1
|
Ristori MV, Guarrasi V, Soda P, Petrosillo N, Gurrieri F, Longo UG, Ciccozzi M, Riva E, Angeletti S. Emerging Microorganisms and Infectious Diseases: One Health Approach for Health Shared Vision. Genes (Basel) 2024; 15:908. [PMID: 39062687 PMCID: PMC11275270 DOI: 10.3390/genes15070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Emerging infectious diseases (EIDs) are newly emerging and reemerging infectious diseases. The National Institute of Allergy and Infectious Diseases identifies the following as emerging infectious diseases: SARS, MERS, COVID-19, influenza, fungal diseases, plague, schistosomiasis, smallpox, tick-borne diseases, and West Nile fever. The factors that should be taken into consideration are the genetic adaptation of microbial agents and the characteristics of the human host or environment. The new approach to identifying new possible pathogens will have to go through the One Health approach and omics integration data, which are capable of identifying high-priority microorganisms in a short period of time. New bioinformatics technologies enable global integration and sharing of surveillance data for rapid public health decision-making to detect and prevent epidemics and pandemics, ensuring timely response and effective prevention measures. Machine learning tools are being more frequently utilized in the realm of infectious diseases to predict sepsis in patients, diagnose infectious diseases early, and forecast the effectiveness of treatment or the appropriate choice of antibiotic regimen based on clinical data. We will discuss emerging microorganisms, omics techniques applied to infectious diseases, new computational solutions to evaluate biomarkers, and innovative tools that are useful for integrating omics data and electronic medical records data for the clinical management of emerging infectious diseases.
Collapse
Affiliation(s)
- Maria Vittoria Ristori
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
| | - Valerio Guarrasi
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (V.G.); (P.S.)
- Department of Diagnostic and Intervention, Radiation Physics, Biomedical Engineering, Umeå University, 901 87 Umeå, Sweden
| | - Nicola Petrosillo
- Infection Prevention Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
| | - Fiorella Gurrieri
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy;
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Elisabetta Riva
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Unit of Virology, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Silvia Angeletti
- Operative Research Unit of Laboratory, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy; (M.V.R.); (M.C.); (E.R.)
- Research Unit of Clinical Laboratory Science, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
2
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
3
|
Carvalho PPD, Alves NA. Featuring ACE2 binding SARS-CoV and SARS-CoV-2 through a conserved evolutionary pattern of amino acid residues. J Biomol Struct Dyn 2022; 40:11719-11728. [PMID: 34486937 PMCID: PMC8425439 DOI: 10.1080/07391102.2021.1965028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spike (S) glycoproteins mediate the coronavirus entry into the host cell. The S1 subunit of S-proteins contains the receptor-binding domain (RBD) that is able to recognize different host receptors, highlighting its remarkable capacity to adapt to their hosts along the viral evolution. While RBD in spike proteins is determinant for the virus-receptor interaction, the active residues lie at the receptor-binding motif (RBM), a region located in RBD that plays a fundamental role binding the outer surface of their receptors. Here, we address the hypothesis that SARS-CoV and SARS-CoV-2 strains able to use angiotensin-converting enzyme 2 (ACE2) proteins have adapted their RBM along the viral evolution to explore specific conformational topology driven by the residues YGF to infect host cells. We also speculate that this YGF-based mechanism can act as a protein signature located at the RBM to distinguish coronaviruses able to use ACE2 as a cell entry receptor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrícia P. D. Carvalho
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,CONTACT Patrícia P. D. Carvalho ;
| | - Nelson A. Alves
- Departamento de Física, FFCLRP, Universidade de São Paulo, Ribeirão Preto, SP, Brazil,Nelson Alves
| |
Collapse
|
4
|
Atz Dick T, Uludağ H. A Polyplex in a Shell: The Effect of Poly(aspartic acid)-Mediated Calcium Carbonate Mineralization on Polyplexes Properties and Transfection Efficiency. Mol Pharm 2022; 19:2077-2091. [PMID: 35649175 DOI: 10.1021/acs.molpharmaceut.1c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mineralization by exposure of organic templates to supersaturated solutions is used by many living organisms to generate specialized materials to perform structural or protective functions. Similarly, it was suggested that improved robustness acquired through mineralization under natural conditions could be an important factor for virus survival outside of a host for better transfection of cells. Here, inspired by this fact, we developed a nonviral tricomponent polyplex system for gene delivery capable of undergoing mineralization. First, we fabricated anionic polyplexes carrying pDNA by self-assembly with a lipid-modified cationic polymer and coating by poly(aspartic acid). Then, we submitted the polyplexes to a two-step mineralization reaction to precipitate CaCO3 under various supersaturations. We carried out detailed morphological studies of the mineralized polyplexes and identified which parameters of the fabrication process were influential on transfection efficiency. We found that mineralization with CaCO3 is efficient in promoting transfection efficiency as long as a certain Ca2+/CO32- lower limit ratio is respected. However, calcium incubation can also be used to achieve similar effects at higher concentrations depending on polyplex composition, probably due to the formation of physical cross-links by calcium binding to poly(aspartic acid). We proposed that the improved robustness and transfection efficiency provided by means of mineralization can be used to expand the possible applications of polyplexes in gene therapy.
