1
|
Protein Folding and the Challenges of Maintaining Endoplasmic Reticulum Proteostasis in Idiopathic Pulmonary Fibrosis. Ann Am Thorac Soc 2018; 14:S410-S413. [PMID: 29161089 DOI: 10.1513/annalsats.201703-207aw] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alveolar epithelial type II (AEII) cells are "professional" secretory cells that synthesize and secrete massive quantities of proteins to produce pulmonary surfactant and maintain airway immune defenses. To facilitate this high level of protein synthesis, AEII cells are equipped with an elaborate endoplasmic reticulum (ER) structure and possess an abundance of the machinery needed to fold, assemble, and secrete proteins. However, conditions that suddenly increase the quantity of new proteins entering the ER or that impede the capacity of the ER to fold proteins can cause misfolded or unfolded proteins to accumulate in the ER lumen, also called ER stress. To minimize this stress, AEII cells adapt by (1) reducing the quantity of proteins entering the ER, (2) increasing the amount of protein-folding machinery, and (3) removing misfolded proteins when they accumulate. Although these adaptive responses, aptly named the unfolded protein response, are usually effective in reducing ER stress, chronic aggregation of misfolded proteins is recognized as a hallmark feature of AEII cells in patients with idiopathic pulmonary fibrosis (IPF). Although mutations in surfactant proteins are linked to the development of ER stress in some rare IPF cases, the mechanisms causing protein misfolding in most cases are unknown. In this article, we review the mechanisms regulating ER proteostasis and highlight specific aspects of protein folding and the unfolded protein response that are most vulnerable to failure. Then, we postulate mechanisms other than genetic mutations that might contribute to protein aggregation in the alveolar epithelium of IPF lung.
Collapse
|
2
|
Zagoura DS, Trohatou O, Bitsika V, Makridakis M, Pappa KI, Vlahou A, Roubelakis MG, Anagnou NP. AF-MSCs fate can be regulated by culture conditions. Cell Death Dis 2013; 4:e571. [PMID: 23559005 PMCID: PMC3668631 DOI: 10.1038/cddis.2013.93] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human mesenchymal stem cells (hMSCs) represent a population of multipotent adherent cells able to differentiate into many lineages. In our previous studies, we isolated and expanded fetal MSCs from second-trimester amniotic fluid (AF) and characterized them based on their phenotype, pluripotency and proteomic profile. In the present study, we investigated the plasticity of these cells based on their differentiation, dedifferentiation and transdifferentiation potential in vitro. To this end, adipocyte-like cells (AL cells) derived from AF-MSCs can regain, under certain culture conditions, a more primitive phenotype through the process of dedifferentiation. Dedifferentiated AL cells derived from AF-MSCs (DAF-MSCs), gradually lost the expression of adipogenic markers and obtained similar morphology and differentiation potential to AF-MSCs, together with regaining the pluripotency marker expression. Moreover, a comparative proteomic analysis of AF-MSCs, AL cells and DAF-MSCs revealed 31 differentially expressed proteins among the three cell populations. Proteins, such as vimentin, galectin-1 and prohibitin that have a significant role in stem cell regulatory mechanisms, were expressed in higher levels in AF-MSCs and DAF-MSCs compared with AL cells. We next investigated whether AL cells could transdifferentiate into hepatocyte-like cells (HL cells) directly or through a dedifferentiation step. AL cells were cultured in hepatogenic medium and 4 days later they obtained a phenotype similar to AF-MSCs, and were termed as transdifferentiated AF-MSCs (TRAF-MSCs). This finding, together with the increase in pluripotency marker expression, indicated the adaption of a more primitive phenotype before transdifferentiation. Additionally, we observed that AF-, DAF- and TRAF-MSCs displayed similar clonogenic potential, secretome and proteome profile. Considering the easy access to this fetal cell source, the plasticity of AF-MSCs and their potential to dedifferentiate and transdifferentiate, AF may provide a valuable tool for cell therapy and tissue engineering applications.
