1
|
Ziaunys M, Sulskis D, Mikalauskaite K, Sakalauskas A, Snieckute R, Smirnovas V. S100A9 inhibits and redirects prion protein 89-230 fragment amyloid aggregation. Arch Biochem Biophys 2024; 758:110087. [PMID: 38977154 DOI: 10.1016/j.abb.2024.110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Protein aggregation in the form of amyloid fibrils has long been associated with the onset and development of various amyloidoses, including Alzheimer's, Parkinson's or prion diseases. Recent studies of their fibril formation process have revealed that amyloidogenic protein cross-interactions may impact aggregation pathways and kinetic parameters, as well as the structure of the resulting aggregates. Despite a growing number of reports exploring this type of interaction, they only cover just a small number of possible amyloidogenic protein pairings. One such pair is between two neurodegeneration-associated proteins: the pro-inflammatory S100A9 and prion protein, which are known to co-localize in vivo. In this study, we examined their cross-interaction in vitro and discovered that the fibrillar form of S100A9 modulated the aggregation pathway of mouse prion protein 89-230 fragment, while non-aggregated S100A9 also significantly inhibited its primary nucleation process. These results complement previous observations of the pro-inflammatory protein's role in amyloid aggregation and highlight its potential role against neurodegenerative disorders.
Collapse
Affiliation(s)
- Mantas Ziaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania.
| | - Darius Sulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Kamile Mikalauskaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Ruta Snieckute
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257, Vilnius, Lithuania
| |
Collapse
|
2
|
Xia K, Shen H, Wang P, Tan R, Xun D. Investigation of the conformation of human prion protein in ethanol solution using molecular dynamics simulations. J Biomol Struct Dyn 2022:1-10. [PMID: 35838152 DOI: 10.1080/07391102.2022.2099466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
When the conformation of protein is changed from its natural state to a misfolded state, some diseases will happen like prion disease. Prion diseases are a set of deadly neurodegenerative diseases caused by prion protein misfolding and aggregation. Monohydric alcohols have a strong influence on the structure of protein. However, whether monohydric alcohols inhibit amyloid fibrosis remains uncertain. Here, to elucidate the effect of ethanol on the structural stability of human prion protein, molecular dynamics simulations were employed to analyze the conformational changes and dynamics characteristics of human prion proteins at different temperatures. The results show that the extension of β-sheet occurs more easily and the α-helix is more easily disrupted at high temperatures. We found that ethanol can destroy the hydrophobic interactions and make the hydrogen bonds stable, which protects the secondary structure of the protein, especially at 500 K.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kui Xia
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Haolei Shen
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Peng Wang
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Rongri Tan
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Damao Xun
- Department of Physics, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
3
|
Hwang S, Greenlee JJ, Nicholson EM. Real-Time Quaking-Induced Conversion Detection of PrP Sc in Fecal Samples From Chronic Wasting Disease Infected White-Tailed Deer Using Bank Vole Substrate. Front Vet Sci 2021; 8:643754. [PMID: 33748218 PMCID: PMC7969510 DOI: 10.3389/fvets.2021.643754] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) that is fatal to free-range and captive cervids. CWD has been reported in the United States, Canada, South Korea, Norway, Finland, and Sweden, and the case numbers in both wild and farmed cervids are increasing rapidly. Studies indicate that lateral transmission of cervids likely occurs through the shedding of infectious prions in saliva, feces, urine, and blood into the environment. Therefore, the detection of CWD early in the incubation time is advantageous for disease management. In this study, we adapt real-time quacking-induced conversion (RT-QuIC) assays to detect the seeding activity of CWD prions in feces samples from clinical and preclinical white-tailed deer. By optimizing reaction conditions for temperature as well as the salt and salt concentration, prion seeding activity from both clinical and preclinical animals were detected by RT-QuIC. More specifically, all fecal samples collected from 6 to 30 months post inoculation showed seeding activity under the conditions of study. The combination of a highly sensitive detection tool paired with a sample type that may be collected non-invasively allows a useful tool to support CWD surveillance in wild and captive cervids.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
4
|
Sirohi PR, Kumari A, Admane N, Somvanshi P, Grover A. The polyphenolic phytoalexin polydatin inhibits amyloid aggregation of recombinant human prion protein. RSC Adv 2021; 11:25901-25911. [PMID: 35479435 PMCID: PMC9037109 DOI: 10.1039/d1ra01891d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 12/01/2022] Open
Abstract
Prion diseases involve misfolded and highly infectious aggregates of prion protein (PrPSc) which forms amyloid plaques leading to fatal neurodegeneration. The absence of clinically proven therapeutics makes the discovery of effective remedial interventions a prime concern. Herein, we report novel prion intervention by the polyphenolic phytoalexin, polydatin which binds with moderate affinity to the recombinant protease resistant core of human prion protein, encompassing the sequence 90–231 (rPrPres) and inhibits its conversion into the highly neurotoxic forms. An extensive evaluation using biophysical techniques revealed that polydatin incubated rPrPres samples generate off-pathway oligomers having reduced cross-β sheet signature, and relatively smaller in size than the native rPrPres oligomers. The detailed structural analysis using molecular dynamics simulations elucidated the induction of antagonistic mobilities in the β2–α2 loop, α3 helix and the N-terminal amyloidogenic region of prions. This study puts forward novel prion fibrillogenesis inhibitory potential of polydatin, specifically by stabilizing the N-terminal amyloidogenic region. Collectively our results affirm the importance of polydatin in crippling the prion pathogenesis and may serve as a structural scaffold for designing novel therapeutic agents targeting amyloidogenic transition in prions. Polydatin is found to be a pharmacologically-significant scaffold that can bind to the rPrPres repertoire and inhibit its conversion to the highly infectious and neurotoxic PrPSc-like form, thus acting like a promising anti-prion drug lead.![]()
Collapse
Affiliation(s)
- Preeti Rana Sirohi
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
- Department of Biotechnology
| | - Anchala Kumari
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| | - Nikita Admane
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| | - Pallavi Somvanshi
- School of Computational and Integrative Sciences
- Jawaharlal Nehru University
- New Delhi
- India
- Special Centre of Systems Medicine
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi
- India
| |
Collapse
|
5
|
Ortega MÁ, Guzmán Merino A, Fraile-Martínez O, Recio-Ruiz J, Pekarek L, G. Guijarro L, García-Honduvilla N, Álvarez-Mon M, Buján J, García-Gallego S. Dendrimers and Dendritic Materials: From Laboratory to Medical Practice in Infectious Diseases. Pharmaceutics 2020; 12:pharmaceutics12090874. [PMID: 32937793 PMCID: PMC7560085 DOI: 10.3390/pharmaceutics12090874] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are one of the main global public health risks, predominantly caused by viruses, bacteria, fungi, and parasites. The control of infections is founded on three main pillars: prevention, treatment, and diagnosis. However, the appearance of microbial resistance has challenged traditional strategies and demands new approaches. Dendrimers are a type of polymeric nanoparticles whose nanometric size, multivalency, biocompatibility, and structural perfection offer boundless possibilities in multiple biomedical applications. This review provides the reader a general overview about the uses of dendrimers and dendritic materials in the treatment, prevention, and diagnosis of highly prevalent infectious diseases, and their advantages compared to traditional approaches. Examples of dendrimers as antimicrobial agents per se, as nanocarriers of antimicrobial drugs, as well as their uses in gene transfection, in vaccines or as contrast agents in imaging assays are presented. Despite the need to address some challenges in order to be used in the clinic, dendritic materials appear as an innovative tool with a brilliant future ahead in the clinical management of infectious diseases and many other health issues.
Collapse
Affiliation(s)
- Miguel Ángel Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Alberto Guzmán Merino
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Judith Recio-Ruiz
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
| | - Luis G. Guijarro
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain;
- Networking Research Centre on Hepatic and Digestive Diseases (CIBER-EHD), 28029 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology and Medicine Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Madrid, Spain
| | - Julia Buján
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain; (M.Á.O.); (A.G.M.); (O.F.-M.); (L.P.); (N.G.-H.); (M.Á.-M.); (J.B.)