Collapse
Affiliation(s)
- Teo Atz Dick
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T5K 2Y3 Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 Canada.,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
5
|
Martínez-González B, Soria ME, Vázquez-Sirvent L, Ferrer-Orta C, Lobo-Vega R, Mínguez P, de la Fuente L, Llorens C, Soriano B, Ramos R, Cortón M, López-Rodríguez R, García-Crespo C, Gallego I, de Ávila AI, Gómez J, Enjuanes L, Salar-Vidal L, Esteban J, Fernandez-Roblas R, Gadea I, Ayuso C, Ruíz-Hornillos J, Verdaguer N, Domingo E, Perales C. SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiol Spectr 2022; 10:e0022122. [PMID: 35348367 PMCID: PMC9045161 DOI: 10.1128/spectrum.00221-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
Mutant spectra of RNA viruses are important to understand viral pathogenesis and response to selective pressures. There is a need to characterize the complexity of mutant spectra in coronaviruses sampled from infected patients. In particular, the possible relationship between SARS-CoV-2 mutant spectrum complexity and disease associations has not been established. In the present study, we report an ultradeep sequencing (UDS) analysis of the mutant spectrum of amplicons from the nsp12 (polymerase)- and spike (S)-coding regions of 30 nasopharyngeal isolates (diagnostic samples) of SARS-CoV-2 of the first COVID-19 pandemic wave (Madrid, Spain, April 2020) classified according to the severity of ensuing COVID-19. Low-frequency mutations and deletions, counted relative to the consensus sequence of the corresponding isolate, were overwhelmingly abundant. We show that the average number of different point mutations, mutations per haplotype, and several diversity indices was significantly higher in SARS-CoV-2 isolated from patients who developed mild disease than in those associated with moderate or severe disease (exitus). No such bias was observed with RNA deletions. Location of amino acid substitutions in the three-dimensional structures of nsp12 (polymerase) and S suggest significant structural or functional effects. Thus, patients who develop mild symptoms may be a richer source of genetic variants of SARS-CoV-2 than patients with moderate or severe COVID-19. IMPORTANCE The study shows that mutant spectra of SARS-CoV-2 from diagnostic samples differ in point mutation abundance and complexity and that significantly larger values were observed in virus from patients who developed mild COVID-19 symptoms. Mutant spectrum complexity is not a uniform trait among isolates. The nature and location of low-frequency amino acid substitutions present in mutant spectra anticipate great potential for phenotypic diversification of SARS-CoV-2.
Collapse
Affiliation(s)
- Brenda Martínez-González
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María Eugenia Soria
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Lucía Vázquez-Sirvent
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Cristina Ferrer-Orta
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Rebeca Lobo-Vega
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Mínguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Lorena de la Fuente
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carlos Llorens
- Biotechvana, “Scientific Park”, Universidad de Valencia, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, “Scientific Park”, Universidad de Valencia, Valencia, Spain
| | - Ricardo Ramos
- Unidad de Genómica, “Scientific Park of Madrid”, Campus de Cantoblanco, Madrid, Spain
| | - Marta Cortón
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosario López-Rodríguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Jordi Gómez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Parasitología y Biomedicina ‘López-Neyra’ (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Llanos Salar-Vidal
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ricardo Fernandez-Roblas
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Ignacio Gadea
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Ruíz-Hornillos
- Allergy Unit, Hospital Infanta Elena, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Nuria Verdaguer
- Structural Biology Department, Institut de Biología Molecular de Barcelona CSIC, Barcelona, Spain
| | - Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
6
|
Abstract
Viral quasispecies are dynamic distributions of nonidentical but closely related mutant and recombinant viral genomes subjected to a continuous process of genetic variation, competition, and selection that may act as a unit of selection. The quasispecies concept owes its theoretical origins to a model for the origin of life as a collection of mutant RNA replicators. Independently, experimental evidence for the quasispecies concept was obtained from sampling of bacteriophage clones, which revealed that the viral populations consisted of many mutant genomes whose frequency varied with time of replication. Similar findings were made in animal and plant RNA viruses. Quasispecies became a theoretical framework to understand viral population dynamics and adaptability. The evidence came at a time when mutations were considered rare events in genetics, a perception that was to change dramatically in subsequent decades. Indeed, viral quasispecies was the conceptual forefront of a remarkable degree of biological diversity, now evident for cell populations and organisms, not only for viruses. Quasispecies dynamics unveiled complexities in the behavior of viral populations,with consequences for disease mechanisms and control strategies. This review addresses the origin of the quasispecies concept, its major implications on both viral evolution and antiviral strategies, and current and future prospects.
Collapse
Affiliation(s)
- Esteban Domingo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carlos García-Crespo
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain;
| | - Celia Perales
- Department of Interactions with the Environment, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, 28029 Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
7
|
Gao L. Domestication of wild animals may provide a springboard for rapid variation of coronavirus. Open Life Sci 2021; 16:252-254. [PMID: 33817316 PMCID: PMC7968545 DOI: 10.1515/biol-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
Coronaviruses have spread widely among humans and other animals, but not all coronaviruses carried by specific animals can directly infect other kinds of animals. Viruses from most animal hosts need an intermediate host before they can spread widely among humans. Under natural conditions, coronaviruses do not rapidly change from infecting wild animals as intermediate hosts and to spreading widely among humans. The intermediate host might be the animals captured or bred for the purpose of cross-breeding with domesticated species for improvement of the breed. These animals differ from wild animals at the environmental and genetic levels. It is an important direction to study the semi-wild animals domesticated by humans in search for intermediate hosts of viruses widely spread among humans.
Collapse
Affiliation(s)
- Lei Gao
- School of Life Sciences, South China Normal University, No. 55 Zhongshan Avenue West, Tianhe District, Guangzhou, 510631, Guangdong Province, China
| |
Collapse
|
8
|
Dimonaco NJ, Salavati M, Shih BB. Computational Analysis of SARS-CoV-2 and SARS-Like Coronavirus Diversity in Human, Bat and Pangolin Populations. Viruses 2020; 13:E49. [PMID: 33396801 PMCID: PMC7823979 DOI: 10.3390/v13010049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2019, a novel coronavirus, SARS-CoV-2/nCoV-19, emerged in Wuhan, China, and has been responsible for the current COVID-19 pandemic. The evolutionary origins of the virus remain elusive and understanding its complex mutational signatures could guide vaccine design and development. As part of the international "CoronaHack" in April 2020, we employed a collection of contemporary methodologies to compare the genomic sequences of coronaviruses isolated from human (SARS-CoV-2; n = 163), bat (bat-CoV; n = 215) and pangolin (pangolin-CoV; n = 7) available in public repositories. We have also noted the pangolin-CoV isolate MP789 to bare stronger resemblance to SARS-CoV-2 than other pangolin-CoV. Following de novo gene annotation prediction, analyses of gene-gene similarity network, codon usage bias and variant discovery were undertaken. Strong host-associated divergences were noted in ORF3a, ORF6, ORF7a, ORF8 and S, and in codon usage bias profiles. Last, we have characterised several high impact variants (in-frame insertion/deletion or stop gain) in bat-CoV and pangolin-CoV populations, some of which are found in the same amino acid position and may be highlighting loci of potential functional relevance.