Collapse
Affiliation(s)
- D S Zagoura
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kang SG, Matin MN, Bae H, Natarajan S. Proteome analysis and characterization of phenotypes of lesion mimic mutant spotted leaf 6 in rice. Proteomics 2007; 7:2447-58. [PMID: 17623303 DOI: 10.1002/pmic.200600961] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rice spotted leaf 6 (spl6) mutant produces lesions caused by spontaneous cell death in the absence of pathogenic infection. Expression of this genetic trait was developmentally programmed. After the tillering stage, small red and brown lesions were initiated in groups on the leaf blade. Eventually, the lesions formed parallel lines along the midrib of the leaf. Under light and transmission electron microscopy, we observed that thylakoid membranes of mesophyll chloroplasts were progressively damaged in the nonspotted section of the mutant leaf. However, chloroplasts were absent in the mesophyll cells of the spotted area of the spl6 mutant. These results indicated that lesion formation of the spl6 mutant might be caused by oxidative burst. Proteome analysis revealed that 159 protein spots were up or downregulated in comparison between spotted leaves of the spl6 mutant plants and normal leaves of the wild type. Among them, protein disulfide isomerase (PDI), transketolase, thioredoxin peroxidase (TPX), ATP synthase, RuBisCO large subunit, and RuBisCO activase small subunit were not identified in the spl6 mutant but were abundant in the wild type. Especially, the absence of TPX and PDI might be the cause of the failure to protect cells against oxidative burst resulting in degradation of the thylakoid membranes and leading to programmed cell death and lesion development.
Collapse
Affiliation(s)
- Sang Gu Kang
- Molecular Genetics Laboratory, School of Biotechnology, Institute of Biotechnology, Yeungnam University, Gyeongsan, Korea.
| | | | | | | |
Collapse
|
4
|
Salamanca S, Chang JY. Pathway of oxidative folding of a 3-disulfide alpha-lactalbumin may resemble either BPTI model or hirudin model. Protein J 2007; 25:275-87. [PMID: 16710754 DOI: 10.1007/s10930-006-9011-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pathways of oxidative folding of disulfide proteins display a high degree of diversity and vary among two extreme models. The BPTI model is defined by limited species of folding intermediates adopting mainly native disulfide bonds. The hirudin model is characterized by highly heterogeneous folding intermediates containing mostly non-native disulfide bonds. alphaLA-IIIA is a 3-disulfide variant of alpha-lactalbumin (alphaLA) with a 3-D conformation essentially identical to that of intact alphaLA. alphaLA-IIIA contains 3 native disulfide bonds of alphaLA, two of them are located at the calcium binding beta-subdomain (Cys61-Cys77 and Cys73-Cys91) and the third bridge is located within the alpha-helical domain of the molecule (Cys28-Cys111). We investigate here the pathway of oxidative folding of fully reduced alphaLA-IIIA with and without stabilization of its beta-subdomain by calcium binding. In the absence of calcium, the folding pathway of alphaLA-IIIA was shown to resemble that of hirudin model. Upon stabilization of beta-sheet domain by calcium binding, the folding pathway of alphaLA-IIIA exhibits a striking similarity to that of BPTI model. Three predominant folding intermediates of alphaLA-IIIA containing exclusively native disulfide bonds were isolated and structurally characterized. Our results further demonstrate that stabilization of subdomains in a protein may dictate its folding pathway and represent a major cause for the existing diversity in the folding pathways of the disulfide-containing proteins.
Collapse
Affiliation(s)
- Silvia Salamanca
- Research Center for Protein Chemistry, Institute of Molecular Medicine, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | | |
Collapse
|
5
|
Abstract
Human serum contains factors that promote oxidative folding of disulphide proteins. We demonstrate this here using hirudin as a model. Hirudin is a leech-derived thrombin-specific inhibitor containing 65 amino acids and three disulphide bonds. Oxidative folding of hirudin in human serum is shown to involve an initial phase of rapid disulphide formation (oxidation) to form the scrambled isomers as intermediates. This is followed by the stage of slow disulphide shuffling of scrambled isomers to attain the native hirudin. The kinetics of regenerating the native hirudin depend on the concentrations of both hirudin and human serum. Quantitative regeneration of native hirudin in undiluted human serum can be completed within 48 h, without any redox supplement. These results cannot be adequately explained by the existing oxidized thiol agents in human serum or the macromolecular crowding effect, and therefore indicate that human serum may contain yet to be identified potent oxidase(s) for assisting protein folding.
