France
| | - Bernd Reif
- Bavarian Nuclear Magnetic Resonance Center at the Department of Biosciences, School of Natural Sciences, Technische Universität München, Garching85747, Germany
- Helmholtz-Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology, Neuherberg85764, Germany
| |
Collapse
|
5
|
Burnim AA, Dufault-Thompson K, Jiang X. The three-sided right-handed β-helix is a versatile fold for glycan interactions. Glycobiology 2024; 34:cwae037. [PMID: 38767844 PMCID: PMC11129586 DOI: 10.1093/glycob/cwae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024] Open
Abstract
Interactions between proteins and glycans are critical to various biological processes. With databases of carbohydrate-interacting proteins and increasing amounts of structural data, the three-sided right-handed β-helix (RHBH) has emerged as a significant structural fold for glycan interactions. In this review, we provide an overview of the sequence, mechanistic, and structural features that enable the RHBH to interact with glycans. The RHBH is a prevalent fold that exists in eukaryotes, prokaryotes, and viruses associated with adhesin and carbohydrate-active enzyme (CAZyme) functions. An evolutionary trajectory analysis on structurally characterized RHBH-containing proteins shows that they likely evolved from carbohydrate-binding proteins with their carbohydrate-degrading activities evolving later. By examining three polysaccharide lyase and three glycoside hydrolase structures, we provide a detailed view of the modes of glycan binding in RHBH proteins. The 3-dimensional shape of the RHBH creates an electrostatically and spatially favorable glycan binding surface that allows for extensive hydrogen bonding interactions, leading to favorable and stable glycan binding. The RHBH is observed to be an adaptable domain capable of being modified with loop insertions and charge inversions to accommodate heterogeneous and flexible glycans and diverse reaction mechanisms. Understanding this prevalent protein fold can advance our knowledge of glycan binding in biological systems and help guide the efficient design and utilization of RHBH-containing proteins in glycobiology research.
Collapse
Affiliation(s)
- Audrey A Burnim
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Keith Dufault-Thompson
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Building 38A, Room 6N607, 8600 Rockville Pike, Bethesda, MD 20894 United States
| |
Collapse
|
6
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Mac Donagh J, Marchesini A, Spiga A, Fallico MJ, Arrías PN, Monzon AM, Vagiona AC, Gonçalves-Kulik M, Mier P, Andrade-Navarro MA. Structured Tandem Repeats in Protein Interactions. Int J Mol Sci 2024; 25:2994. [PMID: 38474241 DOI: 10.3390/ijms25052994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Tandem repeats (TRs) in protein sequences are consecutive, highly similar sequence motifs. Some types of TRs fold into structural units that pack together in ensembles, forming either an (open) elongated domain or a (closed) propeller, where the last unit of the ensemble packs against the first one. Here, we examine TR proteins (TRPs) to see how their sequence, structure, and evolutionary properties favor them for a function as mediators of protein interactions. Our observations suggest that TRPs bind other proteins using large, structured surfaces like globular domains; in particular, open-structured TR ensembles are favored by flexible termini and the possibility to tightly coil against their targets. While, intuitively, open ensembles of TRs seem prone to evolve due to their potential to accommodate insertions and deletions of units, these evolutionary events are unexpectedly rare, suggesting that they are advantageous for the emergence of the ancestral sequence but are early fixed. We hypothesize that their flexibility makes it easier for further proteins to adapt to interact with them, which would explain their large number of protein interactions. We provide insight into the properties of open TR ensembles, which make them scaffolds for alternative protein complexes to organize genes, RNA and proteins.
Collapse
Affiliation(s)
- Juan Mac Donagh
- Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Abril Marchesini
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
- Biotechnology and Molecular Biology Institute (IBBM, UNLP-CONICET), Faculty of Exact Sciences, University of La Plata, La Plata 1900, Argentina
| | - Agostina Spiga
- Science and Technology Department, National University of Quilmes, Bernal B1876, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1033AAJ, Argentina
| | - Maximiliano José Fallico
- Laboratory of Bioactive Compound Research and Development, Faculty of Exact Sciences, University of La Plata, La Plata 1900, Argentina
| | - Paula Nazarena Arrías
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy
| | - Alexander Miguel Monzon
- Department of Information Engineering, University of Padova, Via Giovanni Gradenigo 6/B, 35131 Padova, Italy
| | - Aimilia-Christina Vagiona
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Mariane Gonçalves-Kulik
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
8
|
Hansen T, Lee J, Reicher N, Ovadia G, Guo S, Guo W, Liu J, Braslavsky I, Rudich Y, Davies PL. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C. eLife 2023; 12:RP91976. [PMID: 38109272 PMCID: PMC10727499 DOI: 10.7554/elife.91976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins (INPs) of common environmental bacteria like Pseudomonas syringae and Pseudomonas borealis. However, individually, these 100 kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an INP gene into Escherichia coli led to efficient ice nucleation. Here, we demonstrate that a positively charged subdomain at the C-terminal end of the central β-solenoid of the INP is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the INP multimers form fibres that are ~5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Jocelyn Lee
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Naama Reicher
- Department of Earth and Planetary Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | - Gil Ovadia
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of JerusalemRehovotIsrael
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of JerusalemRehovotIsrael
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
9
|
Louros N, Schymkowitz J, Rousseau F. Mechanisms and pathology of protein misfolding and aggregation. Nat Rev Mol Cell Biol 2023; 24:912-933. [PMID: 37684425 DOI: 10.1038/s41580-023-00647-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Hansen T, Lee JC, Reicher N, Ovadia G, Guo S, Guo W, Liu J, Braslavsky I, Rudich Y, Davies PL. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551873. [PMID: 37577566 PMCID: PMC10418271 DOI: 10.1101/2023.08.03.551873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins of common environmental bacteria like Pseudomonas syringae and P. borealis. However, individually, these 100-kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an ice nucleation protein gene into Escherichia coli led to efficient ice nucleation. Here we demonstrate that a positively-charged sub-domain at the C-terminal end of the central beta-solenoid of the ice nucleation protein is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the ice nucleation protein multimers form fibres that are ~ 5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| | - Jocelyn C. Lee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| | - Naama Reicher
- Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Ovadia
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| |
Collapse
|
11
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
12
|
Mesdaghi S, Price RM, Madine J, Rigden DJ. Deep Learning-based structure modelling illuminates structure and function in uncharted regions of β-solenoid fold space. J Struct Biol 2023; 215:108010. [PMID: 37544372 DOI: 10.1016/j.jsb.2023.108010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Repeat proteins are common in all domains of life and exhibit a wide range of functions. One class of repeat protein contains solenoid folds where the repeating unit consists of β-strands separated by tight turns. β-solenoids have distinguishing structural features such as handedness, twist, oligomerisation state, coil shape and size which give rise to their diversity. Characterised β-solenoid repeat proteins are known to form regions in bacterial and viral virulence factors, antifreeze proteins and functional amyloids. For many of these proteins, the experimental structure has not been solved, as they are difficult to crystallise or model. Here we use various deep learning-based structure-modelling methods to discover novel predicted β-solenoids, perform structural database searches to mine further structural neighbours and relate their predicted structure to possible functions. We find both eukaryotic and prokaryotic adhesins, confirming a known functional linkage between adhesin function and the β-solenoid fold. We further identify exceptionally long, flat β-solenoid folds as possible structures of mucin tandem repeat regions and unprecedentedly small β-solenoid structures. Additionally, we characterise a novel β-solenoid coil shape, the FapC Greek key β-solenoid as well as plausible complexes between it and other proteins involved in Pseudomonas functional amyloid fibres.