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Tumour Registry, Pathological Anatomy Service, University Hospital Príncipe de Asturias, 28805 Alcalá de Henares, Spain
- University Center for the Defense of Madrid (CUD-ACD), 28047 Madrid, Spain
| | - Sandra García-Gallego
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and Research Institute in Chemistry “Andrés M. del Río” (IQAR), University of Alcalá, 28801 Alcalá de Henares, Spain;
- Correspondence:
| |
Collapse
|
6
|
Hwang S, Greenlee JJ, Nicholson EM. Role of donor genotype in RT-QuIC seeding activity of chronic wasting disease prions using human and bank vole substrates. PLoS One 2020; 15:e0227487. [PMID: 31910440 PMCID: PMC6946595 DOI: 10.1371/journal.pone.0227487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023] Open
Abstract
Chronic wasting disease is a transmissible spongiform encephalopathy of cervids. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein (PrPC) to pathogenic conformers (PrPSc), and the pathogenic forms accumulate in the brain and other tissues. Real-time Quaking Induced Conversion (RT-QuIC) can be used for the detection of prions and for prion strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how either PrPSc from cervids of different genotypes or PrPSc from different sources of CWD influence the fibril formation of recombinant bank vole (BV) or human prion proteins using RT-QuIC. We found that reaction mixtures seeded with PrPSc from different genotypes of white-tailed deer or reindeer brains have similar conversion efficiency with both substrates. Also, we observed similar results when assays were seeded with different sources of CWD. Thus, we conclude that the genotypes of all sources of CWD used in this study do not influence the level of conversion of PrPC to PrPSc.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hwang S, Dassanayake RP, Nicholson EM. PAD-Beads enrichment enhances detection of PrP Sc using real-time quaking-induced conversion. BMC Res Notes 2019; 12:806. [PMID: 31836019 PMCID: PMC6911270 DOI: 10.1186/s13104-019-4842-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/04/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Scrapie is a transmissible spongiform encephalopathy (TSE) that naturally occurs in sheep and goats. This fatal neurodegenerative disease results from misfolding of the normal cellular prion protein (PrPC) to a pathogenic prion protein form (PrPSc). This pathogenic form, PrPSc, accumulates in the brain and lymphoid tissues. The presence of PrPSc can be detected by an in vitro conversion assay known as real-time quaking induced conversion (RT-QuIC). RT-QuIC has been used to detect PrPSc in a variety of biological tissues from brains to fluids. While this technique is both rapid and sensitive, enhancing the detection of prions would be valuable in the diagnostic laboratories. Results In this study, we assessed whether PrPSc detection sensitivity of RT-QuIC can be increased by enriching PrPSc in scrapie tissue homogenates using commercially available aggregated protein binding ligands coated magnetic beads (PAD-Beads). Coupling of RT-QuIC to PAD-Beads based cleanup allowed detection of PrPSc rapidly and without dilution of scrapie sheep brain homogenates prior to RT-QuIC. The PAD-Beads sample pretreatment step prior to RT-QuIC is a useful enhancement in the diagnosis of TSEs.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Rohana P Dassanayake
- Ruminant Disease and Immunology Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, 50010, USA.
| |
Collapse
|
8
|
Zhang M, Zhang H, Yao H, Guo C, Lin D. Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1223-1232. [PMID: 31735962 DOI: 10.1093/abbs/gmz124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/14/2022] Open
Abstract
The pathogenesis of fatal neurodegenerative prion diseases is closely associated with the conversion of α-helix-rich cellular prion protein into β-sheet-rich scrapie form. Pathogenic point mutations of prion proteins usually promote the conformational conversion and trigger inherited prion diseases. The G131V mutation of human prion protein (HuPrP) was identified to be involved in Gerstmann-Sträussler-Scheinker syndrome. Few studies have been carried out to address the pathogenesis of the G131V mutant. Here, we addressed the effects of the G131V mutation on oligomerization and fibrillization of the full-length HuPrP(23-231) and truncated HuPrP(91-231) proteins. The G131V mutation promotes the oligomerization but alleviates the fibrillization of HuPrP, implying that the oligomerization might play a crucial role in the pathogenic mechanisms of the G131V mutant. Moreover, the flexible N-terminal fragment in either the wild-type or the G131V mutant HuPrP increases the oligomerization tendencies but decreases the fibrillization tendencies. Furthermore, this mutation significantly alters the tertiary structure of human PrPC and might distinctly change the conformational conversion tendency. Interestingly, both guanidine hydrochloride denaturation and thermal denaturation experiments showed that the G131V mutation does not significantly change the thermodynamic stabilities of the HuPrP proteins. This work may be of benefit to a mechanistic understanding of the conformational conversion of prion proteins and also provide clues for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
9
|
Abstract
Prion diseases are caused by the conversion of physiological PrPC into the pathogenic misfolded protein PrPSc, conferring new properties to PrPSc that vary upon prion strains. In this work, we analyze the thermostability of three prion strains (BSE, RML and 22L) that were heated at 98 °C for 2 hours. PrPSc resistance to proteinase K (PrPres), residual infectivity by mouse bioassay and in vitro templating activity by protein misfolding cyclic amplification (PMCA) were studied. Heated strains showed a huge loss of PrPres and a radically different infectivity loss: RML was the most thermolabile strain (6 to 7 log10 infectivity loss), followed by 22L (5 log10) while BSE was the most thermostable strain with low or null infectivity reduction showing a clear dissociation between PrPres and infectivity. These results indicate that thermostability is a strain-specific feature, measurable by PMCA and mouse bioassay, and a great tool to distinguish prion strains.
Collapse
|
10
|
Hwang S, Greenlee JJ, Vance NM, Nicholson EM. Source genotype influence on cross species transmission of transmissible spongiform encephalopathies evaluated by RT-QuIC. PLoS One 2018; 13:e0209106. [PMID: 30571737 PMCID: PMC6301698 DOI: 10.1371/journal.pone.0209106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/29/2018] [Indexed: 11/19/2022] Open
Abstract
Scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats. This fatal neurodegenerative disease is caused by misfolding of the cellular prion protein to pathogenic β-rich conformers (PrPSc) that accumulate in higher order structures of the brain and other tissues. This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions and for strain discrimination in a variety of biological tissues from humans and animals. In this study, we evaluated how PrPSc isolated from sheep of different genotypes after inoculation with the scrapie agent influence the fibril formation in vitro using RT-QuIC. We found that reaction mixtures seeded with PrPSc from genotype VRQ/VRQ sheep brains have better conversion efficiency with 132M elk substrate compared to reactions seeded with PrPSc from the brains of sheep with the ARQ/ARQ genotype no matter which strain of scrapie was used to seed the reactions. We also inoculated transgenic mice expressing 132M elk PRNP (Tg12) with the scrapie agent from different genotypes of sheep to compare with our RT-QuIC results. The bioassays support the data showing a significantly shorter incubation period for inoculum from VRQ/VRQ sheep when compared to inoculum from ARQ/ARQ sheep. Thus, we conclude that the genotype of both source and recipient can strongly influence transmission.
Collapse
Affiliation(s)
- Soyoun Hwang
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Justin J. Greenlee
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Natalie M. Vance
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
| | - Eric M. Nicholson
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hwang S, Nicholson EM. Thermodynamic characterization for the denatured state of bovine prion protein and the BSE Associated variant E211K. Prion 2018; 12:301-309. [PMID: 30354921 PMCID: PMC6277186 DOI: 10.1080/19336896.2018.1534485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Propagation of transmissible spongiform encephalopathies involves the conversion of cellular prion protein, PrPC, into a misfolded oligomeric form, PrPSc. The most common hereditary prion disease is a genetic form of Creutzfeldt-Jakob disease in humans, in which a mutation in the prion gene results in a glutamic acid to lysine substitution at position 200 (E200K) in PrP. In cattle, the analogous amino acid substitution is found at residue 211 (E211K) and has been associated with a case of bovine spongiform encephalopathy. Here, we have compared the secondary structure of E211K to that of wild type using circular dichroism and completed a thermodynamic analysis of the folding of recombinant wild type and E211K variants of the bovine prion protein. The secondary structure of the E211K variant was essentially indistinguishable from that of wild type. The thermodynamic stability of E211K substitution showed a slight destabilization relative to the wild type consistent with results reported for recombinant human prion protein and its mutant E200K. In addition, the E211K variant exhibits a similarly compact denatured state to that of wild type based upon similar m-value and change in heat capacity of unfolding for the proteins. Together these results indicate that residual structure in the denatured state of bPrP is present in both the wild type protein and BSE associated variant E211K. Given this observation, as well as folding similarities reported for other disease associated variants of PrP it is worth consideration that functional aspects of PrP conformation may play a role in the misfolding process.