Collapse
Affiliation(s)
- Jui-Yoa Chang
- Research Center for Protein Chemistry, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas, Houston, TX 77030, USA.
| | | | | |
Collapse
|
6
|
Sliskovic I, Mutus B. Reversible inhibition of caspase-3 activity by iron(III): potential role in physiological control of apoptosis. FEBS Lett 2006; 580:2233-7. [PMID: 16579993 DOI: 10.1016/j.febslet.2006.03.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Desferoxamine is known to induce apoptosis in cancer cells, but the mechanisms are still not fully understood. We have shown that iron(III) is a potent caspase-3 inhibitor, and the inhibition is reversible by the iron chelating agent desferoxamine. Also, protein disulfide isomerase (PDI) is capable of activating caspase-3 inhibited by iron(III), likely by formation of iron-sulfur complex through its active site thiols. Data presented here suggests that iron(III) could be a potential inhibitor of apoptosis in vivo, by caspase-3-dependent inhibition with a possibility of recovery through PDI overexpression.
Collapse
Affiliation(s)
- Inga Sliskovic
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ont., Canada N9B 3P4
| | | |
Collapse
|
7
|
Lu BY, Chang JY. Assay of disulfide oxidase and isomerase based on the model of hirudin folding. Anal Biochem 2005; 339:94-103. [PMID: 15766715 DOI: 10.1016/j.ab.2004.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Indexed: 11/25/2022]
Abstract
Oxidative folding of fully reduced hirudin (R-Hir, six cysteines) undergoes two distinct stages. A first stage of nonspecific disulfide formation promoted by oxidase converts R-Hir to form 3-disulfide scrambled hirudins (X-Hir) as obligatory intermediates. A second stage of disulfide shuffling catalyzed by isomerase converts X-Hir to the native hirudin (N-Hir). The model of hirudin folding is utilized here to develop an assay system for measuring the activity of disulfide oxidase and isomerase, using high-performance liquid chromatography (HPLC) quantification of R-Hir, X-Hir, and N-Hir. The oxidase assay measures the ability of an oxidase to promote R-HirX-Hir conversion. The molar specific activity is expressed as mol ofR-Hir decrease per mol of oxidase per min. The isomerase assay measures the ability of an isomerase to catalyze X-HirN-Hir transformation. The molar specific activity is expressed as mol ofN-Hir increase per mol of isomerase per min. Alternatively, the recovery of N-Hir in the isomerase assay can be determined by its alpha-thrombin inhibitory activity. Using both HPLC and activity-based assay, we have measured the relative oxidase and isomerase activity of reduced and oxidized glutathione, Cys, Cys-Cys, and reduced and oxidized protein disulfide isomerase (PDI). The molar specific activity of reduced PDI was shown to be 0.1+/-0.01 U, which is consistent with documented data obtained by the scrambled RNase-A-based assay. These proposed assay methods provide alternatives to the limited option of methodologies currently available for measuring oxidase and isomerase activities. A major merit of the proposed assay system is the potential to accommodate the analysis of biological samples.
Collapse
Affiliation(s)
- Bao-Yuan Lu
- Research Center for Protein Chemistry, Institute of Molecular Medicine, The University of Texas, Houston, TX 77030, USA
| | | |
Collapse
|
8
|
Stefanovic B, Stefanovic L, Schnabl B, Bataller R, Brenner DA. TRAM2 protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for collagen type I synthesis. Mol Cell Biol 2004; 24:1758-68. [PMID: 14749390 PMCID: PMC344171 DOI: 10.1128/mcb.24.4.1758-1768.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cotranslational insertion of type I collagen chains into the lumen of the endoplasmic reticulum (ER) and their subsequent folding into a heterotrimeric helix is a complex process which requires coordinated action of the translation machinery, components of translocons, molecular chaperones, and modifying enzymes. Here we describe a role for the protein TRAM2 in collagen type I expression in hepatic stellate cells (HSCs) and fibroblasts. Activated HSCs are collagen-producing cells in the fibrotic liver. Quiescent HSCs produce trace amounts of type I collagen, while upon activation collagen synthesis increases 50- to 70-fold. Likewise, expression of TRAM2 dramatically increases in activated HSCs. TRAM2 shares 53% amino acid identity with the protein TRAM, which is a component of the translocon. However, TRAM2 has a C terminus with only a 15% identity. The C-terminal part of TRAM2 interacts