Collapse
Affiliation(s)
- Shahram Mesdaghi
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom; Computational Biology Facility, MerseyBio, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Rebecca M Price
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Jillian Madine
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Daniel J Rigden
- The University of Liverpool, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| |
Collapse
|
13
|
Sønderby TV, Louros NN, Khodaparast L, Khodaparast L, Madsen DJ, Olsen WP, Moonen N, Nagaraj M, Sereikaite V, Strømgaard K, Rousseau F, Schymkowitz J, Otzen DE. Sequence-targeted Peptides Divert Functional Bacterial Amyloid Towards Destabilized Aggregates and Reduce Biofilm Formation. J Mol Biol 2023; 435:168039. [PMID: 37330291 DOI: 10.1016/j.jmb.2023.168039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Functional bacterial amyloid provides structural stability in biofilm, making it a promising target for anti-biofilm therapeutics. Fibrils formed by CsgA, the major amyloid component in E. coli are extremely robust and can withstand very harsh conditions. Like other functional amyloids, CsgA contains relatively short aggregation-prone regions (APR) which drive amyloid formation. Here, we demonstrate the use of aggregation-modulating peptides to knock down CsgA protein into aggregates with low stability and altered morphology. Remarkably, these CsgA-peptides also modulate fibrillation of the unrelated functional amyloid protein FapC from Pseudomonas, possibly through recognition of FapC segments with structural and sequence similarity with CsgA. The peptides also reduce the level of biofilm formation in E. coli and P. aeruginosa, demonstrating the potential for selective amyloid targeting to combat bacterial biofilm.
Collapse
Affiliation(s)
- Thorbjørn V Sønderby
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Sino-Danish Center (SDC), Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing, China. https://twitter.com/@tvs1212
| | - Nikolaos N Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. https://twitter.com/LourosNikos
| | - Ladan Khodaparast
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. https://twitter.com/@LadanKhodapara1
| | - Laleh Khodaparast
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. https://twitter.com/@LalehKhodapara1
| | - Daniel J Madsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - William P Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Sino-Danish Center (SDC), Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing, China
| | - Nele Moonen
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Madhu Nagaraj
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen Ø, Denmark. https://twitter.com/@vitasereikaite
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen Ø, Denmark. https://twitter.com/@stromgaardlab
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. https://twitter.com/@stromgaardlab
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000 Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. https://twitter.com/@stromgaardlab
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| |
Collapse
|
14
|
Scholl CL, Davies PL. Protein engineering of antifreeze proteins reveals that their activity scales with the area of the ice-binding site. FEBS Lett 2023; 597:538-546. [PMID: 36460826 DOI: 10.1002/1873-3468.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Antifreeze proteins (AFPs) protect organisms from freezing by binding to ice crystals to prevent their growth. Here, we have investigated how the area of an AFP's ice-binding site (IBS) changes its antifreeze activity. The polyproline type II helical bundle fold of the 9.6-kDa springtail (Collembola) AFP from Granisotoma rainieri (a primitive arthropod) facilitates changes to both IBS length and width. A one quarter decrease in area reduced activity to less than 10%. A one quarter increase in IBS width, through the addition of a single helix, tripled antifreeze activity. However, increasing IBS length by a similar amount actually reduced activity. Expanding the IBS area can greatly increase antifreeze activity but needs to be evaluated by experimentation on a case-by-case basis.
Collapse
Affiliation(s)
- Connor L Scholl
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| |
Collapse
|
15
|
Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol 2022; 29:1056-1067. [PMID: 36344848 PMCID: PMC9663297 DOI: 10.1038/s41594-022-00849-w] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
Collapse
Affiliation(s)
- Mehmet Akdel
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Douglas E V Pires
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Eduard Porta Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jürgen Jänes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Arthur O Zalevsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Patrick Bryant
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Lydia L Good
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Gabriele Pozzati
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Aditi Shenoy
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Wensi Zhu
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Petras Kundrotas
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | | | - Carlos H M Rodrigues
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Alistair S Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - David Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Neera Borkakoti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Adam Frost
- Department of Biochemistry and Biophysics University of California, San Francisco, CA, USA
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Andrey V Kajava
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM) CNRS, Montpellier, France
| | | | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, MA, USA.
| | | | - David B Ascher
- School of Chemistry and Molecular Biology, University of Queensland, Brisbane, Queensland, Australia.
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
| | | | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Elofsson
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden.
| | - Tristan I Croll
- Cambridge Institute for Medical Research, Department of Haematology, The University of Cambridge, Cambridge, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Water-organizing motif continuity is critical for potent ice nucleation protein activity. Nat Commun 2022; 13:5019. [PMID: 36028506 PMCID: PMC9418140 DOI: 10.1038/s41467-022-32469-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial ice nucleation proteins (INPs) can cause frost damage to plants by nucleating ice formation at high sub-zero temperatures. Modeling of Pseudomonas borealis INP by AlphaFold suggests that the central domain of 65 tandem sixteen-residue repeats forms a beta-solenoid with arrays of outward-pointing threonines and tyrosines, which may organize water molecules into an ice-like pattern. Here we report that mutating some of these residues in a central segment of P. borealis INP, expressed in Escherichia coli, decreases ice nucleation activity more than the section’s deletion. Insertion of a bulky domain has the same effect, indicating that the continuity of the water-organizing repeats is critical for optimal activity. The ~10 C-terminal coils differ from the other 55 coils in being more basic and lacking water-organizing motifs; deletion of this region eliminates INP activity. We show through sequence modifications how arrays of conserved motifs form the large ice-nucleating surface required for potency. Ice nucleation proteins have the same tandemly arrayed water-organizing motifs seen in some antifreeze proteins, but on a larger scale. The authors show that mutation, interruption, and truncation of these arrays reduce ice nucleation activity indicating that the two protein types share a common mechanism.
Collapse
|
17
|
Designed peptides as nanomolar cross-amyloid inhibitors acting via supramolecular nanofiber co-assembly. Nat Commun 2022; 13:5004. [PMID: 36008417 PMCID: PMC9411207 DOI: 10.1038/s41467-022-32688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/10/2022] [Indexed: 01/02/2023] Open
Abstract
Amyloid self-assembly is linked to numerous devastating cell-degenerative diseases. However, designing inhibitors of this pathogenic process remains a major challenge. Cross-interactions between amyloid-β peptide (Aβ) and islet amyloid polypeptide (IAPP), key polypeptides of Alzheimer's disease (AD) and type 2 diabetes (T2D), have been suggested to link AD with T2D pathogenesis. Here, we show that constrained peptides designed to mimic the Aβ amyloid core (ACMs) are nanomolar cross-amyloid inhibitors of both IAPP and Aβ42 and effectively suppress reciprocal cross-seeding. Remarkably, ACMs act by co-assembling with IAPP or Aβ42 into amyloid fibril-resembling but non-toxic nanofibers and their highly ordered superstructures. Co-assembled nanofibers exhibit various potentially beneficial features including thermolability, proteolytic degradability, and effective cellular clearance which are reminiscent of labile/reversible functional amyloids. ACMs are thus promising leads for potent anti-amyloid drugs in both T2D and AD while the supramolecular nanofiber co-assemblies should inform the design of novel functional (hetero-)amyloid-based nanomaterials for biomedical/biotechnological applications.