Collapse
Affiliation(s)
- Soyoun Hwang
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| | - Eric M Nicholson
- a United States Department of Agriculture , Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit , Ames , Iowa , USA
| |
Collapse
|
12
|
Theint T, Nadaud PS, Surewicz K, Surewicz WK, Jaroniec CP. 13C and 15N chemical shift assignments of mammalian Y145Stop prion protein amyloid fibrils. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:75-80. [PMID: 28004358 PMCID: PMC5344711 DOI: 10.1007/s12104-016-9723-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/15/2016] [Indexed: 05/03/2023]
Abstract
The Y145Stop prion protein (PrP23-144), which has been linked to the development of a heritable prionopathy in humans, is a valuable in vitro model for elucidating the structural and molecular basis of amyloid seeding specificities. Here we report the sequential backbone and side-chain 13C and 15N assignments of mouse and Syrian hamster PrP23-144 amyloid fibrils determined by using 2D and 3D magic-angle spinning solid-state NMR. The assigned chemical shifts were used to predict the secondary structures for the core regions of the mouse and Syrian hamster PrP23-144 amyloids, and the results compared to those for human PrP23-144 amyloid, which has previously been analyzed by solid-state NMR techniques.
Collapse
Affiliation(s)
- Theint Theint
- Department of Chemistry and Biochemistry, The Ohio State University, 222 CBEC Building, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Philippe S Nadaud
- Department of Chemistry and Biochemistry, The Ohio State University, 222 CBEC Building, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Witold K Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 222 CBEC Building, 151 West Woodruff Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Hwang S, Greenlee JJ, Nicholson EM. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy. PLoS One 2017; 12:e0172391. [PMID: 28225797 PMCID: PMC5321280 DOI: 10.1371/journal.pone.0172391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/03/2017] [Indexed: 12/15/2022] Open
Abstract
Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.
Collapse
Affiliation(s)
- Soyoun Hwang
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Justin J. Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
| | - Eric M. Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Seelig DM, Goodman PA, Skinner PJ. Potential approaches for heterologous prion protein treatment of prion diseases. Prion 2017; 10:18-24. [PMID: 26636482 PMCID: PMC4981202 DOI: 10.1080/19336896.2015.1123372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs) are progressive, fatal neurodegenerative diseases with no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPres). The efficiency of this conversion is predicated upon a number of factors, most notably a strong homology between cellular PrPC and PrPres. In our recently published study, we infected mice with the RML-Chandler strain of scrapie and treated them with heterologous hamster prion proteins. This treatment was seen to reduce clinical signs of prion disease, to delay the onset of clinical symptoms and to prolong survival. In this current article we discuss potential mechanisms of action of treatment with heterologous prion proteins. We also discuss potential extensions of these studies using a heterologous rabbit PrP-based treatment strategy or a peptide based strategy, and improvement of treatment delivery including a lentiviral-based system.
Collapse
Affiliation(s)
- Davis M Seelig
- a Veterinary Clinical Sciences Department , University of Minnesota , Saint Paul , MN , USA
| | - Patricia A Goodman
- b Veterinary and Biomedical Sciences Department , University of Minnesota , Saint Paul , MN , USA
| | - Pamela J Skinner
- b Veterinary and Biomedical Sciences Department , University of Minnesota , Saint Paul , MN , USA
| |
Collapse
|
15
|
Yu Y, Yu Z, Zheng Z, Wang H, Wu X, Guo C, Lin D. Distinct effects of mutations on biophysical properties of human prion protein monomers and oligomers. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1016-1025. [PMID: 27649893 DOI: 10.1093/abbs/gmw094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 02/05/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative illnesses, resulting from the conformational conversion of the cellular prion protein (PrPC) into a misfolded form (PrPSc). The formation of neurotoxic soluble prion protein oligomer (PrPO) is regarded as a key step in the development of prion diseases. About 10%-15% of human prion diseases are caused by mutations in the prion protein gene; however, the underlying molecular mechanisms remain unclear. In the present work, we compared the biophysical properties of wild-type (WT) human prion protein 91-231 (WT HuPrP91-231) and its disease-associated variants (P105L, D178N, V203I, and Q212P) using several biophysical techniques. In comparison with WT HuPrPC, the Q212P and D178N variants possessed greatly increased conversion propensities of PrPC into PrPO, while the V203I variant had dramatically decreased conversion propensity. The P105L variant displayed a similar conversion propensity to WT HuPrPC Guanidine hydrochloride-induced unfolding experiments ranked the thermodynamic stabilities of these proteins as Q212P < D178N < WT ≈ P105L < V203I. It was thus suggested that the conversion propensities of the prion proteins are closely associated with their thermodynamic stabilities. Furthermore, structural comparison illustrated that Q212P, D178N, and V203I variants underwent larger structural changes compared with WT HuPrPC, while the P105L variant adopted a similar structure to the WT HuPrPC The mutation-induced structural perturbations might change the thermodynamic stabilities of the HuPrPC variants, and correspondingly alter the conversion propensities for these prion proteins. Our results extend the mechanistic understanding of prion pathogenesis, and lay the basis for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Yuanhui Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziyao Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Zheng
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xueji Wu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Wang KKW, Yang Z, Chiu A, Lin F, Rubenstein R. Examining the Neural and Astroglial Protective Effects of Cellular Prion Protein Expression and Cell Death Protease Inhibition in Mouse Cerebrocortical Mixed Cultures. Mol Neurobiol 2015; 53:4821-32. [PMID: 26337296 DOI: 10.1007/s12035-015-9407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 08/20/2015] [Indexed: 12/14/2022]
Abstract
Overexpression of cellular prion protein, PrP(C), has cytoprotective effects against neuronal injuries. Inhibition of cell death-associated proteases such as necrosis-linked calpain and apoptosis-linked caspase are also neuroprotective. Here, we systematically studied how PrP(C) expression levels and cell death protease inhibition affect cytotoxic challenges to both neuronal and glial cells in mouse cerebrocortical mixed cultures (CCM). Primary CCM derived from three mouse lines expressing no (PrP(C) knockout mice (PrPKO)), normal (wild-type (wt)), or high (tga20) levels of PrP(C) were subjected to necrotic challenge (calcium ionophore A23187) and apoptotic challenge (staurosporine (STS)). CCM which originated from tga20 mice provided the most robust neuron-astroglia protective effects against necrotic and early apoptotic cell death (lactate dehydrogenase (LDH) release) at 6 h but subsequently lost its cytoprotective effects. In contrast, PrPKO-derived cultures displayed elevated A23187- and STS-induced cell death at 24 h. Calpain inhibitor SNJ-1945 protected against A23187 challenge at 6 h in CCM from all three mouse lines but protected only against A23187 and STS treatments by 24 h in the PrPKO line. In parallel, caspase inhibitor Z-D-DCB protected against pro-apoptotic STS challenge at 6 and 24 h. Furthermore, we also examined αII-spectrin breakdown products (primarily from neurons) and glial fibrillary acidic protein (GFAP) breakdown products (from astroglia) as cytoskeletal proteolytic biomarkers. Overall, it appeared that both neurons and astroglial cells were less vulnerable to proteolytic attack during A23187 and STS challenges in tga20-derived cultures but more vulnerable in PrPKO-derived cultures. In addition, calpain and caspase inhibitors provide further protection against respective protease attacks on these neuronal and glial cytoskeletal proteins in CCM regardless of mouse-line origin. Lastly, some synergistic cytoprotective effects between PrP(C) expression and addition of cell death-linked protease inhibitors were also observed.
Collapse
Affiliation(s)
- Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience and Physiological Science, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA.
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience and Physiological Science, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Allen Chiu
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, NY, 11203-2098, USA
| | - Fan Lin
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Psychiatry, Neuroscience and Physiological Science, McKnight Brain Institute, University of Florida, 1149 South Newell Drive, Gainesville, FL, 32611, USA
| | - Richard Rubenstein
- Laboratory of Neurodegenerative Diseases and CNS Biomarker Discovery, Departments of Neurology and Physiology/Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Box #1213, Brooklyn, NY, 11203-2098, USA.
| |
Collapse
|
17
|
Skinner PJ, Kim HO, Bryant D, Kinzel NJ, Reilly C, Priola SA, Ward AE, Goodman PA, Olson K, Seelig DM. Treatment of Prion Disease with Heterologous Prion Proteins. PLoS One 2015; 10:e0131993. [PMID: 26134409 PMCID: PMC4489745 DOI: 10.1371/journal.pone.0131993] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 06/10/2015] [Indexed: 01/03/2023] Open
Abstract
Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host’s own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans.