with the Ca(2+) pump of the ER, SERCA2b, as demonstrated in a Saccharomyces cerevisiae two-hybrid screen and by immunoprecipitations in human cells. TRAM2 also coprecipitates with anticollagen antibody, suggesting that these two proteins interact. Deletion of the C-terminal part of TRAM2 inhibits type I collagen synthesis during activation of HSCs. The pharmacological inhibitor of SERCA2b, thapsigargin, has a similar effect. Depletion of ER Ca(2+) with thapsigargin results in inhibition of triple helical collagen folding and increased intracellular degradation. We propose that TRAM2, as a part of the translocon, is required for the biosynthesis of type I collagen by coupling the activity of SERCA2b with the activity of the translocon. This coupling may increase the local Ca(2+) concentration at the site of collagen synthesis, and a high Ca(2+) concentration may be necessary for the function of molecular chaperones involved in collagen folding.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | | | | | |
Collapse
|
9
|
Warsame A, Vad R, Kristensen T, Oyen TB. Characterization of a gene encoding a Pichia pastoris protein disulfide isomerase. Biochem Biophys Res Commun 2001; 281:1176-82. [PMID: 11243858 DOI: 10.1006/bbrc.2001.4479] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein disulphide isomerases belong to the thioredoxin superfamily of protein-thiol oxidoreductases that have two double-cysteine redox-active sites and take part in protein folding in the endoplasmic reticulum (ER). We report here the cloning of a Pichia pastoris genomic DNA fragment (2919 bp) that encodes the full length of a protein disulphide isomerase (PpPDI). The deduced amino acid sequence of PDI consists of 517 residues and carries the two characteristic PDI-type redox-active domains -CGHC-, separated by 338 residues, and two potential N-glycosylation sites. The N-terminal end forms a putative signal sequence, and an acidic C-terminal region represents a possible calcium-binding domain. Together with the -HDEL ER retrieval sequence at the C-terminus, these features indicate that the gene encodes a redox-active ER-resident protein disulphide isomerase. The nucleotide sequence, which also contains two other open reading frames, has been submitted to the EMBL Nucleotide Sequence Database, Accession No. AJ302014.
Collapse
Affiliation(s)
- A Warsame
- Department of Biochemistry, University of Oslo, Oslo, 0316, Norway
| | | | | | | |
Collapse
|
10
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
11
|
Wojtaszek P, Smith CG, Bolwell GP. Ultrastructural localisation and further biochemical characterisation of prolyl 4-hydroxylase from Phaseolus vulgaris: comparative analysis. Int J Biochem Cell Biol 1999; 31:463-77. [PMID: 10224670 DOI: 10.1016/s1357-2725(98)00126-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Prolyl 4-hydroxylase (EC 1.14.11.2), the enzyme responsible for the post-translational hydroxylation of peptide proline, has been well described in animals but has been little studied in plants. The best characterised example is the enzyme from French bean (Phaseolus vulgaris). In this study, the biochemical properties of this plant enzyme were examined in more detail and, using specific polyclonal antibodies, the localisation of the enzyme was determined. Both alpha- and beta-subunits did not show multiple forms, suggesting a relatively broad specificity of the enzyme complex with respect to the target hydroxylated amino acid sequences. Antibodies to the mammalian and Chlamydomonas enzymes cross-react with the higher plant subunits, indicating that some epitopes are highly conserved. The P. vulgaris enzyme was inhibited by analogues of oxoglutarate, but was not susceptible to doxorubicin. Inhibition of the bean enzyme by an oxaloglycine derivative resulted in the retention of the target (hydroxy)proline-rich protein in the endomembrane system. Immunolocalisation of the enzyme showed close association with the endoplasmic reticulum and Golgi apparatus in root tip cells of P. vulgaris or Tropaeolum majus. This localisation was particularly pronounced in Golgi-associated vesicles of young root tip cells of T. majus, cell types where rapid synthesis and deposition of wall material was observed. These data are consistent with the hypothesis, proposed by Bolwell [G.P. Bolwell, Dynamic aspects of the plant extracellular matrix, Int. Rev. Cytol. 146 (1993) 261-324], that protein hydroxylation must be completed before the glycosylation of the target (hydroxy)proline-rich glycoproteins in the Golgi stack.