Collapse
|
18
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Structure and Polymorphism of Amyloid and Amyloid-Like Aggregates. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:450-463. [PMID: 35790379 DOI: 10.1134/s0006297922050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Amyloids are protein aggregates with the cross-β structure. The interest in amyloids is explained, on the one hand, by their role in the development of socially significant human neurodegenerative diseases, and on the other hand, by the discovery of functional amyloids, whose formation is an integral part of cellular processes. To date, more than a hundred proteins with the amyloid or amyloid-like properties have been identified. Studying the structure of amyloid aggregates has revealed a wide variety of protein conformations. In the review, we discuss the diversity of protein folds in the amyloid-like aggregates and the characteristic features of amyloid aggregates that determine their unusual properties, including stability and interaction with amyloid-specific dyes. The review also describes the diversity of amyloid aggregates and its significance for living organisms.
Collapse
Affiliation(s)
- Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Yury A Barbitoff
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Bioinformatics Institute, Saint Petersburg, 197342, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
19
|
Miller JG, Hughes SA, Modlin C, Conticello VP. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Q Rev Biophys 2022; 55:1-103. [PMID: 35307042 DOI: 10.1017/s0033583522000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSynthetic peptide and peptido-mimetic filaments and tubes represent a diverse class of nanomaterials with a broad range of potential applications, such as drug delivery, vaccine development, synthetic catalyst design, encapsulation, and energy transduction. The structures of these filaments comprise supramolecular polymers based on helical arrangements of subunits that can be derived from self-assembly of monomers based on diverse structural motifs. In recent years, structural analyses of these materials at near-atomic resolution (NAR) have yielded critical insights into the relationship between sequence, local conformation, and higher-order structure and morphology. This structural information offers the opportunity for development of new tools to facilitate the predictable and reproduciblede novodesign of synthetic helical filaments. However, these studies have also revealed several significant impediments to the latter process – most notably, the common occurrence of structural polymorphism due to the lability of helical symmetry in structural space. This article summarizes the current state of knowledge on the structures of designed peptide and peptido-mimetic filamentous assemblies, with a focus on structures that have been solved to NAR for which reliable atomic models are available.
Collapse
Affiliation(s)
- Jessalyn G Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Spencer A Hughes
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Charles Modlin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | | |
Collapse
|
20
|
Louros N, Ramakers M, Michiels E, Konstantoulea K, Morelli C, Garcia T, Moonen N, D'Haeyer S, Goossens V, Thal DR, Audenaert D, Rousseau F, Schymkowitz J. Mapping the sequence specificity of heterotypic amyloid interactions enables the identification of aggregation modifiers. Nat Commun 2022; 13:1351. [PMID: 35292653 PMCID: PMC8924238 DOI: 10.1038/s41467-022-28955-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Heterotypic amyloid interactions between related protein sequences have been observed in functional and disease amyloids. While sequence homology seems to favour heterotypic amyloid interactions, we have no systematic understanding of the structural rules determining such interactions nor whether they inhibit or facilitate amyloid assembly. Using structure-based thermodynamic calculations and extensive experimental validation, we performed a comprehensive exploration of the defining role of sequence promiscuity in amyloid interactions. Using tau as a model system we demonstrate that proteins with local sequence homology to tau amyloid nucleating regions can modify fibril nucleation, morphology, assembly and spreading of aggregates in cultured cells. Depending on the type of mutation such interactions inhibit or promote aggregation in a manner that can be predicted from structure. We find that these heterotypic amyloid interactions can result in the subcellular mis-localisation of these proteins. Moreover, equilibrium studies indicate that the critical concentration of aggregation is altered by heterotypic interactions. Our findings suggest a structural mechanism by which the proteomic background can modulate the aggregation propensity of amyloidogenic proteins and we discuss how such sequence-specific proteostatic perturbations could contribute to the selective cellular susceptibility of amyloid disease progression. In this work, Louros et al. uncover a rule book for interactions of amyloids with other proteins. This grammar was shown to promote cellular spreading of tau aggregates in cells, but can also be harvested to develop structure-based aggregation blockers.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emiel Michiels
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Katerina Konstantoulea
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chiara Morelli
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Teresa Garcia
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nele Moonen
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sam D'Haeyer
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Dietmar Rudolf Thal
- KU Leuven, Leuven Brain Institute, 3000, Leuven, Belgium.,Laboratory for Neuropathology, KU Leuven, and Department of Pathology, UZ Leuven, 3000, Leuven, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium.,Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium. .,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
21
|
Liu N, Li P, Dong X, Lan Y, Xu L, Wei Z, Wang S. Purification, Characterization, and Hydrolysate Analysis of Dextranase From Arthrobacter oxydans G6-4B. Front Bioeng Biotechnol 2022; 9:813079. [PMID: 35223821 PMCID: PMC8867256 DOI: 10.3389/fbioe.2021.813079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022] Open
Abstract
Dextran has aroused increasingly more attention as the primary pollutant in sucrose production and storage. Although enzymatic hydrolysis is more efficient and environmentally friendly than physical methods, the utilization of dextranase in the sugar industry is restricted by the mismatch of reaction conditions and heterogeneity of hydrolysis products. In this research, a dextranase from Arthrobacter oxydans G6-4B was purified and characterized. Through anion exchange chromatography, dextranase was successfully purified up to 32.25-fold with a specific activity of 288.62 U/mg protein and a Mw of 71.12 kDa. The optimum reaction conditions were 55°C and pH 7.5, and it remained relatively stable in the range of pH 7.0-9.0 and below 60°C, while significantly inhibited by metal ions, such as Ni+, Cu2+, Zn2+, Fe3+, and Co2+. Noteworthily, a distinction of previous studies was that the hydrolysates of dextran were basically isomalto-triose (more than 73%) without glucose, and the type of hydrolysates tended to be relatively stable in 30 min; dextranase activity showed a great influence on hydrolysate. In conclusion, given the superior thermal stability and simplicity of hydrolysates, the dextranase in this study presented great potential in the sugar industry to remove dextran and obtain isomalto-triose.