Collapse
Affiliation(s)
- Pamela J. Skinner
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
- * E-mail:
| | - Hyeon O. Kim
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Damani Bryant
- University of Minnesota, Veterinary Clinical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Nikilyn J. Kinzel
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Cavan Reilly
- University of Minnesota, School of Public Health, Division of Biostatistics, Minneapolis, MN, 55455, United States of America
| | - Suzette A. Priola
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840, United States of America
| | - Anne E. Ward
- Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, Rocky Mountain Laboratories, Hamilton, Montana 59840, United States of America
| | - Patricia A. Goodman
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Katherine Olson
- University of Minnesota, Veterinary and Biomedical Sciences Department, Saint Paul, MN 55108, United States of America
| | - Davis M. Seelig
- University of Minnesota, Veterinary Clinical Sciences Department, Saint Paul, MN 55108, United States of America
| |
Collapse
|
18
|
Molecular dynamics simulation of temperature induced unfolding of animal prion protein. J Mol Model 2013; 19:4433-41. [DOI: 10.1007/s00894-013-1955-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/22/2013] [Indexed: 01/22/2023]
|
19
|
Williams SK, Fairless R, Weise J, Kalinke U, Schulz-Schaeffer W, Diem R. Neuroprotective effects of the cellular prion protein in autoimmune optic neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2823-31. [PMID: 21641403 DOI: 10.1016/j.ajpath.2011.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 02/15/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Although the pathologic role of the prion protein in transmissible spongiform encephalopathic diseases has been widely investigated, the physiologic role of the cellular prion protein (PrP(C)) is not known. Among the many functions attributed to PrP(C), there is increasing evidence that it is involved in cell survival and mediates neuroprotection. A potential role in the immune response has also been suggested. However, how these two functions interplay in autoimmune disease is unclear. To address this, autoimmune optic neuritis, a model of multiple sclerosis, was induced in C57Bl/6 mice, and up-regulation of PrP(C) was observed throughout the disease course. In addition, compared with wild-type mice, in PrP(C)-deficient mice and mice overexpressing PrP(C), histopathologic analysis demonstrated that optic neuritis was exacerbated, as indicated by axonal degeneration, inflammatory infiltration, and demyelination. However, significant neuroprotection of retinal ganglion cells, the axons of which form the optic nerve, was observed in mice that overexpressed PrP(C). Conversely, mice lacking PrP(C) demonstrated significantly more neurodegeneration. This suggests that PrP(C) may have a neuroprotective function independent of its role in regulating the immune response.
Collapse
Affiliation(s)
- Sarah K Williams
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Helmus JJ, Surewicz K, Apostol MI, Surewicz WK, Jaroniec CP. Intermolecular alignment in Y145Stop human prion protein amyloid fibrils probed by solid-state NMR spectroscopy. J Am Chem Soc 2011; 133:13934-7. [PMID: 21827207 DOI: 10.1021/ja206469q] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Y145Stop mutant of human prion protein, huPrP23-144, has been linked to PrP cerebral amyloid angiopathy, an inherited amyloid disease, and also serves as a valuable in vitro model for investigating the molecular basis of amyloid strains. Prior studies of huPrP23-144 amyloid by magic-angle-spinning (MAS) solid-state NMR spectroscopy revealed a compact β-rich amyloid core region near the C-terminus and an unstructured N-terminal domain. Here, with the focus on understanding the higher-order architecture of huPrP23-144 fibrils, we probed the intermolecular alignment of β-strands within the amyloid core using MAS NMR techniques and fibrils formed from equimolar mixtures of (15)N-labeled protein and (13)C-huPrP23-144 prepared with [1,3-(13)C(2)] or [2-(13)C]glycerol. Numerous intermolecular correlations involving backbone atoms observed in 2D (15)N-(13)C spectra unequivocally suggest an overall parallel in-register alignment of the β-sheet core. Additional experiments that report on intermolecular (15)N-(13)CO and (15)N-(13)Cα dipolar couplings yielded an estimated strand spacing that is within ∼10% of the distances of 4.7-4.8 Å typical for parallel β-sheets.
Collapse
Affiliation(s)
- Jonathan J Helmus
- Department of Chemistry, The Ohio State University, Columbus, 43210, United States
| | | | | | | | | |
Collapse
|
21
|
Shen L, Ji HF. Mutation directional selection sheds light on prion pathogenesis. Biochem Biophys Res Commun 2011; 410:159-63. [PMID: 21679685 DOI: 10.1016/j.bbrc.2011.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
As mutations in the PRNP gene account for human hereditary prion diseases (PrDs), it is crucial to elucidating how these mutations affect the central pathogenic conformational transition of normal cellular prion protein (PrP(C)) to abnormal scrapie isoform (PrP(Sc)). Many studies proposed that these pathogenic mutations may make PrP more susceptible to conformational change through altering its structure stability. By evaluating the most recent observations regarding pathogenic mutations, it was found that the pathogenic mutations do not exert a uniform effect on the thermodynamic stability of the human PrP's structure. Through analyzing the reported PrDs-related mutations, we found that 25 out of 27 mutations possess strong directional selection, i.e., enhancing hydrophobicity or decreasing negative and increasing positive charge. Based on the triggering role reported by previous studies of facilitating factors in PrP(C) conversion, e.g., lipid and polyanion, we proposed that the mutation-induced changes may strengthen the interaction between PrP and facilitating factors, which will accelerate PrP conversion and cause PrDs.
Collapse
Affiliation(s)
- Liang Shen
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Shandong University of Technology, Zibo 255049, PR China
| | | |
Collapse
|
22
|
Afanasieva EG, Kushnirov VV, Tuite MF, Ter-Avanesyan MD. Molecular basis for transmission barrier and interference between closely related prion proteins in yeast. J Biol Chem 2011; 286:15773-80. [PMID: 21454674 PMCID: PMC3091186 DOI: 10.1074/jbc.m110.183889] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Replicating amyloids, called prions, are responsible for transmissible
neurodegenerative diseases in mammals and some heritable phenotypes in fungi.
The transmission of prions between species is usually inhibited, being highly
sensitive to small differences in amino acid sequence of the prion-forming
proteins. To understand the molecular basis of this prion interspecies barrier,
we studied the transmission of the
[PSI+] prion state from
Sup35 of Saccharomyces cerevisiae to hybrid Sup35 proteins with
prion-forming domains from four other closely related
Saccharomyces species. Whereas all the hybrid Sup35
proteins could adopt a prion form in S. cerevisiae, they could
not readily acquire the prion form from the
[PSI+] prion of S.
cerevisiae. Expression of the hybrid Sup35 proteins in S.
cerevisiae [PSI+]
cells often resulted in frequent loss of the native
[PSI+] prion. Furthermore,
all hybrid Sup35 proteins showed different patterns of interaction with the
native [PSI+] prion in terms of
co-polymerization, acquisition of the prion state, and induced prion loss, all
of which were also dependent on the
[PSI+] variant. The
observed loss of S. cerevisiae
[PSI+] can be related to
inhibition of prion polymerization of S. cerevisiae Sup35 and
formation of a non-heritable form of amyloid. We have therefore identified two
distinct molecular origins of prion transmission barriers between closely
sequence-related prion proteins: first, the inability of heterologous proteins
to co-aggregate with host prion polymers, and second, acquisition by these
proteins of a non-heritable amyloid fold.