Collapse
Affiliation(s)
- Nicholas J. Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Wales SY3 3FL, UK
| | - Mazdak Salavati
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Barbara B. Shih
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
9
|
Shatizadeh Malekshahi S, Yavarian J, Shafiei-Jandaghi NZ. Usage of peptidases by SARS-CoV-2 and several human coronaviruses as receptors: A mysterious story. Biotechnol Appl Biochem 2020; 69:124-128. [PMID: 33347649 DOI: 10.1002/bab.2087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Coronaviruses recognize a variety of host receptors to infect many humans and animals. Newly emerged severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) recognizes angiotensin-converting enzyme 2 (ACE2) to gain entry into different cells. Interestingly, besides SARS-CoV2, four other human coronaviruses (HCoVs) use three different ectopeptidases (ACE2, dipeptidyl peptidase 4, and aminopeptidase N) as receptors independent of their common peptidase activity. This issue has led to the important question "why do several HCoVs rely on peptidases as their receptors?." In this paper, we discussed to answer this question. Mostly, it seems that the use of peptidases by HCoVs may be more related to their widespread presence on target cells and also viruses prefer to take advantage of molecules with relatively low affinity for their natural ligands through evolving a stronger binding affinity to the surface receptors for entry and endocytosis. Meanwhile evolutionary conservation of these receptors may allow HCoVs to switch between different host species. Finally, the choice of peptidases by HCoVs may reflect the "trial and error" nature of evolution. In conclusion, substantial efforts are needed to get a strong picture of this fascinating question and poorly explored area. Detailed understanding of the entry mechanisms offers opportunities for the development of refined strategies to stop viruses.
Collapse
Affiliation(s)
| | - Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
10
|
Efficient functional screening of a cellular cDNA library to identify severe fever with thrombocytopenia syndrome virus entry factors. Sci Rep 2020; 10:5996. [PMID: 32265454 PMCID: PMC7138800 DOI: 10.1038/s41598-020-62876-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/18/2020] [Indexed: 01/15/2023] Open
Abstract
The identification of host cell factors for virus entry is useful for the molecular explanation of viral tropisms and often leads to a more profound understanding of virus-induced diseases. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by SFTS virus. No countermeasures against the disease exist. In this report, we show an efficient method using virus-like particles for the functional screening of a cellular cDNA library to identify SFTS virus entry factors. Two variants encoding dendritic cell-specific ICAM-3 grabbing non-integrin related (DC-SIGNR), a calcium-dependent lectin known to enhance SFTS virus infection, were successfully identified from a human liver cDNA library. We will discuss applications for yet unidentified factor(s) for SFTS virus entry and for entry factor(s) for other viruses related to SFTS virus.
Collapse
|
11
|
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided into basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
12
|
Hagood JS. Thy-1 as an Integrator of Diverse Extracellular Signals. Front Cell Dev Biol 2019; 7:26. [PMID: 30859102 PMCID: PMC6397883 DOI: 10.3389/fcell.2019.00026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 01/11/2023] Open
Abstract
Thy-1 was discovered over 50 years ago, and in that time investigators from a broad variety of fields have described numerous and heterogeneous biological functions of Thy-1 in multiple contexts. As an outwardly facing cell surface molecule, it is well positioned to receive extracellular signals; previously reviewed studies have confirmed an important role in cell-cell and cell-matrix adhesion, cell migration, and regulation of outside-in signaling. More recent studies reviewed here expand the repertoire of Thy-1 effects on signaling pathways, and reveal novel roles in mechanotransduction, cellular differentiation, viral entry, and extracellular vesicle binding and internalization. All of these studies contribute to understanding Thy-1 as a context-dependent integrator of a diverse range of extracellular information, and provide impetus for further studies, some of which are suggested here.
Collapse
Affiliation(s)
- James S. Hagood
- Division of Pulmonology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
13
|
Evolution of Hepatitis B Virus Receptor NTCP Reveals Differential Pathogenicities and Species Specificities of Hepadnaviruses in Primates, Rodents, and Bats. J Virol 2019; 93:JVI.01738-18. [PMID: 30541833 DOI: 10.1128/jvi.01738-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Human hepatitis B virus (HBV) is a global health problem, affecting more than 250 million people worldwide. HBV-like viruses, named orthohepadnaviruses, also naturally infect nonhuman primates, rodents, and bats, but their pathogenicity and evolutionary history are unclear. Here, we determined the evolutionary history of the HBV receptors NTCP and GPC5 over millions of years of primate, rodent, and bat evolution. We use this as a proxy to understand the pathogenicity of orthohepadnaviruses in mammalian hosts and to determine the implications for species specificity. We found that NTCP, but not GPC5, has evolved under positive selection in primates (27 species), rodents (18 species), and bats (21 species) although at distinct residues. Notably, the positively selected codons map to the HBV-binding sites in primate NTCP, suggesting past genetic "arms races" with pathogenic orthohepadnaviruses. In rodents, the positively selected codons fall outside and within the presumed HBV-binding sites, which may contribute to the restricted circulation of rodent orthohepadnaviruses. In contrast, the presumed HBV-binding motifs in bat NTCP are conserved, and none of the positively selected codons map to this region. This suggests that orthohepadnaviruses may bind to different surfaces in bat NTCP. Alternatively, the patterns may reflect adaptive changes associated with metabolism rather than pathogens. Overall, our findings further point to NTCP as a naturally occurring genetic barrier for cross-species transmissions in primates, which may contribute to the narrow host range of HBV. In contrast, this constraint seems less important in bats, which may correspond to greater orthohepadnavirus circulation and diversity.IMPORTANCE Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. Mammalian HBV-like viruses are also found in nonhuman primates, rodents, and bats. As for most viruses, HBV requires a successful interaction with a host receptor for replication. Cellular receptors are thus key determinants of host susceptibility as well as specificity. One hallmark of pathogenic virus-host relationships is the reciprocal evolution of host receptor and viral envelope proteins, as a result of their antagonistic interaction over time. The dynamics of these so-called "evolutionary arms races" can leave signatures of adaptive selection, which in turn reveal the evolutionary history of the virus-host interaction as well as viral pathogenicity and the genetic determinants of species specificity. Here, we show how HBV-like viruses have shaped the evolutionary history of their mammalian host receptor, as a result of their ancient pathogenicity, and decipher the genetic determinants of cross-species transmissions.