Collapse
Affiliation(s)
- Nannan Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Peiting Li
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Xiujin Dong
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Yusi Lan
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| | - Linxiang Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhen Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
22
|
Chakrabarty B, Parekh N. DbStRiPs: Database of structural repeats in proteins. Protein Sci 2022; 31:23-36. [PMID: 33641184 PMCID: PMC8740836 DOI: 10.1002/pro.4052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 01/03/2023]
Abstract
Recent interest in repeat proteins has arisen due to stable structural folds, high evolutionary conservation and repertoire of functions provided by these proteins. However, repeat proteins are poorly characterized because of high sequence variation between repeating units and structure-based identification and classification of repeats is desirable. Using a robust network-based pipeline, manual curation and Kajava's structure-based classification schema, we have developed a database of tandem structural repeats, Database of Structural Repeats in Proteins (DbStRiPs). A unique feature of this database is that available knowledge on sequence repeat families is incorporated by mapping Pfam classification scheme onto structural classification. Integration of sequence and structure-based classifications help in identifying different functional groups within the same structural subclass, leading to refinement in the annotation of repeat proteins. Analysis of complete Protein Data Bank revealed 16,472 repeat annotations in 15,141 protein chains, one previously uncharacterized novel protein repeat family (PRF), named left-handed beta helix, and 33 protein repeat clusters (PRCs). Based on their unique structural motif, ~79% of these repeat proteins are classified in one of the 14 PRFs or 33 PRCs, and the remaining are grouped as unclassified repeat proteins. Each repeat protein is provided with a detailed annotation in DbStRiPs that includes start and end boundaries of repeating units, copy number, secondary and tertiary structure view, repeat class/subclass, disease association, MSA of repeating units and cross-references to various protein pattern databases, human protein atlas and interaction resources. DbStRiPs provides easy search and download options to high-quality annotations of structural repeat proteins (URL: http://bioinf.iiit.ac.in/dbstrips/).
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information TechnologyHyderabadIndia
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information TechnologyHyderabadIndia
| |
Collapse
|
23
|
Maestro B, Zamora-Carreras H, Jiménez MÁ, Sanz JM. Inter-hairpin linker sequences determine the structure of the ββ-solenoid fold: a "bottom-up" study of pneumococcal LytA choline-binding module. Int J Biol Macromol 2021; 190:679-692. [PMID: 34506863 DOI: 10.1016/j.ijbiomac.2021.08.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022]
Abstract
The ββ-solenoid structures are part of many proteins involved in the recognition of bacterial cell wall. They are elongated polypeptides consisting of repeated β-hairpins connected by linker sequences and disposed around a superhelical axis stabilised by short-range interactions. Among the most studied ββ-solenoids are those belonging to the family of choline-binding modules (CBMs) from the respiratory pathogen Streptococcus pneumoniae (pneumococcus) and its bacteriophages, and their properties have been employed to develop several biotechnological and biomedical tools. We have carried out a theoretical, spectroscopic and thermodynamic study of the ββ-solenoid structure of the CBM from the pneumococcal LytA autolysin using peptides of increasing length containing 1-3 repeats of this structure. Our results show that hints of native-like tertiary structure are only observed with a minimum of three β-hairpins, corresponding to one turn of the solenoid superhelix, and identify the linker sequences between hairpins as the major directors of the solenoid folding. This study paves the way for the rational structural engineering of ββ-solenoids aimed to find novel applications.
Collapse
Affiliation(s)
- Beatriz Maestro
- Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain
| | - Héctor Zamora-Carreras
- Instituto de Química-Física "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain; Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química-Física "Rocasolano", Spanish National Research Council (CSIC), Madrid, Spain.
| | - Jesús M Sanz
- Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Elche, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| |
Collapse
|
24
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
26
|
Kamali-Jamil R, Vázquez-Fernández E, Tancowny B, Rathod V, Amidian S, Wang X, Tang X, Fang A, Senatore A, Hornemann S, Dudas S, Aguzzi A, Young HS, Wille H. The ultrastructure of infectious L-type bovine spongiform encephalopathy prions constrains molecular models. PLoS Pathog 2021; 17:e1009628. [PMID: 34061899 PMCID: PMC8195424 DOI: 10.1371/journal.ppat.1009628] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/11/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a prion disease of cattle that is caused by the misfolding of the cellular prion protein (PrPC) into an infectious conformation (PrPSc). PrPC is a predominantly α-helical membrane protein that misfolds into a β-sheet rich, infectious state, which has a high propensity to self-assemble into amyloid fibrils. Three strains of BSE prions can cause prion disease in cattle, including classical BSE (C-type) and two atypical strains, named L-type and H-type BSE. To date, there is no detailed information available about the structure of any of the infectious BSE prion strains. In this study, we purified L-type BSE prions from transgenic mouse brains and investigated their biochemical and ultrastructural characteristics using electron microscopy, image processing, and immunogold labeling techniques. By using phosphotungstate anions (PTA) to precipitate PrPSc combined with sucrose gradient centrifugation, a high yield of proteinase K-resistant BSE amyloid fibrils was obtained. A morphological examination using electron microscopy, two-dimensional class averages, and three-dimensional reconstructions revealed two structural classes of L-type BSE amyloid fibrils; fibrils that consisted of two protofilaments with a central gap and an average width of 22.5 nm and one-protofilament fibrils that were 10.6 nm wide. The one-protofilament fibrils were found to be more abundant compared to the thicker two-protofilament fibrils. Both fibrillar assemblies were successfully decorated with monoclonal antibodies against N- and C-terminal epitopes of PrP using immunogold-labeling techniques, confirming the presence of polypeptides that span residues 100-110 to 227-237. The fact that the one-protofilament fibrils contain both N- and C-terminal PrP epitopes constrains molecular models for the structure of the infectious conformer in favour of a compact four-rung β-solenoid fold.
Collapse
Affiliation(s)
- Razieh Kamali-Jamil
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Ester Vázquez-Fernández
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Brian Tancowny
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Vineet Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xiongyao Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Xinli Tang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Assunta Senatore
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Sandor Dudas
- Canadian BSE Reference Laboratory, Canadian Food Inspection Agency, Lethbridge Laboratory, Lethbridge, Alberta, Canada
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zürich, Zürich, Switzerland
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
27
|
Abstract
Neurodegenerative disorders are frequently associated with β-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical β-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.
Collapse
|
28
|
Konstantoulea K, Louros N, Rousseau F, Schymkowitz J. Heterotypic interactions in amyloid function and disease. FEBS J 2021; 289:2025-2046. [PMID: 33460517 DOI: 10.1111/febs.15719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Amyloid aggregation results from the self-assembly of identical aggregation-prone sequences into cross-beta-sheet structures. The process is best known for its association with a wide range of human pathologies but also as a functional mechanism in all kingdoms of life. Less well elucidated is the role of heterotypic interactions between amyloids and other proteins and macromolecules and how this contributes to disease. We here review current data with a focus on neurodegenerative amyloid-associated diseases. Evidence indicates that heterotypic interactions occur in a wide range of amyloid processes and that these interactions modify fundamental aspects of amyloid aggregation including seeding, aggregation rates and toxicity. More work is required to understand the mechanistic origin of these interactions, but current understanding suggests that both supersaturation and sequence-specific binding can contribute to heterotypic amyloid interactions. Further unravelling these mechanisms may help to answer outstanding questions in the field including the selective vulnerability of cells types and tissues and the stereotypical spreading patterns of amyloids in disease.