Collapse
|
23
|
Bjorndahl TC, Zhou GP, Liu X, Perez-Pineiro R, Semenchenko V, Saleem F, Acharya S, Bujold A, Sobsey CA, Wishart DS. Detailed biophysical characterization of the acid-induced PrP(c) to PrP(β) conversion process. Biochemistry 2011; 50:1162-73. [PMID: 21189021 DOI: 10.1021/bi101435c] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prions are believed to spontaneously convert from a native, monomeric highly helical form (called PrP(c)) to a largely β-sheet-rich, multimeric and insoluble aggregate (called PrP(sc)). Because of its large size and insolubility, biophysical characterization of PrP(sc) has been difficult, and there are several contradictory or incomplete models of the PrP(sc) structure. A β-sheet-rich, soluble intermediate, called PrP(β), exhibits many of the same features as PrP(sc) and can be generated using a combination of low pH and/or mild denaturing conditions. Studies of the PrP(c) to PrP(β) conversion process and of PrP(β) folding intermediates may provide insights into the structure of PrP(sc). Using a truncated, recombinant version of Syrian hamster PrP(β) (shPrP(90-232)), we used NMR spectroscopy, in combination with other biophysical techniques (circular dichroism, dynamic light scattering, electron microscopy, fluorescence spectroscopy, mass spectrometry, and proteinase K digestion), to characterize the pH-driven PrP(c) to PrP(β) conversion process in detail. Our results show that below pH 2.8 the protein oligomerizes and conversion to the β-rich structure is initiated. At pH 1.7 and above, the oligomeric protein can recover its native monomeric state through dialysis to pH 5.2. However, when conversion is completed at pH 1.0, the large oligomer "locks down" irreversibly into a stable, β-rich form. At pH values above 3.0, the protein is amenable to NMR investigation. Chemical shift perturbations, NOE, amide line width, and T(2) measurements implicate the putative "amylome motif" region, "NNQNNF" as the region most involved in the initial helix-to-β conversion phase. We also found that acid-induced PrP(β) oligomers could be converted to fibrils without the use of chaotropic denaturants. The latter finding represents one of the first examples wherein physiologically accessible conditions (i.e., only low pH) were used to achieve PrP conversion and fibril formation.
Collapse
Affiliation(s)
- Trent C Bjorndahl
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Helmus JJ, Surewicz K, Surewicz WK, Jaroniec CP. Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 2010; 132:2393-403. [PMID: 20121096 PMCID: PMC2838504 DOI: 10.1021/ja909827v] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyloid aggregates of a C-truncated Y145Stop mutant of human prion protein, huPrP23-144, associated with a heritable amyloid angiopathy, have previously been shown to contain a compact, relatively rigid, and beta-sheet-rich approximately 30-residue amyloid core near the C-terminus under physiologically relevant conditions. In contrast, the remaining huPrP23-144 residues display considerable conformational dynamics, as evidenced by the absence of corresponding signals in cross-polarization (CP)-based solid-state NMR (SSNMR) spectra under ambient conditions and their emergence in analogous spectra recorded at low temperature on frozen fibril samples. Here, we present the direct observation of residues comprising the flexible N-terminal domain of huPrP23-144 amyloid by using 2D J-coupling-based magic-angle spinning (MAS) SSNMR techniques. Chemical shifts for these residues indicate that the N-terminal domain is effectively an ensemble of protein chains with random-coil-like conformations. Interestingly, a detailed analysis of signal intensities in CP-based 3D SSNMR spectra suggests that non-negligible molecular motions may also be occurring on the NMR time scale within the relatively rigid core of huPrP23-144 amyloid. To further investigate this hypothesis, quantitative measurements of backbone dipolar order parameters and transverse spin relaxation rates were performed for the core residues. The observed order parameters indicate that, on the submicrosecond time scale, these residues are effectively rigid and experience only highly restricted and relatively uniform motions similar to those characteristic for well-structured regions of microcrystalline proteins. On the other hand, significant variations in magnitude of transverse spin relaxation rates were noted for residues present at different locations within the core region and correlated with observed differences in spectral intensities. While interpreted only qualitatively at the present time, the extent of the observed variations in transverse relaxation rates is consistent with the presence of relatively slow, microsecond-millisecond time scale chemical exchange type phenomena within the huPrP23-144 amyloid core.
Collapse
Affiliation(s)
- Jonathan J. Helmus
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
25
|
Ji HF, Zhang HY. beta-sheet constitution of prion proteins. Trends Biochem Sci 2010; 35:129-34. [PMID: 20060302 DOI: 10.1016/j.tibs.2009.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 11/19/2022]
Abstract
Structural information regarding normal prion protein (PrP(C)) and the scrapie isoform (PrP(Sc)) is of vital importance for elucidating the pathogenesis of prion diseases (PDs). Despite successful determination of the three-dimensional structures of PrP(C), the structural details of PrP(Sc) remain elusive. Nevertheless, accumulated evidence indicates that beta-sheets comprise the basic building blocks of PrP(Sc). Consensus has been reached about the beta-sheet constitution of the N-terminus of PrP, but the constitution of C-terminal beta-sheets is heavily debated. By evaluating the most recent observations regarding the dynamics and structures of PrP, we propose that helix 2 is more likely than helices 1 and 3 to participate in beta-sheet formation. This hypothesis also provides clues to explaining an intriguing phenomenon in prion biology-the lack of PDs in non-mammals.
Collapse
Affiliation(s)
- Hong-Fang Ji
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China.
| | | |
Collapse
|
26
|
Abstract
Prion diseases, also known as the transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders that affect humans and animals. These diseases are intimately associated with conformational conversion of the cellular prion protein, PrP(C), into an oligomeric beta-sheet-rich form, PrP(Sc). A growing number of observations support the once heretical hypothesis that transmission of TSE diseases does not require nucleic acids and that PrP(Sc) alone can act as an infectious agent. The view that misfolded proteins can be infectious is also supported by recent findings regarding prion phenomena in yeast and other fungi. One of the most intriguing facets of prions is their ability to form different strains, leading to distinct phenotypes of TSE diseases. Within the context of the "protein-only" model, prion strains are believed to be encoded in distinct conformations of misfolded prion protein aggregates. In this review, we describe recent advances in biochemical aspects of prion research, with a special focus on the mechanism of conversion of prion protein to the pathogenic form(s), the emerging structural knowledge of fungal and mammalian prions, and our rapidly growing understanding of the molecular basis of prion strains and their relation to barriers of interspecies transmissibility.
Collapse
Affiliation(s)
- Nathan J Cobb
- Department of Physiology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
27
|
Cobb NJ, Apetri AC, Surewicz WK. Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain. J Biol Chem 2008; 283:34704-11. [PMID: 18930924 DOI: 10.1074/jbc.m806701200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transmissible spongiform encephalopathies are associated with conformational conversion of the cellular prion protein, PrP(C), into a proteinase K-resistant, amyloid-like aggregate, PrP(Sc). Although the structure of PrP(Sc) remains enigmatic, recent studies have afforded increasingly detailed characterization of recombinant PrP amyloid. However, all previous studies were performed using amyloid fibrils formed in the presence of denaturing agents that significantly alter the folding state(s) of the precursor monomer. Here we report that PrP amyloid can also be generated under physiologically relevant conditions, where the monomeric protein is natively folded. Remarkably, site-directed spin labeling studies reveal that these fibrils possess a beta-core structure nearly indistinguishable from that of amyloid grown under denaturing conditions, where the C-terminal alpha-helical domain of the PrP monomer undergoes major refolding to a parallel and in-register beta-structure upon conversion. The structural similarity of fibrils formed under drastically different conditions strongly suggests that the common beta-sheet architecture within the approximately 160-220 core region represents a distinct global minimum in the PrP conversion free energy landscape. We also show that the N-terminal region of fibrillar PrP displays conformational plasticity, undergoing a reversible structural transition with an apparent pK(a) of approximately 5.3. The C-terminal region, on the other hand, retains its beta-structure over the pH range 1-11, whereas more alkaline buffer conditions denature the fibrils into constituent PrP monomers. This profile of pH-dependent stability is reminiscent of the behavior of brain-derived PrP(Sc), suggesting a substantial degree of structural similarity within the beta-core region of these PrP aggregates.