Collapse
Affiliation(s)
- P Wojtaszek
- Division of Biochemistry, School of Biological Sciences, Royal Holloway and Bedford New College, University of London, Egham, Surrey, UK
| | | | | |
Collapse
|
12
|
Cheung PY, Churchich JE, Lee KS. Refolding of thioredoxin reductase assisted by groEL and PDI. Biochem Biophys Res Commun 1999; 255:17-22. [PMID: 10082648 DOI: 10.1006/bbrc.1998.0135] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thioredoxin reductase was unfolded in 2 M guanidine hydrochloride as revealed by fluorescence and CD spectroscopy. Spontaneous refolding of denatured species resulted in low recovery of 10% catalytic activity after 4 h incubation at 25 degrees C. Addition of groEL or protein disulfide isomerase to the renaturation buffer accelerated the rate of recovery of catalytic activity to a level of 35 and 15%, respectively. Fluorescence spectroscopy has been used to investigate the interaction of groEL and protein disulfide isomerase with denatured thioredoxin reductase tagged with a fluorescent probe. The fluorescence emitted by the denatured protein was quenched upon binding to either groEL or protein disulfide isomerase. It is suggested that encapsulation of the protein substrate by the chaperone plays an important role in the process of folding by facilitating the formation of correctly folded species.
Collapse
Affiliation(s)
- P Y Cheung
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
13
|
Altamirano MM, García C, Possani LD, Fersht AR. Oxidative refolding chromatography: folding of the scorpion toxin Cn5. Nat Biotechnol 1999; 17:187-91. [PMID: 10052357 DOI: 10.1038/6192] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have made an immobilized and reusable molecular chaperone system for oxidative refolding chromatography. Its three components-GroEL minichaperone (191-345), which can prevent protein aggregation; DsbA, which catalyzes the shuffling and oxidative formation of disulfide bonds; and peptidyl-prolyl isomerase-were immobilized on an agarose gel. The gel was applied to the refolding of denatured and reduced scorpion toxin Cn5. The 66-residue toxin, which has four disulfide bridges and a cis peptidyl-proline bond, had not previously been refolded in reasonable yield. We recovered an 87% yield of protein with 100% biological activity.
Collapse
Affiliation(s)
- M M Altamirano
- Cambridge Centre for Protein Engineering and Cambridge University Chemical Laboratory, MRC Centre, UK
| | | | | | | |
Collapse
|
14
|
Jiang XM, Fitzgerald M, Grant CM, Hogg PJ. Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J Biol Chem 1999; 274:2416-23. [PMID: 9891011 DOI: 10.1074/jbc.274.4.2416] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein disulfide isomerase (PDI) facilitates proper folding and disulfide bonding of nascent proteins in the endoplasmic reticulum and is secreted by cells and associates with the cell surface. We examined the consequence of over- or underexpression of PDI in HT1080 fibrosarcoma cells for the redox state of cell-surface protein thiols/disulfides. Overexpression of PDI resulted in 3.6-4. 2-fold enhanced secretion of PDI and 1.5-1.7-fold increase in surface-bound PDI. Antisense-mediated underexpression of PDI caused 38-53% decreased secretion and 10-33% decrease in surface-bound PDI. Using 5,5'-dithio-bis(2-nitrobenzoic acid) to measure surface protein thiols, a 41-50% increase in surface thiols was observed in PDI-overexpressing cells, whereas a 29-33% decrease was observed in underexpressing cells. Surface thiol content was strongly correlated with cellular (r = 0.998) and secreted (r = 0.969) PDI levels. The pattern of exofacial protein thiols was examined by labeling with the membrane-impermeable thiol reactive compound, 3-(N-maleimidylpropionyl)biocytin. Fourteen identifiable proteins on HT1080 cells were labeled with 3-(N-maleimidylpropionyl)biocytin. The intensity of labeling of 11 proteins was increased with overexpression of PDI, whereas the intensity of labeling of 3 of the 11 proteins was clearly decreased with underexpression of PDI. These findings indicated that secreted PDI was controlling the redox state of existing exofacial protein thiols or reactive disulfide bonds.