Collapse
Affiliation(s)
- Katerina Konstantoulea
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Orsay Virus CP-δ Adopts a Novel β-Bracelet Structural Fold and Incorporates into Virions as a Head Fiber. J Virol 2020; 94:JVI.01560-20. [PMID: 32817218 PMCID: PMC7565637 DOI: 10.1128/jvi.01560-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022] Open
Abstract
Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term β-bracelets, in the intermediate shaft region. Based on sequence analysis, the β-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted β-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability. Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode Caenorhabditis elegans, encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein. Free δ has previously been demonstrated to facilitate viral exit following intracellular expression; however, the biological significance and prevalence of CP-δ remained relatively unknown. Here, we demonstrate that Orsay CP-δ is covalently incorporated into infectious particles, the first example of any attached viral fibers known to date. The crystal structure of δ(1–101) (a deletion mutant containing the first 101 amino acid [aa] residues of δ) reveals a pentameric, 145-Å long fiber with an N-terminal coiled coil followed by multiple β-bracelet repeats. Electron micrographs of infectious virions depict particle-associated CP-δ fibers with dimensions similar to free δ. The δ proteins from two other nematode viruses, Le Blanc and Santeuil, which both specifically infect Caenorhabditis briggsae, were also found to form fibrous molecules. Recombinant Le Blanc δ was able to block Orsay virus infection in worm culture and vice versa, suggesting these two viruses likely compete for the same cell receptor(s). Thus, we propose that while CP-δ likely mediates host cell attachment for all three nematode viruses, additional downstream factor(s) ultimately determine the host specificity and range of each virus. IMPORTANCE Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term β-bracelets, in the intermediate shaft region. Based on sequence analysis, the β-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted β-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability.
Collapse
|
30
|
Abstract
Amyloids are implicated in many protein misfolding diseases. Amyloid folds, however, also display a range of functional roles particularly in the microbial world. The templating ability of these folds endows them with specific properties allowing their self-propagation and protein-to-protein transmission in vivo. This property, the prion principle, is exploited by specific signaling pathways that use transmission of the amyloid fold as a way to convey information from a receptor to an effector protein. I describe here amyloid signaling pathways involving fungal nucleotide binding and oligomerization domain (NOD)-like receptors that were found to control nonself recognition and programmed cell death processes. Studies on these fungal amyloid signaling motifs stem from the characterization of the fungal [Het-s] prion protein and have led to the identification in fungi but also in multicellular bacteria of several distinct families of signaling motifs, one of which is related to RHIM [receptor-interacting protein (RIP) homotypic interaction motif], an amyloid motif regulating mammalian necroptosis.
Collapse
Affiliation(s)
- Sven J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077 Bordeaux CEDEX, France
| |
Collapse
|
31
|
Paladin L, Necci M, Piovesan D, Mier P, Andrade-Navarro MA, Tosatto SCE. A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication. J Struct Biol 2020; 212:107608. [PMID: 32896658 DOI: 10.1016/j.jsb.2020.107608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 11/30/2022]
Abstract
Tandem Repeat Proteins (TRPs) are ubiquitous in cells and are enriched in eukaryotes. They contributed to the evolution of organism complexity, specializing for functions that require quick adaptability such as immunity-related functions. To investigate the hypothesis of repeat protein evolution through exon duplication and rearrangement, we designed a tool to analyze the relationships between exon/intron patterns and structural symmetries. The tool allows comparison of the structure fragments as defined by exon/intron boundaries from Ensembl against the structural element repetitions from RepeatsDB. The all-against-all pairwise structural alignment between fragments and comparison of the two definitions (structural units and exons) are visualized in a single matrix, the "repeat/exon plot". An analysis of different repeat protein families, including the solenoids Leucine-Rich, Ankyrin, Pumilio, HEAT repeats and the β propellers Kelch-like, WD40 and RCC1, shows different behaviors, illustrated here through examples. For each example, the analysis of the exon mapping in homologous proteins supports the conservation of their exon patterns. We propose that when a clear-cut relationship between exon and structural boundaries can be identified, it is possible to infer a specific "evolutionary pattern" which may improve TRPs detection and classification.
Collapse
Affiliation(s)
| | - Marco Necci
- Dept. of Biomedical Sciences, University of Padova, Italy
| | | | - Pablo Mier
- Faculty of Biology, Johannes Gutenberg University of Mainz, Germany
| | | | | |
Collapse
|
32
|
Fitzpatrick AW, Saibil HR. Cryo-EM of amyloid fibrils and cellular aggregates. Curr Opin Struct Biol 2019; 58:34-42. [PMID: 31200186 PMCID: PMC6778506 DOI: 10.1016/j.sbi.2019.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/11/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
Neurodegenerative and other protein misfolding diseases are associated with the aggregation of a protein, which may be mutated in genetic forms of disease, or the wild type form in late onset sporadic disease. A wide variety of proteins and peptides can be involved, with aggregation originating from a natively folded or a natively unstructured species. Large deposits of amyloid fibrils are typically associated with cell death in late stage pathology. In this review, we illustrate the contributions of cryo-EM and related methods to the structure determination of amyloid fibrils extracted post mortem from patient brains or formed in vitro. We also discuss cell models of protein aggregation and the contributions of electron tomography to understanding the cellular context of aggregation.
Collapse
Affiliation(s)
- Anthony Wp Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, Quad 4C, New York, NY 10027, USA.
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck College London, Malet St, London WC1E 7HX, UK.
| |
Collapse
|
33
|
Cryoprotective effect of an antifreeze protein purified from Tenebrio molitor larvae on vegetables. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 2019; 19:755-773. [PMID: 30237470 DOI: 10.1038/s41580-018-0060-8] [Citation(s) in RCA: 580] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aggregation of proteins into amyloid fibrils and their deposition into plaques and intracellular inclusions is the hallmark of amyloid disease. The accumulation and deposition of amyloid fibrils, collectively known as amyloidosis, is associated with many pathological conditions that can be associated with ageing, such as Alzheimer disease, Parkinson disease, type II diabetes and dialysis-related amyloidosis. However, elucidation of the atomic structure of amyloid fibrils formed from their intact protein precursors and how fibril formation relates to disease has remained elusive. Recent advances in structural biology techniques, including cryo-electron microscopy and solid-state NMR spectroscopy, have finally broken this impasse. The first near-atomic-resolution structures of amyloid fibrils formed in vitro, seeded from plaque material and analysed directly ex vivo are now available. The results reveal cross-β structures that are far more intricate than anticipated. Here, we describe these structures, highlighting their similarities and differences, and the basis for their toxicity. We discuss how amyloid structure may affect the ability of fibrils to spread to different sites in the cell and between organisms in a prion-like manner, along with their roles in disease. These molecular insights will aid in understanding the development and spread of amyloid diseases and are inspiring new strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Matthew G Iadanza
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eric W Hewitt
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
35
|
Spagnolli G, Rigoli M, Orioli S, Sevillano AM, Faccioli P, Wille H, Biasini E, Requena JR. Full atomistic model of prion structure and conversion. PLoS Pathog 2019; 15:e1007864. [PMID: 31295325 PMCID: PMC6622554 DOI: 10.1371/journal.ppat.1007864] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/23/2019] [Indexed: 11/19/2022] Open
Abstract
Prions are unusual protein assemblies that propagate their conformationally-encoded information in absence of nucleic acids. The first prion identified, the scrapie isoform (PrPSc) of the cellular prion protein (PrPC), caused epidemic and epizootic episodes [1]. Most aggregates of other misfolding-prone proteins are amyloids, often arranged in a Parallel-In-Register-β-Sheet (PIRIBS) [2] or β-solenoid conformations [3]. Similar folding models have also been proposed for PrPSc, although none of these have been confirmed experimentally. Recent cryo-electron microscopy (cryo-EM) and X-ray fiber-diffraction studies provided evidence that PrPSc is structured as a 4-rung β-solenoid (4RβS) [4, 5]. Here, we combined different experimental data and computational techniques to build the first physically-plausible, atomic resolution model of mouse PrPSc, based on the 4RβS architecture. The stability of this new PrPSc model, as assessed by Molecular Dynamics (MD) simulations, was found to be comparable to that of the prion forming domain of Het-s, a naturally-occurring β-solenoid. Importantly, the 4RβS arrangement allowed the first simulation of the sequence of events underlying PrPC conversion into PrPSc. This study provides the most updated, experimentally-driven and physically-coherent model of PrPSc, together with an unprecedented reconstruction of the mechanism underlying the self-catalytic propagation of prions.