Collapse
|
14
|
Díaz-Martínez L, Brichette-Mieg I, Pineño-Ramos A, Domínguez-Huerta G, Grande-Pérez A. Lethal mutagenesis of an RNA plant virus via lethal defection. Sci Rep 2018; 8:1444. [PMID: 29362502 PMCID: PMC5780445 DOI: 10.1038/s41598-018-19829-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Lethal mutagenesis is an antiviral therapy that relies on increasing the viral mutation rate with mutagenic nucleoside or base analogues. Currently, the molecular mechanisms that lead to virus extinction through enhanced mutagenesis are not fully understood. Increasing experimental evidence supports the lethal defection model of lethal mutagenesis of RNA viruses, where replication-competent-defectors drive infective virus towards extinction. Here, we address lethal mutagenesis in vivo using 5-fluorouracil (5-FU) during the establishment of tobacco mosaic virus (TMV) systemic infections in N. tabacum. The results show that 5-FU decreased the infectivity of TMV without affecting its viral load. Analysis of molecular clones spanning two genomic regions showed an increase of the FU-related base transitions A → G and U → C. Although the mutation frequency or the number of mutations per molecule did not increase, the complexity of the mutant spectra and the distribution of the mutations were altered. Overall, our results suggest that 5-FU antiviral effect on TMV is associated with the perturbation of the mutation-selection balance in the genomic region of the RNA-dependent RNA polymerase (RdRp). Our work supports the lethal defection model for lethal mutagenesis in vivo in a plant RNA virus and opens the way to study lethal mutagens in plant-virus systems.
Collapse
Affiliation(s)
- Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Isabel Brichette-Mieg
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Axier Pineño-Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
15
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
16
|
Domingo E. Interaction of Virus Populations with Their Hosts. VIRUS AS POPULATIONS 2016. [PMCID: PMC7150142 DOI: 10.1016/b978-0-12-800837-9.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Viral population numbers are extremely large compared with those of their host species. Population bottlenecks are frequent during the life cycle of viruses and can reduce viral populations transiently to very few individuals. Viruses have to confront several types of constraints that can be divided in basal, cell-dependent, and organism-dependent constraints. Viruses overcome them exploiting a number of molecular mechanisms, with an important contribution of population numbers and genome variation. The adaptive potential of viruses is reflected in modifications of cell tropism and host range, escape to components of the host immune response, and capacity to alternate among different host species, among other phenotypic changes. Despite a fitness cost of most mutations required to overcome a selective constraint, viruses can find evolutionary pathways that ensure their survival in equilibrium with their hosts.
Collapse
|
17
|
Gómez J, Ariza-Mateos A, Cacho I. Virus is a Signal for the Host Cell. BIOSEMIOTICS 2015; 8:483-491. [PMID: 26640606 PMCID: PMC4661187 DOI: 10.1007/s12304-015-9245-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/25/2015] [Indexed: 06/05/2023]
Abstract
Currently, the concept of the cell as a society or an ecosystem of molecular elements is gaining increasing acceptance. The basic idea arose in the 19th century, from the surmise that there is not just a single unit underlying an individual's appearance, but a plurality of entities with both collaborative and conflicting relationships. The following hypothesis is based around this model. The incompatible activities taking place between different original elements, which were subsumed into the first cell and could not be eliminated, had to be controlled very closely. Similarly, a strong level of control had to be developed over many cellular elements after the cell changed its genome to DNA. We assume that at least some of those original RNA agents and other biomolecules which carry incompatibilities and risks, are retained within current cells, although they are now under strict control. A virus functions as a signal informing these repressed cellular RNAs and other elements of ancient origin how to restore suppressed degrees of molecular freedom, favoring pre-existing molecular affinities and activities, re-establishing ancient molecular webs of interactions, and giving fragments of ancient coded information (mostly in the form of RNA structural motifs) the opportunity to be re-expressed. Collectively, these newly activated mechanisms lead to different possibilities for pathological cell states. All these processes are opposed by cell-control mechanisms. Thus, in this new scenario, the battle is considered intracellular rather than between the virus and the cell. And so the virus is treated as the signal that precipitates the cell's change from a latent to an active pathological state.
Collapse
Affiliation(s)
- Jordi Gómez
- Laboratory of RNA Archeology, Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Ivestigaciones Científicas, Armilla 18100 Granada, Spain
- Centro de Investigación Biomedicina En Red de enfermedades hepáticas y digestivas, Barcelona, Spain
| | - Ascensión Ariza-Mateos
- Laboratory of RNA Archeology, Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Ivestigaciones Científicas, Armilla 18100 Granada, Spain
- Centro de Investigación Biomedicina En Red de enfermedades hepáticas y digestivas, Barcelona, Spain
| | - Isabel Cacho
- Laboratory of RNA Archeology, Instituto de Parasitología y Biomedicina 'López-Neyra', Consejo Superior de Ivestigaciones Científicas, Armilla 18100 Granada, Spain
- Centro de Investigación Biomedicina En Red de enfermedades hepáticas y digestivas, Barcelona, Spain
| |
Collapse
|
18
|
Ford BE, Sun B, Carpino J, Chapler ES, Ching J, Choi Y, Jhun K, Kim JD, Lallos GG, Morgenstern R, Singh S, Theja S, Dennehy JJ. Frequency and fitness consequences of bacteriophage φ6 host range mutations. PLoS One 2014; 9:e113078. [PMID: 25409341 PMCID: PMC4237377 DOI: 10.1371/journal.pone.0113078] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
Viruses readily mutate and gain the ability to infect novel hosts, but few data are available regarding the number of possible host range-expanding mutations allowing infection of any given novel host, and the fitness consequences of these mutations on original and novel hosts. To gain insight into the process of host range expansion, we isolated and sequenced 69 independent mutants of the dsRNA bacteriophage Φ6 able to infect the novel host, Pseudomonas pseudoalcaligenes. In total, we found at least 17 unique suites of mutations among these 69 mutants. We assayed fitness for 13 of 17 mutant genotypes on P. pseudoalcaligenes and the standard laboratory host, P. phaseolicola. Mutants exhibited significantly lower fitnesses on P. pseudoalcaligenes compared to P. phaseolicola. Furthermore, 12 of the 13 assayed mutants showed reduced fitness on P. phaseolicola compared to wildtype Φ6, confirming the prevalence of antagonistic pleiotropy during host range expansion. Further experiments revealed that the mechanistic basis of these fitness differences was likely variation in host attachment ability. In addition, using computational protein modeling, we show that host-range expanding mutations occurred in hotspots on the surface of the phage's host attachment protein opposite a putative hydrophobic anchoring domain.