Collapse
Affiliation(s)
- Nathan J Cobb
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
28
|
Apetri AC, Maki K, Roder H, Surewicz WK. Early intermediate in human prion protein folding as evidenced by ultrarapid mixing experiments. J Am Chem Soc 2007; 128:11673-8. [PMID: 16939293 PMCID: PMC2856597 DOI: 10.1021/ja063880b] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An important step toward understanding the mechanism of the PrP(C)-to-PrP(Sc) conversion is to elucidate the folding pathway(s) of the prion protein. On the basis of stopped-flow measurements, we recently proposed that the prion protein folds via a transient intermediate formed on the submillisecond time scale, and mutations linked to familial diseases result in a pronounced increase in the population of this intermediate. Here, we have extended these studies to continuous-flow measurements using a capillary mixing system with a time resolution of approximately 100 micros. This allowed us to directly observe two distinct phases in folding of the recombinant human prion protein 90-231, providing unambiguous evidence for rapid accumulation of an early intermediate (with a time constant of approximately 50 micros), followed by a rate-limiting folding step (with a time constant of approximately 700 micros). The present study also clearly demonstrates that the population of the intermediate is significantly increased at mildly acidic pH and in the presence of urea. A similar three-state folding behavior was observed for the Gerstmann-Straussler-Scheinker disease-associated F198S mutant, in which case the population of an intermediate was greatly increased as compared to that of the wild-type protein. Overall, the present data strongly suggest that this partially structured intermediate may be a direct monomeric precursor of the misfolded PrP(Sc) oligomer.
Collapse
Affiliation(s)
- Adrian C. Apetri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kosuke Maki
- Basic Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Heinrich Roder
- Basic Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
- To whom correspondence should be addressed. Witold Surewicz, ; Heinrich Roder,
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
- To whom correspondence should be addressed. Witold Surewicz, ; Heinrich Roder,
| |
Collapse
|
29
|
Trifilo MJ, Ying G, Teng C, Oldstone MB. Chronic wasting disease of deer and elk in transgenic mice: oral transmission and pathobiology. Virology 2007; 365:136-43. [PMID: 17451773 PMCID: PMC1950321 DOI: 10.1016/j.virol.2007.03.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 02/21/2007] [Accepted: 03/15/2007] [Indexed: 01/05/2023]
Abstract
To study the pathogenesis of chronic wasting disease (CWD) in deer and elk, transgenic (tg) mice were generated that expressed the prion protein (PrP) of deer containing a glycine at amino acid (aa) 96 and a serine at aa 225 under transcriptional control of the murine PrP promoter. This construct was introduced into murine PrP-deficient mice. As anticipated, neither non-tg mice nor PrP ko mice were susceptible when inoculated intracerebrally (i.c.) or orally with CWD brain material (scrapie pool from six mule deer) and followed for 600+ days (dpi). Deer PrP tg mice were not susceptible to i.c. inoculation with murine scrapie. In contrast, a fatal neurologic disease occurred accompanied by conversion of deer PrPsen to PrPres by western blot and immunohistochemistry after either i.c. inoculation with CWD brain into two lines of tg mice studied (312+32 dpi [mean+2 standard errors] for the heterozygous tg line 33, 275+46 dpi for the heterozygous tg line 39 and 210 dpi for the homozygous tg line 33) or after oral inoculation (381+55 dpi for the homozygous tg line 33 and 370+26 dpi for the homozygous tg line 39). Kinetically, following oral inoculation of CWD brain, PrPres was observed by day 200 when mice were clinically healthy in the posterior surface of the dorsum of the tongue primarily in serous and mucous glands, in the intestines, in large cells at the splenic marginal zone that anatomically resembled follicular dendritic cells and macrophages and in the olfactory bulb and brain stem but did not occur in the cerebellum, cerebral cortex or hippocampus or in hearts, lungs and livers of infected mice. After 350 days when mice become clinically ill the cerebellum, cerebral cortex and hippocampus became positive for PrPres and displayed massive spongiosis, neuronal drop out, gliosis and florid plaques.
Collapse
Affiliation(s)
- Matthew J. Trifilo
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ge Ying
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chao Teng
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael B.A. Oldstone
- Viral-Immunobiology Laboratory, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Department of Infectology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
- *Corresponding author. Fax: 858-784-9981. E-mail address: (M.B.A. Oldstone)
| |
Collapse
|
30
|
Lu X, Wintrode PL, Surewicz WK. Beta-sheet core of human prion protein amyloid fibrils as determined by hydrogen/deuterium exchange. Proc Natl Acad Sci U S A 2007; 104:1510-5. [PMID: 17242357 PMCID: PMC1785245 DOI: 10.1073/pnas.0608447104] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Propagation of transmissible spongiform encephalopathies is associated with the conversion of normal prion protein, PrP(C), into a misfolded, oligomeric form, PrP(Sc). Although the high-resolution structure of the PrP(C) is well characterized, the structural properties of PrP(Sc) remain elusive. Here we used MS analysis of H/D backbone amide exchange to examine the structure of amyloid fibrils formed by the recombinant human PrP corresponding to residues 90-231 (PrP90-231), a misfolded form recently reported to be infectious in transgenic mice overexpressing PrP(C). Analysis of H/D exchange data allowed us to map the systematically H-bonded beta-sheet core of PrP amyloid to the C-terminal region (staring at residue approximately 169) that in the native structure of PrP monomer corresponds to alpha-helix 2, a major part of alpha-helix 3, and the loop between these two helices. No extensive hydrogen bonding (as indicated by the lack of significant protection of amide hydrogens) was detected in the N-terminal part of PrP90-231 fibrils, arguing against the involvement of residues within this region in stable beta-structure. These data provide long-sought experimentally derived constraints for high-resolution structural models of PrP amyloid fibrils.
Collapse
Affiliation(s)
- Xiaojun Lu
- Departments of *Physiology and Biophysics and
- Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | | | - Witold K. Surewicz
- Departments of *Physiology and Biophysics and
- Chemistry, Case Western Reserve University, Cleveland, OH 44106
- To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106. E-mail:
| |
Collapse
|
31
|
Abstract
Neuronal vacuolation (spongiosis), neuronal death, and pronounced glial reactions are the hallmarks of transmissible spongiform encephalopathies (TSEs), or prion diseases. A wealth of physical, biochemical, and immunological evidence indicates that the TSE agent, termed prion, does not contain agent-specific nucleic acid encoding its own constituents, as is the case for all other infectious pathogens. Also, no adaptive immune responses are elicited upon infection. A defining feature of TSEs is the deposition, mainly in the brain and lymphoreticular tissues, of an aggregated and structurally abnormal protein, designated PrP(Sc) or PrP-res, which represents a conformational isomer of the ubiquitous surface protein PrP(C). Biochemical and genetic evidence link PrP and its gene to the disease. Although TSEs are by definition transmissible, a growing number of Prnp-associated non-infectious neurodegenerative proteinopathies are now being recognized.
Collapse
Affiliation(s)
- Adriano Aguzzi
- Institute of Neuropathology, Universitätsspital Zürich, Zürich, Switzerland.