Collapse
Affiliation(s)
- Giovanni Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO)–University of Trento, Povo TN, ITALY
- * E-mail: (GS); (EB); (JRR)
| | - Marta Rigoli
- Department of Cellular, Computational and Integrative Biology (CIBIO)–University of Trento, Povo TN, ITALY
- Department of Physics, Povo, Trento TN, ITALY
| | - Simone Orioli
- Department of Physics, Povo, Trento TN, ITALY
- INFN-TIFPA, Povo (Trento), ITALY
| | - Alejandro M. Sevillano
- Department of Pathology–University of California—San Diego, San Diego, California, United States of America
| | - Pietro Faccioli
- Department of Physics, Povo, Trento TN, ITALY
- INFN-TIFPA, Povo (Trento), ITALY
| | - Holger Wille
- Department of Biochemistry and Centre for Prions and Protein Folding Diseases–University of Alberta, Edmonton (AB), CANADA
| | - Emiliano Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO)–University of Trento, Povo TN, ITALY
- * E-mail: (GS); (EB); (JRR)
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago, SPAIN
- * E-mail: (GS); (EB); (JRR)
| |
Collapse
|
36
|
Erskine E, Morris RJ, Schor M, Earl C, Gillespie RMC, Bromley KM, Sukhodub T, Clark L, Fyfe PK, Serpell LC, Stanley‐Wall NR, MacPhee CE. Formation of functional, non-amyloidogenic fibres by recombinant Bacillus subtilis TasA. Mol Microbiol 2018; 110:897-913. [PMID: 29802781 PMCID: PMC6334530 DOI: 10.1111/mmi.13985] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
Abstract
Bacterial biofilms are communities of microbial cells encased within a self-produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid-like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross-complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.
Collapse
Affiliation(s)
- Elliot Erskine
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD1 4HNUK
| | - Ryan J. Morris
- James Clerk Maxwell Building, School of Physics, and AstronomyUniversity of Edinburgh, The Kings Buildings, Peter Guthrie Tait RoadEdinburghEH9 3FDUK
| | - Marieke Schor
- James Clerk Maxwell Building, School of Physics, and AstronomyUniversity of Edinburgh, The Kings Buildings, Peter Guthrie Tait RoadEdinburghEH9 3FDUK
| | - Chris Earl
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD1 4HNUK
| | - Rachel M. C. Gillespie
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD1 4HNUK
| | - Keith M. Bromley
- James Clerk Maxwell Building, School of Physics, and AstronomyUniversity of Edinburgh, The Kings Buildings, Peter Guthrie Tait RoadEdinburghEH9 3FDUK
| | - Tetyana Sukhodub
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD1 4HNUK
| | - Lauren Clark
- James Clerk Maxwell Building, School of Physics, and AstronomyUniversity of Edinburgh, The Kings Buildings, Peter Guthrie Tait RoadEdinburghEH9 3FDUK
| | - Paul K. Fyfe
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD1 4HNUK
| | | | - Nicola R. Stanley‐Wall
- Division of Molecular Microbiology, School of Life SciencesUniversity of DundeeDundeeDD1 4HNUK
| | - Cait E. MacPhee
- James Clerk Maxwell Building, School of Physics, and AstronomyUniversity of Edinburgh, The Kings Buildings, Peter Guthrie Tait RoadEdinburghEH9 3FDUK
| |
Collapse
|
37
|
Structural and biochemical characterization of SpoIIIAF, a component of a sporulation-essential channel in Bacillus subtilis. J Struct Biol 2018; 204:1-8. [DOI: 10.1016/j.jsb.2018.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022]
|
38
|
Identification of Effective Dimeric Gramicidin-D Peptide as Antimicrobial Therapeutics over Drug Resistance: In-Silico Approach. Interdiscip Sci 2018; 11:575-583. [PMID: 30182355 DOI: 10.1007/s12539-018-0304-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Discovering and developing the antimicrobial peptides are recently focused on pharmaceutical firm, since they serve as complementary to antibiotics in prevailing over drug resistance by eliciting the disruption of microbial membrane. Still, there are lots of challenges to bring up the structurally stable and functionally efficient antimicrobial peptides. It is well known that gramicidin D is the prominent antimicrobial peptide that exists as g-AB, g-BC, and g-AC. This study analyzes the structural stability and the functional activity of hetero-dimeric double-stranded gramicidin-D peptides, thereby demonstrating its potent antimicrobial activity against antibiotic-resistant micro-organisms. To investigate the structural stability and functionality of gramicidin D, we performed static and dynamic analysis. Initially, we observed a maximum number of intermolecular interactions and membrane penetration in g-AB as compared to g-BC and g-AC. To substantiate further, the geometrical and thermodynamic parameters revealed the retention of maximum stability in g-AB than g-AC and g-BC. Thus, the conformational free energy and the binding free energy showed the variation among gramicidin-D peptides for the prediction of increased stability and functionality. In conclusion, g-AB peptide has definitely demonstrated adequate structural stability and functionality and this work will need to be considered in peptide-based drug discovery.
Collapse
|
39
|
Hexapeptide Tandem Repeats Dictate the Formation of Silkmoth Chorion, a Natural Protective Amyloid. J Mol Biol 2018; 430:3774-3783. [PMID: 29964045 DOI: 10.1016/j.jmb.2018.06.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/29/2022]
Abstract
Silkmoth chorion is a fibrous structure composed mainly of two major protein classes, families A and B. Both families of silkmoth chorion proteins present a highly conserved, in sequence and in length, central domain, consisting of Gly-rich tandem hexapeptide repetitive segments, flanked by two more variable N-terminal and C-terminal arms. Primary studies identified silkmoth chorion as a functional protective amyloid by unveiling the amyloidogenic properties of the central domain of both protein families. In this work, we attempt to detect the principal source of amyloidogenicity of the central domain by focusing on the role of the tandem hexapeptide sequence repeats. Concurrently, we discuss a possible mechanism for the self-assembly of class A protofilaments, suggesting that the aggregation-prone hexapeptide building blocks may fold into a triangle-shaped β-helical structure.