Collapse
Affiliation(s)
- Brian E. Ford
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
- The Graduate Center of the City University of New York, New York, New York, United States of America
| | - Bruce Sun
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - James Carpino
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Elizabeth S. Chapler
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Jane Ching
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Yoon Choi
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Kevin Jhun
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Jung D. Kim
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Gregory G. Lallos
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Rachelle Morgenstern
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Shalini Singh
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - Sai Theja
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
| | - John J. Dennehy
- Biology Department, Queens College of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mohapatra JK, Pandey LK, Rai DK, Das B, Rodriguez LL, Rout M, Subramaniam S, Sanyal A, Rieder E, Pattnaik B. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions. J Gen Virol 2014; 96:553-564. [PMID: 25381054 DOI: 10.1099/vir.0.071597-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2) consistently gained positively charged amino acids in the putative heparin-sulfate-binding pocket (VP2 βE-βF loop, VP1 C-terminus and VP3 β-B knob) surrounding the fivefold symmetry axis (VP1 βF-βG loop) and at other discrete sites on the capsid (VP3 βG-βH loop, VP1 C-terminus, VP2 βC strand and VP1 βG-βH loop). A lysine insertion in the VP1 βF-βG loop of two of the BHK-21-adapted viruses supports the biological advantage of positively charged residues acquired in cell culture. The charge transitions occurred irrespective of cell line, suggesting their possible role in ionic interaction with ubiquitous negatively charged cell-surface molecules such as glycosaminoglycans (GAG). This was supported by the ability of the cell-culture-adapted variants to replicate in the integrin-deficient, GAG-positive CHO-K1 cells and their superior fitness in competition assays compared with the lower passage viruses with WT genotypes. Substitutions fixed in the VP1 βG-βH loop (-3, -2 and +2 'RGD' positions) or in the structural element known to be juxtaposed against that loop (VP1 βB-βC loop) suggest their possible role in modulating the efficiency and specificity of interaction of the 'RGD' motif with αv-integrin receptors. The nature and location of the substitutions described in this study could be applied in the rapid cell culture adaptation of viral strains for vaccine production.
Collapse
Affiliation(s)
- Jajati K Mohapatra
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Laxmi K Pandey
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Devendra K Rai
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Biswajit Das
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Luis L Rodriguez
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Manoranjan Rout
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Saravanan Subramaniam
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Aniket Sanyal
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| | - Elizabeth Rieder
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA
| | - Bramhadev Pattnaik
- Project Directorate on Foot and Mouth Disease, IVRI Campus, Mukteswar-263 138, Uttarakhand, India
| |
Collapse
|
20
|
Abstract
Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. Pathogen host shifts represent a major source of new infectious diseases. Here we provide evidence that a pollen-borne plant virus, tobacco ringspot virus (TRSV), also replicates in honeybees and that the virus systemically invades and replicates in different body parts. In addition, the virus was detected inside the body of parasitic Varroa mites, which consume bee hemolymph, suggesting that Varroa mites may play a role in facilitating the spread of the virus in bee colonies. This study represents the first evidence that honeybees exposed to virus-contaminated pollen could also be infected and raises awareness of potential risks of new viral disease emergence due to host shift events. About 5% of known plant viruses are pollen transmitted, and these are potential sources of future host-jumping viruses. The findings from this study showcase the need for increased surveillance for potential host-jumping events as an integrated part of insect pollinator management programs.
Collapse
|
21
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
22
|
Rojek JM, Moraz ML, Pythoud C, Rothenberger S, Van der Goot FG, Campbell KP, Kunz S. Binding of Lassa virus perturbs extracellular matrix-induced signal transduction via dystroglycan. Cell Microbiol 2012; 14:1122-34. [PMID: 22405130 PMCID: PMC3869547 DOI: 10.1111/j.1462-5822.2012.01784.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The arenavirus Lassa virus (LASV) causes a severe haemorrhagic fever with high mortality in man. The cellular receptor for LASV is dystroglycan (DG). DG is a ubiquitous receptor for extracellular matrix (ECM) proteins, which cooperates with β1 integrins to control cell-matrix interactions. Here, we investigated whether LASV binding to DG triggers signal transduction, mimicking the natural ligands. Engagement of DG by LASV resulted in the recruitment of the adaptor protein Grb2 and the protein kinase MEK1 by the cytoplasmic domain of DG without activating the MEK/ERK pathway, indicating assembly of an inactive signalling complex. LASV binding to cells however affected the activation of the MEK/ERK pathway via α6β1 integrins. The virus-induced perturbation of α6β1 integrin signalling critically depended on high-affinity LASV binding to DG and DG's cytoplasmic domain, indicating that LASV-receptor binding perturbed signalling cross-talk between DG and β1 integrins.