Collapse
Affiliation(s)
- X M Jiang
- Centre for Thrombosis and Vascular Research, School of Pathology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | |
Collapse
|
15
|
Milev Y, Essex DW. Protein disulfide isomerase catalyzes the formation of disulfide-linked complexes of thrombospondin-1 with thrombin-antithrombin III. Arch Biochem Biophys 1999; 361:120-6. [PMID: 9882436 DOI: 10.1006/abbi.1998.0963] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recent demonstration of a protein disulfide isomerase (PDI) on the surface of and secreted from blood platelets raises the possibility that proteins involved in hemostasis and wound healing are also substrates of this enzyme. In this study purified preparations of platelet PDI, thrombospondin-1 (TSP), alpha-thrombin, and antithrombin III (AT) were used to demonstrate that PDI catalyzes formation of a TSP-thrombin-AT complex consistent with previous results with supernatant platelet activation. Concentrations of 1.25 microg/ml of PDI were sufficient to convert almost 50% of thrombin to TSP-thrombin-AT complex. Complex formation requires low concentrations of a reduced thiol and the reaction can be prevented by N-ethymaleimide. The complex is dissociated by reducing agents such as mercaptoethanol. Absence of Ca2+ and the addition of EDTA increased the rate of complex formation, indicating that TSP in the Ca2+-free form is most effective. In the absence of AT a small amount of TSP-thrombin complex formed which was only 0-13% of maximal complex formation in the presence of AT. This result, in combination with kinetic studies showing rapid formation of thrombin-AT complex followed by conversion to ternary complex, suggests that the thrombin-AT complex is an obligatory intermediate in the reaction. Under optimal conditions over 70% of the thrombin is incorporated into the complex in 60 min. Heparin accelerated the reaction largely by enhancing formation of thrombin-AT complexes and had little effect on TSP. PDI coprecipitated with TSP from the supernatant solution of activated platelets, suggesting an association between PDI and its substrate. In summary, these data are consistent with a role for PDI-catalyzed formation of disulfide-linked complexes of TSP with other proteins.
Collapse
Affiliation(s)
- Y Milev
- Department of Medicine Division of Hematology/Oncology and the Department of Biochemistry, State University of New York, Health Science Center at Brooklyn, Brooklyn, New York, 11203, USA
| | | |
Collapse
|
16
|
Coppock DL, Cina-Poppe D, Gilleran S. The quiescin Q6 gene (QSCN6) is a fusion of two ancient gene families: thioredoxin and ERV1. Genomics 1998; 54:460-8. [PMID: 9878249 DOI: 10.1006/geno.1998.5605] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell and tissue growth is a dynamic process determined by the fraction of cells in the proliferative cycle, the fraction of cells in quiescence, and the rate of cell death. Genes whose expression is induced at the beginning of the transition from the proliferative cell cycle to quiescence may play an important role in this process. We have identified a gene, Quiescin Q6 (QSCN6), whose expression is induced just as fibroblasts begin to leave the proliferative cycle and enter quiescence. QSCN6 is located on human chromosome 1q24, near the putative hereditary prostate cancer locus (HPC1). A triplet repeat (CTG)n encodes a putative signal sequence. The gene encodes a 582-amino-acid open reading frame that has domains that are members of two ancient gene families. These domains apparently underwent a gene fusion event during metazoan evolution to create QSCN6. QSCN6 is most closely related to three genes of unknown function from Caenorhabditis elegans as well as a gene from guinea pig. Analysis of this relationship showed nine Quiescin homology zones (QHZ). QHZ 0 is the putative signal sequence, QHZ 1 is homologous to a thioredoxin domain, and QHZ 2, 3, 4, and 8 are homologous only to themselves, while QHZ 5, 6, and 7 are homologous to the ERV1 gene of Saccharomyces cerevisiae. In both thioredoxin and ERV1 gene superfamilies, QSCN6 sequences appear to be on distinct branches of their respective phylogenetic trees, consistent with an ancient origin of the QSCN6 gene. We present a model of the origin of QSCN6 and discuss its potential role in growth regulation.