Collapse
|
40
|
Flores-Fernández JM, Rathod V, Wille H. Comparing the Folds of Prions and Other Pathogenic Amyloids. Pathogens 2018; 7:E50. [PMID: 29734684 PMCID: PMC6027354 DOI: 10.3390/pathogens7020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 01/13/2023] Open
Abstract
Pathogenic amyloids are the main feature of several neurodegenerative disorders, such as Creutzfeldt⁻Jakob disease, Alzheimer’s disease, and Parkinson’s disease. High resolution structures of tau paired helical filaments (PHFs), amyloid-β(1-42) (Aβ(1-42)) fibrils, and α-synuclein fibrils were recently reported using cryo-electron microscopy. A high-resolution structure for the infectious prion protein, PrPSc, is not yet available due to its insolubility and its propensity to aggregate, but cryo-electron microscopy, X-ray fiber diffraction, and other approaches have defined the overall architecture of PrPSc as a 4-rung β-solenoid. Thus, the structure of PrPSc must have a high similarity to that of the fungal prion HET-s, which is part of the fungal heterokaryon incompatibility system and contains a 2-rung β-solenoid. This review compares the structures of tau PHFs, Aβ(1-42), and α-synuclein fibrils, where the β-strands of each molecule stack on top of each other in a parallel in-register arrangement, with the β-solenoid folds of HET-s and PrPSc.
Collapse
Affiliation(s)
- José Miguel Flores-Fernández
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Vineet Rathod
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| | - Holger Wille
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB T6G 2M8, Canada.
| |
Collapse
|
41
|
Roterman I, Banach M, Konieczny L. Propagation of Fibrillar Structural Forms in Proteins Stopped by Naturally Occurring Short Polypeptide Chain Fragments. Pharmaceuticals (Basel) 2017; 10:E89. [PMID: 29144442 PMCID: PMC5748646 DOI: 10.3390/ph10040089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022] Open
Abstract
Amyloids characterized by unbounded growth of fibrillar structures cause many pathological processes. Such unbounded propagation is due to the presence of a propagating hydrophobicity field around the fibril's main axis, preventing its closure (unlike in globular proteins). Interestingly, similar fragments, commonly referred to as solenoids, are present in many naturally occurring proteins, where their propagation is arrested by suitably located "stopper" fragments. In this work, we analyze the distribution of hydrophobicity in solenoids and in their corresponding "stoppers" from the point of view of the fuzzy oil drop model (called FOD in this paper). This model characterizes the unique linear propagation of local hydrophobicity in the solenoid fragment and allows us to pinpoint "stopper" sequences, where local hydrophobicity quite closely resembles conditions encountered in globular proteins. Consequently, such fragments perform their function by mediating entropically advantageous contact with the water environment. We discuss examples of amyloid-like structures in solenoids, with particular attention to "stop" segments present in properly folded proteins found in living organisms.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Mateusz Banach
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 31-530 Krakow, Poland.
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Medical College, Jagiellonian University, 31-034 Krakow, Poland.
| |
Collapse
|
42
|
Wang C, Pakhomova S, Newcomer ME, Christner BC, Luo BH. Structural basis of antifreeze activity of a bacterial multi-domain antifreeze protein. PLoS One 2017; 12:e0187169. [PMID: 29108002 PMCID: PMC5673226 DOI: 10.1371/journal.pone.0187169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/13/2017] [Indexed: 01/05/2023] Open
Abstract
Antifreeze proteins (AFPs) enhance the survival of organisms inhabiting cold environments by affecting the formation and/or structure of ice. We report the crystal structure of the first multi-domain AFP that has been characterized. The two ice binding domains are structurally similar. Each consists of an irregular β-helix with a triangular cross-section and a long α-helix that runs parallel on one side of the β-helix. Both domains are stabilized by hydrophobic interactions. A flat plane on the same face of each domain’s β-helix was identified as the ice binding site. Mutating any of the smaller residues on the ice binding site to bulkier ones decreased the antifreeze activity. The bulky side chain of Leu174 in domain A sterically hinders the binding of water molecules to the protein backbone, partially explaining why antifreeze activity by domain A is inferior to that of domain B. Our data provide a molecular basis for understanding differences in antifreeze activity between the two domains of this protein and general insight on how structural differences in the ice-binding sites affect the activity of AFPs.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Svetlana Pakhomova
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Marcia E. Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent C. Christner
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Department of Microbiology and Cell Science, Biodiversity Institute, University of Florida, Gainesville, Florida, United States of America
| | - Bing-Hao Luo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
43
|
Banach M, Konieczny L, Roterman I. Why do antifreeze proteins require a solenoid? Biochimie 2017; 144:74-84. [PMID: 29054801 DOI: 10.1016/j.biochi.2017.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022]
Abstract
Proteins whose presence prevents water from freezing in living organisms at temperatures below 0 °C are referred to as antifreeze proteins. This group includes molecules of varying size (from 30 to over 300 aa) and variable secondary/supersecondary conformation. Some of these proteins also contain peculiar structural motifs called solenoids. We have applied the fuzzy oil drop model in the analysis of four categories of antifreeze proteins: 1 - very small proteins, i.e. helical peptides (below 40 aa); 2 - small globular proteins (40-100 aa); 3 - large globular proteins (>100 aa) and 4 - proteins containing solenoids. The FOD model suggests a mechanism by which antifreeze proteins prevent freezing. In accordance with this theory, the presence of the protein itself produces an ordering of water molecules which counteracts the formation of ice crystals. This conclusion is supported by analysis of the ordering of hydrophobic and hydrophilic residues in antifreeze proteins, revealing significant variability - from perfect adherence to the fuzzy oil drop model through structures which lack a clearly defined hydrophobic core, all the way to linear arrangement of alternating local minima and maxima propagating along the principal axis of the solenoid (much like in amyloids). The presented model - alternative with respect to the ice docking model - explains the antifreeze properties of compounds such as saccharides and fatty acids. The fuzzy oil drop model also enables differentiation between amyloids and antifreeze proteins.