Collapse
Affiliation(s)
- Jillian M Rojek
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Longjam N, Deb R, Sarmah AK, Tayo T, Awachat VB, Saxena VK. A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Vet Med Int 2011; 2011:905768. [PMID: 21776357 PMCID: PMC3135314 DOI: 10.4061/2011/905768] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/25/2011] [Accepted: 04/20/2011] [Indexed: 12/31/2022] Open
Abstract
Foot-and-mouth disease (FMD) is one of the highly contagious diseases of domestic animals. Effective control of this disease needs sensitive, specific, and quick diagnostic tools at each tier of control strategy. In this paper we have outlined various diagnostic approaches from old to new generation in a nutshell. Presently FMD diagnosis is being carried out using techniques such as Virus Isolation (VI), Sandwich-ELISA (S-ELISA), Liquid-Phase Blocking ELISA (LPBE), Multiplex-PCR (m-PCR), and indirect ELISA (DIVA), and real time-PCR can be used for detection of antibody against nonstructural proteins. Nucleotide sequencing for serotyping, microarray as well as recombinant antigen-based detection, biosensor, phage display, and nucleic-acid-based diagnostic are on the way for rapid and specific detection of FMDV. Various pen side tests, namely, lateral flow, RT-LAMP, Immunostrip tests, and so forth. are also developed for detection of the virus in field condition.
Collapse
Affiliation(s)
- Neeta Longjam
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Rajib Deb
- Division of Animal Biotechnology, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - A. K. Sarmah
- Department of Veterinary Microbiology, College of Veterinary Science, Assam Agricultural University, Guwahati 781022, India
| | - Tilling Tayo
- Division of Animal Nutrition, Indian Veterinary Research Institute (IVRI), Izatnagar 243122, India
| | - V. B. Awachat
- Division of Poultry Science, Central Avian Research Institute (CARI), Izatnagar 243122, India
| | - V. K. Saxena
- Division of Veterinary Biochemistry and Physiology, Central Sheep and Wool Research Institute (CSWRI), Avikanagar, India
| |
Collapse
|
24
|
Perales C, Lorenzo-Redondo R, López-Galíndez C, Martínez MA, Domingo E. Mutant spectra in virus behavior. Future Virol 2010. [DOI: 10.2217/fvl.10.61] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA viruses replicate as complex mutant spectra, also termed ‘mutant clouds’, known as viral quasispecies. While this is a widely observed viral population structure, it is less known that a number of biologically relevant features of this important group of viral pathogens depend on (or are strongly influenced by) the complexity and composition of mutant spectra. Among them, fitness increase or decrease depending on intrapopulation complementation or interference, selection triggered by memory genomes, pathogenic potential of viruses, disease evolution and the response to antiviral treatments. Quasispecies represent the recognition of complex behavior in viruses, and it is an oversimplification to equate such a population structure with the classic polymorphism of population biology. Darwinian principles acting on genome collectivities that replicate with high error rates provide a unique population structure prone to flexible and largely unpredictable behavior.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ramón Lorenzo-Redondo
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Cecilio López-Galíndez
- Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | | | | |
Collapse
|
25
|
Abstract
A number of virologic and environmental factors are involved in the emergence and re-emergence of viral disease. Viruses do not conservatively occupy a single and permanent ecological niche. Rather, due to their intrinsic capacity for genetic change, and to the evolvability of fitness levels, viruses display a potential to parasitize alternative host species. Mutation, recombination and genome segment reassortment, and combination of these molecular events, produce complex and phenotypically diverse populations of viruses, which constitute the raw material on which selection acts. The majority of emerging viral diseases of humans have a zoonotic origin. Sociologic and ecologic factors produce diverse and changing environments in which viral subpopulations have ample opportunities to be selected from intrinsically heterogeneous viral populations, particularly in the case of RNA viruses. In this manner, new human, animal and plant viruses have emerged periodically and, from all evidence, will continue to emerge. This article reviews some of the mechanisms that have been identified in viral emergence, with a focus on the importance of genetic variation of viruses, and on the general concept of biological complexity.
Collapse
|
26
|
Martín V, Domingo E. Influence of the mutant spectrum in viral evolution: focused selection of antigenic variants in a reconstructed viral quasispecies. Mol Biol Evol 2008; 25:1544-54. [PMID: 18436553 DOI: 10.1093/molbev/msn099] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RNA viruses replicate as complex mutant distributions termed viral quasispecies. Despite this, studies on virus populations subjected to positive selection have generally been performed and analyzed as if the viral population consisted of a defined genomic nucleotide sequence; such a simplification may not reflect accurately the molecular events underlying the selection process. In the present study, we have reconstructed a foot-and-mouth disease virus quasispecies with multiple, low-frequency, genetically distinguishable mutants that can escape neutralization by a monoclonal antibody. Some of the mutants included an amino acid substitution that affected an integrin recognition motif that overlaps with the antibody-binding site, whereas other mutants included an amino acid substitution that affected antibody binding but not integrin recognition. We have monitored consensus and clonal nucleotide sequences of populations passaged either in the absence or the presence of the neutralizing antibody. In both cases, the populations focused toward a specific mutant that was surrounded by a cloud of mutants with different antigenic and cell recognition specificities. In the absence of antibody selection, an antigenic variant that maintained integrin recognition became dominant, but the mutant cloud included as one of its minority components a variant with altered integrin recognition. Conversely, in the presence of antibody selection, a variant with altered integrin recognition motif became dominant, but it was surrounded by a cloud of antigenic variants that maintained integrin recognition. The results have documented that a mutant spectrum can exert an influence on a viral population subjected to a sustained positive selection pressure and have unveiled a mechanism of antigenic flexibility in viral populations, consisting in the presence in the selected quasispecies of mutants with different antigenic and cell recognition specificities.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), C/Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
27
|
Rademacher C, Peters T. Molecular Recognition of Ligands by Native Viruses and Virus-Like Particles as Studied by NMR Experiments. Top Curr Chem (Cham) 2008; 273:183-202. [DOI: 10.1007/128_2007_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Park SJ, Kim GY, Choy HE, Hong YJ, Saif LJ, Jeong JH, Park SI, Kim HH, Kim SK, Shin SS, Kang MI, Cho KO. Dual enteric and respiratory tropisms of winter dysentery bovine coronavirus in calves. Arch Virol 2007; 152:1885-900. [PMID: 17564760 PMCID: PMC7087358 DOI: 10.1007/s00705-007-1005-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/04/2007] [Indexed: 11/29/2022]
Abstract
Although winter dysentery (WD), which is caused by the bovine coronavirus (BCoV) is characterized by the sudden onset of diarrhea in many adult cattle in a herd, the pathogenesis of the WD-BCoV is not completely understood. In this study, colostrum-deprived calves were experimentally infected with a Korean WD-BCoV strain and examined for viremia, enteric and nasal virus shedding as well as for viral antigen expression and virus-associated lesions in the small and large intestines and the upper and lower respiratory tract from 1 to 8 days after an oral infection. The WD-BCoV-inoculated calves showed gradual villous atrophy in the small intestine and a gradual increase in the crypt depth of the large intestine. The WD-BCoV-infected animals showed epithelial damage in nasal turbinates, trachea and lungs, and interstitial pneumonia. The WD-BCoV antigen was detected in the epithelium of the small and large intestines, nasal turbinates, trachea and lungs. WD-BCoV RNA was detected in the serum from post-inoculation day 3. These results show that the WD-BCoV has dual tropism and induces pathological changes in both the digestive and respiratory tracts of calves. To our knowledge, this is the first detailed report of dual enteric and respiratory tropisms of WD-BCoV in calves. Comprehensive studies of the dual tissue pathogenesis of the BCoV might contribute to an increased understanding of similar pneumoenteric CoV infections in humans.