| |
Collapse
|
32
|
Shyu WC, Lin SZ, Chiang MF, Ding DC, Li KW, Chen SF, Yang HI, Li H. Overexpression of PrPC by adenovirus-mediated gene targeting reduces ischemic injury in a stroke rat model. J Neurosci 2006; 25:8967-77. [PMID: 16192387 PMCID: PMC6725592 DOI: 10.1523/jneurosci.1115-05.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Prion diseases are induced by pathologically misfolded prion protein (PrPSc), which recruit normal sialoglycoprotein PrPC by a template-directed process. In this study, we investigated the expression of PrPC in a rat model of cerebral ischemia to more fully understand its physiological role. Immunohistochemical analysis demonstrated that PrPC-immunoreactive cells increased significantly in the penumbra of ischemic rat brain compared with the untreated brain. Western blot analysis showed that PrPC protein expression increased in ischemic brain tissue in a time-dependent manner. In addition, PrPC protein expression was seen to colocalize with neuron, glial, and vascular endothelial cells in the penumbric region of the ischemic brain. Overexpression of PrPC by injection of rAd (replication-defective recombinant adenoviral)-PGK (phosphoglycerate kinase)-PrPC-Flag into ischemic rat brain improved neurological behavior and reduced the volume of cerebral infarction, which is supportive of a role for PrPC in the neuroprotective adaptive cellular response to ischemic lesions. Concomitant upregulation of PrPC and activated extracellular signal-regulated kinase (ERK1/2) under hypoxia-reoxygenation in primary cortical cultures was shown to be dependent on ERK1/2 phosphorylation. During hypoxia-reoxygenation, mouse neuroblastoma cell line N18 cells transfected with luciferase rat PrPC promoter reporter constructs, containing the heat shock element (HSE), expressed higher luciferase activities (3- to 10-fold) than those cells transfected with constructs not containing HSE. We propose that HSTF-1 (hypoxia-activated transcription factor), phosphorylated by ERK1/2, may in turn interact with HSE in the promoter of PrPC resulting in gene expression of the prion gene. In summary, we conclude that upregulation of PrPC expression after cerebral ischemia and hypoxia exerts a neuroprotective effect on injured neural tissue. This study suggests that PrPC has physiological relevance to cerebral ischemic injury and could be useful as a therapeutic target for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Woei-Cherng Shyu
- Department of Neurology, Neuro-Medical Scientific Center, Tzu-Chi Buddhist General Hospital, Tzu-Chi University, Hualien, 970, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Müller S, Kehm R, Handermann M, Jakob NJ, Bahr U, Schröder B, Darai G. Testing the Possibility to Protect Bovine PrPC Transgenic Swiss Mice Against Bovine PrPSc Infection by DNA Vaccination Using Recombinant Plasmid Vectors Harboring and Expressing the Complete or Partial cDNA Sequences of Bovine PrPc. Virus Genes 2005; 30:279-96. [PMID: 15744583 DOI: 10.1007/s11262-004-5634-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 10/05/2004] [Indexed: 01/29/2023]
Abstract
The objective of this study was to investigate the molecular mechanisms of neurobiological processes involved in the degeneration of the central nervous system. The bovine spongiform encephalopathy (BSE) was used as experimental model system for investigation of transmissible spongiform encephalopathy (TSE). The experimental strategy was to evaluate the possibility for protection of bovine PrP(C) transgenic mice against a bovine PrP(Sc) infection by DNA vaccination using the complete or partial cDNA sequences of the bovine prion protein. Three recombinant plasmids pCR3.1-EX-PrP-BSE-C20 (C20), pCR3.1-EX-PrP-BSE-90-235-C4 (C4), and pCR3.1-EX-PrP-BSE-106-131-C14 (C14) were constructed. These mammalian expression vectors harbor complete (C20) or partial (C4 and C14) cDNA sequences of the Bos taurus PrP(C) (BTPrP(C)) encoding for amino acid residues 1-264 (C20), 90-235 (C4), and 106-131 (C14) of the BTPrP(C). Transgenic mice harboring and expressing BTPrP(C) were generated using the donor strain C57/CBA, receptor strain Swiss mouse, and recombinant plasmid MoPrPXho-boPrP. Crossing of positive transgenic mice to bovine PrP and negative to murine PrP with 129/OLA (murine PrP-/-) and C57BL6x129/OLA (murine PrP+/-) mice was carried out to amplify the colony of transgenic mice termed bovine PrP(C) transgenic Swiss mice (BTPrP-TgM). The capabilities of C20, C4, and C14 to express the corresponding cDNA sequence of BTPrP(C) in vitro and in vivo were confirmed prior to DNA vaccination of the BTPrP-TgM using NIH 3T3 cells and BALB/c mice, respectively. In order to prove the capability of the constructed expression vectors to protect BTPrP-TgM in vivo against a BSE infection 80 female BTPrP-TgM were vaccinated intramuscularly and subcutaneously with DNA of the plasmids C20, C4, C14, and parental vector pCR3.1 (100 microg DNA corresponding to about 26-30 pmol DNA/animal and application) in four groups (each consists of 20 animals). DNA vaccination was followed by three additional boosters. The vaccinated animals (15 animals of each group) were challenged twice per oral with homogenates of brain material obtained from BSE cattle containing the infectious PrP(Sc) (100 microl/animal which corresponds to 15 mg of a 15% brain homogenate). The first and second challenge experiments were performed 76-83 and 181 days post DNA vaccination, respectively. A part of the vaccinated animals (3-5 animals of each group) that served as internal negative control were mock infected using the brain homogenate of healthy cattle or Phosphate saline buffer (PBS). A variety of symptoms and clinical pictures were observed during the monitoring of DNA vaccinated animals. However, the observed diseases seem to be similar in all experimental animal groups. After an observation period of 14 months post the second challenge experiment the remaining animals (some animals died or were sacrificed when moribund during the study) were sacrificed after expiration of the experimental schedule. The right hemisphere of the brain and a half of the spleen tissue of the individual animals were used for detection of PrP(Sc) by Western blot analysis. The misfolded bovine PrP(Sc) was not detected in the brain or spleen tissues of those animals that were vaccinated with DNA of C20, which was able to express the complete bovine PrP(C) protein in vitro and in vivo. In contrast, the bovine PrP(Sc) was detected in the brain or spleen tissues of animals that were DNA vaccinated with DNA of the parental vector pCR3.1, with DNA of C4, or with DNA of C14. The results of these studies underline that the constructed expression vector C20 possesses the protective capacity to inhibit the formation of misfolded bovine PrP(Sc) in BTPrP-TgM under the conditions used. A delay of occurrence of TSE-specific symptoms in the majority of the vaccinated animals seems to be due to the prolonged incubation time of BSE infection.
Collapse
Affiliation(s)
- Sandra Müller
- Abteilung Virologie, Hygiene-Institut der Universität Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Devising approaches to the therapy of transmissible spongiform encephalopathies, or prion diseases, is beset by many difficulties. For one, the nature of the infectious agent, the prion, is understood only in outline, and its composition, structure, and mode of replication are still shrouded in mystery. In addition, the mechanism of pathogenesis is not well understood. Because clinical disease affects mainly the brain parenchyme, therapeutic agents must be able to traverse the brain-blood barrier (BBB) or have to be introduced directly into the cerebrospinal fluid or brain tissue. And finally, because the disease is usually recognized only after onset of severe clinical symptoms, the question arises as to whether the neurodegenerative processes can be reversed to any extent after a successful eradication of the agent.
Collapse
Affiliation(s)
- Charles Weissmann
- Department of Neurodegenerative Disease/MRC Prion Unit, Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | |
Collapse
|
35
|
Vanik DL, Surewicz KA, Surewicz WK. Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol Cell 2004; 14:139-45. [PMID: 15068810 DOI: 10.1016/s1097-2765(04)00155-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 02/05/2004] [Accepted: 02/13/2004] [Indexed: 10/26/2022]
Abstract
Spongiform encephalopathies are believed to be transmitted by a unique mechanism involving self-propagating conformational conversion of prion protein into a misfolded form. Here we demonstrate that fundamental aspects of mammalian prion propagation, including the species barrier and strain diversity, can be reproduced in vitro in a seeded fibrillization of the recombinant prion protein variant Y145Stop. Our data show that species-specific substitution of a single amino acid in a critical region completely changes the seeding specificity of prion protein fibrils. Furthermore, we demonstrate that sequence-based barriers that prevent cross-seeding between proteins from different species can be bypassed, and new barriers established, by a template-induced adaptation process that leads to the emergence of new strains of prion fibrils. Although the seeding barriers observed in this study do not fully match those seen in animals, the present findings provide fundamental insight into mechanistic principles of these barriers at a molecular level.
Collapse
Affiliation(s)
- David L Vanik
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
36
|
Apetri AC, Surewicz K, Surewicz WK. The Effect of Disease-associated Mutations on the Folding Pathway of Human Prion Protein. J Biol Chem 2004; 279:18008-14. [PMID: 14761942 DOI: 10.1074/jbc.m313581200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Propagation of transmissible spongiform encephalopathies is believed to involve the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). An important step toward understanding the mechanism of this conversion is to elucidate the folding pathway(s) of the prion protein. We reported recently (Apetri, A. C., and Surewicz, W. K. (2002) J. Biol. Chem. 277, 44589-44592) that the folding of wild-type prion protein can best be described by a three-state sequential model involving a partially folded intermediate. Here we have performed kinetic stopped-flow studies for a number of recombinant prion protein variants carrying mutations associated with familial forms of prion disease. Analysis of kinetic data clearly demonstrates the presence of partially structured intermediates on the refolding pathway of each PrP variant studied. In each case, the partially folded state is at least one order of magnitude more populated than the fully unfolded state. The present study also reveals that, for the majority of PrP variants tested, mutations linked to familial prion diseases result in a pronounced increase in the thermodynamic stability, and thus the population, of the folding intermediate. These data strongly suggest that partially structured intermediates of PrP may play a crucial role in prion protein conversion, serving as direct precursors of the pathogenic PrP(Sc) isoform.