Collapse
Affiliation(s)
- M Banach
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland
| | - L Konieczny
- Chair of Medical Biochemistry, Jagiellonian University, Medical College, Kopernika 7, 31-034, Krakow, Poland
| | - I Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University, Medical College, Lazarza 16, 31-530, Krakow, Poland.
| |
Collapse
|
44
|
Roche DB, Viet PD, Bakulina A, Hirsh L, Tosatto SCE, Kajava AV. Classification of β-hairpin repeat proteins. J Struct Biol 2017; 201:130-138. [PMID: 29017817 DOI: 10.1016/j.jsb.2017.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/11/2022]
Abstract
In recent years, a number of new protein structures that possess tandem repeats have emerged. Many of these proteins are comprised of tandem arrays of β-hairpins. Today, the amount and variety of the data on these β-hairpin repeat (BHR) structures have reached a level that requires detailed analysis and further classification. In this paper, we classified the BHR proteins, compared structures, sequences of repeat motifs, functions and distribution across the major taxonomic kingdoms of life and within organisms. As a result, we identified six different BHR folds in tandem repeat proteins of Class III (elongated structures) and one BHR fold (up-and-down β-barrel) in Class IV ("closed" structures). Our survey reveals the high incidence of the BHR proteins among bacteria and viruses and their possible relationship to the structures of amyloid fibrils. It indicates that BHR folds will be an attractive target for future structural studies, especially in the context of age-related amyloidosis and emerging infectious diseases. This work allowed us to update the RepeatsDB database, which contains annotated tandem repeat protein structures and to construct sequence profiles based on BHR structural alignments.
Collapse
Affiliation(s)
- Daniel B Roche
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France
| | - Phuong Do Viet
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France
| | - Anastasia Bakulina
- Novosibirsk State University, Pirogova str. 1, Novosibirsk 630090, Russia; State Research Center of Virology and Biotechnology VECTOR, Koltsovo, Russia
| | - Layla Hirsh
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy; Engineering Department, Pontifical Catholic University of Peru, Lima 32, Peru
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France; Institut de Biologie Computationnelle, Montpellier, France.
| |
Collapse
|
45
|
Beulin DSJ, Radhakrishnan D, Suresh SC, Sadasivan C, Yamaguchi M, Kawabata S, Ponnuraj K. Streptococcus pneumoniae
surface protein PfbA is a versatile multidomain and multiligand-binding adhesin employing different binding mechanisms. FEBS J 2017; 284:3404-3421. [DOI: 10.1111/febs.14200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
| | - Deepthi Radhakrishnan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| | - Sharanya C. Suresh
- Department of Biotechnology & Microbiology; School of Life Sciences; Kannur University; Palayad India
| | - Chittalakottu Sadasivan
- Department of Biotechnology & Microbiology; School of Life Sciences; Kannur University; Palayad India
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology; Osaka University Graduate School of Dentistry; Suita Osaka Japan
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| |
Collapse
|
46
|
Abstract
Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the "protein-only" nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.
Collapse
|
47
|
Fitzpatrick AW, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SH. Cryo-EM structures of tau filaments from Alzheimer's disease. Nature 2017; 547:185-190. [PMID: 28678775 PMCID: PMC5552202 DOI: 10.1038/nature23002] [Citation(s) in RCA: 1331] [Impact Index Per Article: 190.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/05/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Benjamin Falcon
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Shaoda He
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Alexey G. Murzin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Holly J. Garringer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - R. Anthony Crowther
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michel Goedert
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sjors H.W. Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
48
|
Hayward S, Milner-White EJ. Geometrical principles of homomeric β-barrels and β-helices: Application to modeling amyloid protofilaments. Proteins 2017. [PMID: 28646497 DOI: 10.1002/prot.25341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Examples of homomeric β-helices and β-barrels have recently emerged. Here we generalize the theory for the shear number in β-barrels to encompass β-helices and homomeric structures. We introduce the concept of the "β-strip," the set of parallel or antiparallel neighboring strands, from which the whole helix can be generated giving it n-fold rotational symmetry. In this context, the shear number is interpreted as the sum around the helix of the fixed register shift between neighboring identical β-strips. Using this approach, we have derived relationships between helical width, pitch, angle between strand direction and helical axis, mass per length, register shift, and number of strands. The validity and unifying power of the method is demonstrated with known structures including α-hemolysin, T4 phage spike, cylindrin, and the HET-s(218-289) prion. From reported dimensions measured by X-ray fiber diffraction on amyloid fibrils, the relationships can be used to predict the register shift and the number of strands within amyloid protofilaments. This was used to construct models of transthyretin and Alzheimer β(40) amyloid protofilaments that comprise a single strip of in-register β-strands folded into a "β-strip helix." Results suggest both stabilization of an individual β-strip helix and growth by addition of further β-strip helices can involve the same pair of sequence segments associating with β-sheet hydrogen bonding at the same register shift. This process would be aided by a repeat sequence. Hence, understanding how the register shift (as the distance between repeat sequences) relates to helical dimensions will be useful for nanotube design.
Collapse
Affiliation(s)
- Steven Hayward
- D'Arcy Thompson Centre for Computational Biology, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - E James Milner-White
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
49
|
Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front Cell Infect Microbiol 2017; 7:148. [PMID: 28536673 PMCID: PMC5422565 DOI: 10.3389/fcimb.2017.00148] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.
Collapse
Affiliation(s)
- Jeremy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry, Centre National de La Recherche Scientifique UMR 5086-Université Lyon 1, Institute of Biology and Chemistry of ProteinsLyon, France
| | - Robert Schneider
- NMR and Molecular Interactions, Université de Lille, Centre National de La Recherche Scientifique, UMR 8576-Unité de Glycobiologie Structurale et FonctionnelleLille, France
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Françoise Jacob-Dubuisson
- Université de Lille, Centre National de La Recherche Scientifique, Institut National de La Santé et de La Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Centre d'Infection et d'Immunité de LilleLille, France
| |
Collapse
|
50
|
Zhao B, Cohen Stuart MA, Hall CK. Navigating in foldonia: Using accelerated molecular dynamics to explore stability, unfolding and self-healing of the β-solenoid structure formed by a silk-like polypeptide. PLoS Comput Biol 2017; 13:e1005446. [PMID: 28329017 PMCID: PMC5388506 DOI: 10.1371/journal.pcbi.1005446] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 04/11/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022] Open
Abstract
The β roll molecules with sequence (GAGAGAGQ)10 stack via hydrogen bonding to form fibrils which have been themselves been used to make viral capsids of DNA strands, supramolecular nanotapes and pH-responsive gels. Accelerated molecular dynamics (aMD) simulations are used to investigate the unfolding of a stack of two β roll molecules, (GAGAGAGQ)10, to shed light on the folding mechanism by which silk-inspired polypeptides form fibrils and to identify the dominant forces that keep the silk-inspired polypeptide in a β roll configuration. Our study shows that a molecule in a stack of two β roll molecules unfolds in a step-wise fashion mainly from the C terminal. The bottom template is found to play an important role in stabilizing the β roll structure of the molecule on top by strengthening the hydrogen bonds in the layer that it contacts. Vertical hydrogen bonds within the β roll structure are considerably weaker than lateral hydrogen bonds, signifying the importance of lateral hydrogen bonds in stabilizing the β roll structure. Finally, an intermediate structure was found containing a β hairpin and an anti-parallel β sheet consisting of strands from the top and bottom molecules, revealing the self-healing ability of the β roll stack.
Collapse
Affiliation(s)
- Binwu Zhao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States
| | - Martien A. Cohen Stuart
- Laboratory of Physical Chemistry & Colloid Science, Wageningen University, NL, Wageningen, The Netherlands
| | - Carol K. Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|