Collapse
Affiliation(s)
- S J Park
- Biotherapy Human Resources Center, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Núñez JI, Molina N, Baranowski E, Domingo E, Clark S, Burman A, Berryman S, Jackson T, Sobrino F. Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host. J Virol 2007; 81:8497-506. [PMID: 17522230 PMCID: PMC1951369 DOI: 10.1128/jvi.00340-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report that adaptation to infect the guinea pig did not modify the capacity of foot-and-mouth disease virus (FMDV) to kill suckling mice and to cause an acute and transmissible disease in the pig, an important natural host for this pathogen. Adaptive amino acid replacements (I(248)-->T in 2C, Q(44)-->R in 3A, and L(147)-->P in VP1), selected upon serial passages of a type C FMDV isolated from swine (biological clone C-S8c1) in the guinea pig, were maintained after virus multiplication in swine and suckling mice. However, the adaptive replacement L(147)-->P, next to the integrin-binding RGD motif at the GH loop in VP1, abolished growth of the virus in different established cell lines and modified its antigenicity. In contrast, primary bovine thyroid cell cultures could be productively infected by viruses with replacement L(147)-->P, and this infection was inhibited by antibodies to alphavbeta6 and by an FMDV-derived RGD-containing peptide, suggesting that integrin alphavbeta6 may be used as a receptor for these mutants in the animal (porcine, guinea pig, and suckling mice) host. Substitution T(248)-->N in 2C was not detectable in C-S8c1 but was present in a low proportion of the guinea pig-adapted virus. This substitution became rapidly dominant in the viral population after the reintroduction of the guinea pig-adapted virus into pigs. These observations illustrate how the appearance of minority variant viruses in an unnatural host can result in the dominance of these viruses on reinfection of the original host species.
Collapse
Affiliation(s)
- José I Núñez
- Centro de Biología Molecular Severo Ochoa, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martín V, Perales C, Dávila M, Domingo E. Viral fitness can influence the repertoire of virus variants selected by antibodies. J Mol Biol 2006; 362:44-54. [PMID: 16890952 DOI: 10.1016/j.jmb.2006.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/30/2006] [Accepted: 06/30/2006] [Indexed: 10/24/2022]
Abstract
Minority genomes in the mutant spectra of viral quasispecies may differ in relative fitness. Here, we report experiments designed to evaluate the contribution of relative fitness to selection by a neutralizing monoclonal antibody (mAb). We have reconstructed a foot-and-mouth disease virus (FMDV) quasispecies, with two matched pairs of distinguishable mAb-escape mutants as minority genomes of the mutant spectrum. Each mutant of a pair differs from the other by 11-fold or 33-fold in relative fitness. Analysis of the mutant spectra of virus populations selected with different concentrations of antibody in infections in liquid culture medium has documented a dominance of the high fitness counterpart in the selected population. Plaque development as a function of increasing concentration of the antibody has shown that each mutant of a matched pair yielded the same number of plaques, although the high fitness mutant required less time for plaque formation, and attained a larger plaque size at any given time-point. This result documents equal intrinsic resistance to the antibody of each mutant of a matched pair, confirming previous biochemical, structural, and genetic studies, which indicated that the epitopes of each mutant pair were indistinguishable regarding reactivity with the monoclonal antibody. Thus, relative viral fitness can influence in a significant way the repertoire of viral mutants selected from a viral quasispecies by a neutralizing antibody. We discuss the significance of these results in relation to antibody selection, and to other selective forces likely encountered by viral quasispecies in vivo.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Jurak I, Brune W. Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J 2006; 25:2634-42. [PMID: 16688216 PMCID: PMC1478185 DOI: 10.1038/sj.emboj.7601133] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 04/18/2006] [Indexed: 11/08/2022] Open
Abstract
Cross-species infections are responsible for the majority of emerging and re-emerging viral diseases. However, little is known about the mechanisms that restrict viruses to a certain host species, and the factors viruses need to cross the species barrier and replicate in a different host. Cytomegaloviruses (CMVs) are representatives of the beta-herpesviruses that are highly species specific. They replicate only in cells of their own or a closely related species. In this study, the molecular mechanism underlying the cytomegalovirus species specificity was investigated. We show that infection of human cells with the murine cytomegalovirus (MCMV) triggers the intrinsic apoptosis pathway involving caspase-9 activation. MCMV can break the species barrier and replicate in human cells if apoptosis is blocked by Bcl-2 or a functionally analogous protein. A single gene of the human cytomegalovirus encoding a mitochondrial inhibitor of apoptosis is sufficient to allow MCMV replication in human cells. Moreover, the same principle facilitates replication of the rat cytomegalovirus in human cells. Thus, induction of apoptosis serves as an innate immune defense to inhibit cross-species infections of rodent CMVs.