Collapse
Affiliation(s)
- Adrian C Apetri
- Department of Physiology and Biophysics and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
37
|
Kocisko DA, Baron GS, Rubenstein R, Chen J, Kuizon S, Caughey B. New inhibitors of scrapie-associated prion protein formation in a library of 2000 drugs and natural products. J Virol 2003; 77:10288-94. [PMID: 12970413 PMCID: PMC228499 DOI: 10.1128/jvi.77.19.10288-10294.2003] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases associated with the accumulation of a disease-specific form of prion protein (PrP) in the brain. One approach to TSE therapeutics is the inhibition of PrP accumulation. Indeed, many inhibitors of the accumulation of PrP associated with scrapie (PrP(Sc)) in scrapie-infected mouse neuroblastoma cells (ScN(2)a) also have antiscrapie activity in rodents. To expedite the search for potential TSE therapeutic agents, we have developed a high-throughput screening assay for PrP(Sc) inhibitors using ScN(2)a cells in a 96-well format. A library of 2000 drugs and natural products was screened in ScN(2)a cells infected with scrapie strain RML (Chandler) or 22L. Forty compounds were found to have concentrations causing 50% inhibition (IC(50)s) of PrP(Sc) accumulation of <or=10 microM against both strains. Seventeen had IC(50)s of <or=1 microM against both strains. Several classes of compounds were represented in the 17 most potent inhibitors, including naturally occurring polyphenols (e.g., tannic acid and tea extracts), phenothiazines, antihistamines, statins, and antimalarial compounds. These 17 compounds were also evaluated in a solid-phase cell-free hamster PrP conversion assay. Only the polyphenols inhibited the cell-free reaction, and their IC(50)s were near 100 nM. Several of the new PrP(Sc) inhibitors cross the blood-brain barrier and thus have potential to be effective after TSE infection reaches the brain. The fact that many are either approved human drugs or edible natural products should facilitate their use in animal testing and clinical trials.
Collapse
Affiliation(s)
- David A Kocisko
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kundu B, Maiti NR, Jones EM, Surewicz KA, Vanik DL, Surewicz WK. Nucleation-dependent conformational conversion of the Y145Stop variant of human prion protein: structural clues for prion propagation. Proc Natl Acad Sci U S A 2003; 100:12069-74. [PMID: 14519851 PMCID: PMC218714 DOI: 10.1073/pnas.2033281100] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the most intriguing disease-related mutations in human prion protein (PrP) is the Tyr to Stop codon substitution at position 145. This mutation results in a Gerstmann-Straussler-Scheinker-like disease with extensive PrP amyloid deposits in the brain. Here, we provide evidence for a spontaneous conversion of the recombinant polypeptide corresponding to the Y145Stop variant (huPrP23-144) from a monomeric unordered state to a fibrillar form. This conversion is characterized by a protein concentration-dependent lag phase and has characteristics of a nucleation-dependent polymerization. Atomic force microscopy shows that huPrP23-144 fibrils are characterized by an apparent periodicity along the long axis, with an average period of 20 nm. Fourier-transform infrared spectra indicate that the conversion is associated with formation of beta-sheet structure. However, the infrared bands for huPrP23-144 are quite different from those for a synthetic peptide PrP106-126, suggesting conformational non-equivalence of beta-structures in the disease-associated Y145Stop variant and a frequently used short model peptide. To identify the region that is critical for the self-seeded assembly of huPrP23-144 amyloid, experiments were performed by using the recombinant polypeptides corresponding to prion protein fragments 23-114, 23-124, 23-134, 23-137, 23-139, and 23-141. Importantly, none of the fragments ending before residue 139 showed a propensity for conformational conversion to amyloid fibrils, indicating that residues within the 138-141 region are essential for this conversion.
Collapse
Affiliation(s)
- Bishwajit Kundu
- Department of Physiology and Biophysics, Case Western Reserve University, 3109 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Spiess E, Groschup MH, Bürkle A. Up-regulation of cathepsin B and cathepsin L activities in scrapie-infected mouse Neuro2a cells. J Gen Virol 2003; 84:2279-2283. [PMID: 12867662 DOI: 10.1099/vir.0.19153-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are characterized by the accumulation of an abnormal, proteinase K-resistant isoform of the prion protein, PrP(Sc), which is generated by a post-translational conversion of the protease-sensitive normal cell-surface glycoprotein PrP(c) involving major conformational changes. The conversion is thought to occur at the plasma membrane or along the endocytic pathway towards the lysosome. PrP(Sc) aggregates have been found to accumulate in secondary lysosomes. In our study, the activities of two major lysosomal cysteine proteases, cathepsins B and L, were found to be significantly increased in scrapie-infected Neuro2a cells compared with uninfected cells using biochemical and cytochemical methods. We hypothesize that lysosomal proteases may be involved in a 'second autocatalytic loop' of PrP(Sc) formation, acting in concert with the well-known autocatalytic enhancement of PrP conversion in the presence of PrP(Sc).
Collapse
Affiliation(s)
- Yonghua Zhang
- Abteilung Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Department of Gerontology, Institute for Ageing and Health, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Eberhard Spiess
- Arbeitsgruppe Biomedizinische Strukturforschung, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Martin H Groschup
- Arbeitsgruppe Biomedizinische Strukturforschung, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Alexander Bürkle
- Abteilung Tumorvirologie, Deutsches Krebsforschungszentrum, Heidelberg, Germany
- Department of Gerontology, Institute for Ageing and Health, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Abstract
Sheep scrapie has been known for at least 200 years and was described as a transmissible disease over 100 years ago. Since then, three groups of transmissible spongiform encephalopathies or TSE diseases have been identified in humans including familial, infectious and sporadic types. The discovery of the prion protein (PrP) in the 1980s greatly accelerated knowledge of the biology and pathogenesis of TSE diseases as this protein was found to play a critical role in disease susceptibility and the TSE species-barrier and may also be a component of the infectious agent itself. Nevertheless, the nature of the TSE agents remains an enigma. Proof of the protein-only hypothesis may require generation of biologically active transmissible agent in a cell-free environment where a virus cannot replicate. Conversely, proof of a viral aetiology will require identification and isolation of a candidate virus. Further understanding of the structure of the disease-associated protease-resistant PrP should help elucidate the mechanism of PrP conversion from the normal to the abnormal form. Such information should open up new approaches to both diagnosis and therapy.
Collapse
Affiliation(s)
- Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana 59840, USA
| |
Collapse
|
41
|
Vanik DL, Surewicz WK. Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form. J Biol Chem 2002; 277:49065-70. [PMID: 12372829 DOI: 10.1074/jbc.m207511200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.
Collapse
Affiliation(s)
- David L Vanik
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
42
|
Zhang Y, Poirier GG, Bürkle A. In-situ analysis of cellular poly(ADP-ribose) production in scrapie-infected mouse neuroblastoma cells. THE HISTOCHEMICAL JOURNAL 2002; 34:357-63. [PMID: 12769268 DOI: 10.1023/a:1023398130945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs), also called prion diseases, are characterized by formation of the disease-associated isoform of prion protein (PrP(Sc)), which arises from a normal isoform termed PrP(c) by a post-translational conversion process occurring in an autocatalytic fashion. Oxidative stress has been proposed as a pathogenetic mechanism in TSEs and increased lipid peroxidation has recently been described in prion-infected cell cultures, suggesting an intrinsic link between the presence of prions and oxidative stress. We investigated if poly(ADP-ribose) formation can be detected in cultured cells upon prion infection, as this NAD+-consuming and DNA strand break-activated nuclear enzymatic reaction has the potential to cause rapid and lethal NAD+ depletion in cells under severe oxidative stress. Poly(ADP-ribose) production was analysed by immunofluorescence in freshly scrapie-infected Neuro2a-D11 mouse neuroblastoma cells, which had been confirmed by immunocytochemistry to produce PrP(Sc), and in uninfected controls. No spontaneous poly(ADP-ribose) specific signals were observed in infected or in uninfected cells, while both cell types readily reacted to H2O2 treatment with poly(ADP-ribose) synthesis in a dose-dependent manner, with no obvious difference in staining intensity at any dose tested. In summary, our data reveal that replication of scrapie agent in neuroblastoma cells can proceed without detectable stimulation of the cellular poly(ADP-ribosyl)ation system.
Collapse
Affiliation(s)
- Yonghua Zhang
- School of Clinical Medical Sciences-Gerontology, Institute for Ageing and Health, University of Newcastle upon Tyne, Wolfson Research Centre, NGH, Westgate Road, Newcastle-upon-Tyne NE4 6BE, UK
| | | | | |
Collapse
|