Collapse
Affiliation(s)
- D L Coppock
- Oncology Research Lab, Winthrop University Hospital, 222 Station Plaza North, No. 300, Mineola, New York, 11501, USA.
| | | | | |
Collapse
|
17
|
Hegde RS, Voigt S, Rapoport TA, Lingappa VR. TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 1998; 92:621-31. [PMID: 9506517 DOI: 10.1016/s0092-8674(00)81130-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Translocational pausing is a mechanism used by certain specialized secretory proteins whereby discrete domains of a nascent chain destined for the endoplasmic reticulum lumen are transiently exposed to the cytosol. Proteoliposomes reconstituted from total endoplasmic reticulum proteins properly assemble translocationally paused intermediates. The capacity of the translocon to correctly pause the nascent chain is dependent on a glycoprotein fraction whose active component is TRAM. In the absence of TRAM, the normally sealed ribosome-membrane junction still opens in response to a pause transfer sequence. However, nascent chain domains that are not exposed to the cytosol in the presence of TRAM are so exposed in its absence. Thus, TRAM regulates which domains of the nascent chain are visible to the cytosol during a translocational pause.
Collapse
Affiliation(s)
- R S Hegde
- Department of Physiology, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
18
|
Desilva MG, Notkins AL, Lan MS. Molecular characterization of a pancreas-specific protein disulfide isomerase, PDIp. DNA Cell Biol 1997; 16:269-74. [PMID: 9115635 DOI: 10.1089/dna.1997.16.269] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A novel tissue-specific cDNA, PDIp, was previously isolated from human pancreas. It encodes a protein that is structurally and functionally related to protein disulfide isomerase (PDI). To compare the expression pattern of PDI and PDIp in human pancreas and liver tissues, we prepared rabbit polyclonal antiserum against a recombinant glutathione-S-transferase-coupled PDIp fusion protein. Western blot analysis revealed that pancreas expresses both PDI and PDIp, whereas liver only expresses PDI. Rabbit antiserum raised against recombinant PDIp immunostained specifically to the acinar cells of human pancreas. Treatment of PDIp with peptide:N-glycosidase F caused PDIp down shift in the NaDodSO4-PAGE gel, indicating that PDIp is a glycoprotein. A 2.0-kb message was detected from mouse pancreas using a human PDIp cDNA probe. Similarly, PDIp glycoprotein was detected in mouse pancreas extract by anti-human PDIp antiserum, suggesting that PDIp is highly conserved in human and mouse pancreas. From these studies, we conclude that the pancreas expresses two members of PDI and that PDIp is a glycoprotein specifically expressed in pancreatic acinar cells.
Collapse
Affiliation(s)
- M G Desilva
- Laboratory of Oral Medicine, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-4322, USA
| | | | | |
Collapse
|
19
|
de Vries AA, Raamsman MJ, van Dijk HA, Horzinek MC, Rottier PJ. The small envelope glycoprotein (GS) of equine arteritis virus folds into three distinct monomers and a disulfide-linked dimer. J Virol 1995; 69:3441-8. [PMID: 7745690 PMCID: PMC189056 DOI: 10.1128/jvi.69.6.3441-3448.1995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The small membrane glycoprotein (GS) of equine arteritis virus (EAV) is a minor virion component but is abundantly expressed in EAV-infected cells. In this study, we have analyzed its membrane topology, folding, oligomerization, and intracellular transport. We show that GS is a class I integral membrane protein with one functional N-glycosylation site. Gel electrophoresis under nonreducing conditions revealed that GS occurs in EAV-infected cells in four monomeric conformations and as disulfide-linked homodimers. The slowest-migrating monomeric form corresponded to the fully reduced GS protein; the three faster-migrating monomeric species are probably generated by the formation of alternative intrachain disulfide bonds between the three luminal cysteines in the molecule. The GS monomers were selectively retained in the endoplasmic reticulum, as judged by their permanent susceptibility to endoglycosidase H, whereas the GS dimers were specifically incorporated into virus particles and became endoglycosidase H resistant and sialylated during passage through the Golgi apparatus.
Collapse
Affiliation(s)
- A A de Vries
- Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Chen K, Detwiler TC, Essex DW. Characterization of protein disulphide isomerase released from activated platelets. Br J Haematol 1995; 90:425-31. [PMID: 7794766 DOI: 10.1111/j.1365-2141.1995.tb05169.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein disulphide isomerase (PDI) activity is released by activated platelets. In this study, PDI was purified from platelets and found to have an apparent mass, pI and N-terminal sequence similar to those for other human PDIs. Rabbit antibodies were generated and used to establish that, on activation, platelets release a protein immunologically identical to PDI in platelets. Approximately 10% of total platelet PDI was released by thrombin and 20% by calcium ionophore. The antibody was used to demonstrate PDI on the external surface of platelets by electron microscopy. Flow cytometry was used to demonstrate that upon activation of platelets with ionophore PDI was released by vesiculation. Since platelets are present and become activated at sites of vascular injury, platelet PDI may play a role in the various haemostatic and tissue remodelling processes in which platelets are involved.
Collapse
Affiliation(s)
- K Chen
- Department of Biochemistry, State University of New York, Brooklyn 11203, USA
| | | | | |
Collapse
|
21
|
Lundström-Ljung J, Birnbach U, Rupp K, Söling HD, Holmgren A. Two resident ER-proteins, CaBP1 and CaBP2, with thioredoxin domains, are substrates for thioredoxin reductase: comparison with protein disulfide isomerase. FEBS Lett 1995; 357:305-8. [PMID: 7835433 DOI: 10.1016/0014-5793(94)01386-f] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein disulfide-isomerase (PDI) is the best known representative of a growing family of enzymes with thioredoxin domains. Two such proteins with thioredoxin (Trx) domains, CaBP1 and CaBP2 (ERp72), have previously been isolated from rat liver microsomes. Here we report that they, like PDI are substrates for thioredoxin reductase and will catalyze NADPH-dependent insulin disulfide reduction. The activity of CaBP1 and CaBP2 in this assay was higher than that of PDI but lower than that of E. coli Trx. Furthermore, as isolated the thioredoxin domains of CaBP1 and CaBP2 were in disulfide form as judged by stoichiometric oxidation of 2 and 3 mol of NADPH in CaBP1 and CaBP2, respectively. The redox potential of the active site disulfide/dithiol was estimated from the equilibrium with a mutant E. coli Trx, P34H Trx, with a known redox potential (-235 mV). This showed that CaBP1 and CaBP2, like PDI, have a much higher redox potential than wild type thioredoxin (-270 mV) in agreement with a role in formation of protein disulfide bonds. In conclusion, in vitro CaBP1 and CaBP2 share catalytic properties in thiol disulfide-interchange reactions with PDI. Thus, the well known activity of PDI is not unique in the endoplasmic reticulum and CaBP1 and CaBP2 may be regarded as functional equivalents.
Collapse
Affiliation(s)
- J Lundström-Ljung
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
22
|
De Sutter K, Hostens K, Vandekerckhove J, Fiers W. Production of enzymatically active rat protein disulfide isomerase in Escherichia coli. Gene 1994; 141:163-70. [PMID: 8163184 DOI: 10.1016/0378-1119(94)90566-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the development of a bacterial expression system allowing high-level synthesis of enzymatically active rat protein disulfide isomerase (rPDI). After expression of the rpdi gene under control of the inducible trc promoter (Ptrc), a significant amount of soluble, active rPDI was detected in the periplasmic contents, which were released from the cells by cold osmotic shock. However, the exported molecules were incompletely or improperly processed, while the major amount of synthesized rPDI was in fact detected in the soluble cellular fraction. Substitution of the autologous eukaryotic export signal with the nucleotide (nt) sequence encoding the signal peptide (sOmpA) of the bacterial outer membrane protein A, and expression of the sompA::rpdi fusion gene under control of both the lpp promoter (Plpp) and the lac promoter-operator (POlac), resulted in high-level production of rPDI. Furthermore, the latter was efficiently exported into the periplasmic compartment, from where it was recovered as a soluble, fully active form with the sOmpA precisely removed. The synthesis of a small 21-kDa peptide accompanying the production of rPDI was also observed. This rPDI-related peptide (rPDIf), which represented a C-terminal fragment of rPDI including the second active site, arose by internal translation initiation within rpdi. Replacement of the presumed internal start codon by CTC completely eliminated the aforementioned phenomenon and resulted in the production of a slightly mutated, enzymatically active enzyme (rPDIm).
Collapse
Affiliation(s)
- K De Sutter
- Laboratory of Molecular Biology, University, Gent, Belgium
| | | | | | | |
Collapse
|