Collapse
Affiliation(s)
- Igor Jurak
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| | - Wolfram Brune
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Division of Viral Infections, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
32
|
Domingo E, Gonzalez-Lopez C, Pariente N, Airaksinen A, Escarmís C. Population dynamics of RNA viruses: the essential contribution of mutant spectra. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 2006:59-71. [PMID: 16355868 DOI: 10.1007/3-211-29981-5_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Cells and their viral and cellular parasites are genetically highly diverse, and their genomes contain signs of past and present variation and mobility. The great adaptive potential of viruses, conferred on them by high mutation rates and quasispecies dynamics, demands new strategies for viral disease prevention and control. This necessitates a more detailed knowledge of viral population structure and dynamics. Here we review studies with the important animal pathogen Foot-and-mouth disease virus (FMDV) that document modulating effects of the mutant spectra that compose viral populations. As a consequence of interactions within mutant spectra, enhanced mutagenesis may lead to viral extinction, and this is currently investigated as a new antiviral strategy, termed virus entry into error catastrophe.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
33
|
García-Arriaza J, Ojosnegros S, Dávila M, Domingo E, Escarmís C. Dynamics of mutation and recombination in a replicating population of complementing, defective viral genomes. J Mol Biol 2006; 360:558-72. [PMID: 16797586 DOI: 10.1016/j.jmb.2006.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 05/05/2006] [Accepted: 05/10/2006] [Indexed: 11/22/2022]
Abstract
In a previous study, we documented that serial passage of a biological clone of foot-and-mouth disease virus (FMDV) at high multiplicity of infection (moi) in cell culture resulted in viral populations dominated by defective genomes that included internal in-frame deletions, affecting the L and capsid-coding regions, and were infectious by complementation. In the present study, analyses of the defective genomes present in individual viral plaques, and of consensus nucleotide sequences determined for the entire genomes of sequential samples, have revealed a continuous dynamics of mutation and recombination. At some points of high genetic instability, multiple minority genomes with different internal deletions co-existed in the population. At later passages, a new defective RNA arose and displaced a related, previously dominant RNA. Nucleotide sequences of the different genomic forms found in sequential isolates have revealed an accumulation of mutations at an average rate of 0.12 substitutions per genome per passage. At the regions around the deletion sites, substantial, minor or no nucleotide sequence identity is found, suggesting relaxed sequence requirements for the occurrence of internal deletions. Competition experiments indicate a selective advantage of late phase defective genomes over their precursor forms. The defective genome-based FMDV retained an expansion of host cell tropism, undergone by the standard virus at a previous stage of the same evolutionary lineage. Thus, despite a complex dynamics of mutation and recombination, and phases of high genetic instability, a biologically relevant phenotypic trait was stably maintained after the evolutionary transition towards a primitive genome segmentation. The results extend the concept of a complex spectrum of mutant genomes to a complex spectrum of defective genomes in some evolutionary transitions of RNA viruses.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Martín V, Perales C, Abia D, Ortíz AR, Domingo E, Briones C. Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment. BMC Genomics 2006; 7:117. [PMID: 16709242 PMCID: PMC1481559 DOI: 10.1186/1471-2164-7-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of viral quasispecies can influence viral pathogenesis and the response to antiviral treatments. Mutant clouds in infected organisms represent the first stage in the genetic and antigenic diversification of RNA viruses, such as foot and mouth disease virus (FMDV), an important animal pathogen. Antigenic variants of FMDV have been classically diagnosed by immunological or RT-PCR-based methods. DNA microarrays are becoming increasingly useful for the analysis of gene expression and single nucleotide polymorphisms (SNPs). Recently, a FMDV microarray was described to detect simultaneously the seven FMDV serotypes. These results encourage the development of new oligonucleotide microarrays to probe the fine genetic and antigenic composition of FMDV for diagnosis, vaccine design, and to gain insight into the molecular epidemiology of this pathogen. RESULTS A FMDV microarray was designed and optimized to detect SNPs at a major antigenic site of the virus. A screening of point mutants of the genomic region encoding antigenic site A of FMDV C-S8c1 was achieved. The hybridization pattern of a mutant includes specific positive and negative signals as well as crosshybridization signals, which are of different intensity depending on the thermodynamic stability of each probe-target pair. Moreover, an array bioinformatic classification method was developed to evaluate the hybridization signals. This statistical analysis shows that the procedure allows a very accurate classification per variant genome. CONCLUSION A specific approach based on a microarray platform aimed at distinguishing point mutants within an important determinant of antigenicity and host cell tropism, namely the G-H loop of capsid protein VP1, was developed. The procedure is of general applicability as a test for specificity and discriminatory power of microarray-based diagnostic procedures using multiple oligonucleotide probes.
Collapse
Affiliation(s)
- Verónica Martín
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Angel R Ortíz
- Bioinformatics Unit, Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Carlos Briones
- Centro de Astobiología (CSIC-INTA), Torrejón de Ardoz, 28850, Madrid, Spain
| |
Collapse
|
35
|
Villar E, Barroso IM. Role of sialic acid-containing molecules in paramyxovirus entry into the host cell: A minireview. Glycoconj J 2006; 23:5-17. [PMID: 16575518 DOI: 10.1007/s10719-006-5433-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in alpha2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acalpha2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood.
Collapse
Affiliation(s)
- Enrique Villar
- Departamento de Bioquímica y Biología Molecular, Edificio Departamental, Universidad de Salamanca, Plaza Doctores de la Reina s/n, Lab. 108, Salamanca 37007, Spain.
| | | |
Collapse
|
36
|
Domingo E, Martin V, Perales C, Grande-Pérez A, García-Arriaza J, Arias A. Viruses as quasispecies: biological implications. Curr Top Microbiol Immunol 2006; 299:51-82. [PMID: 16568896 PMCID: PMC7120838 DOI: 10.1007/3-540-26397-7_3] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During viral infections, the complex and dynamic distributions of variants, termed viral quasispecies, play a key role in the adaptability of viruses to changing environments and the fate of the population as a whole. Mutant spectra are continuously and avoidably generated during RNA genome replication, and they are not just a by-product of error-prone replication, devoid of biological relevance. On the contrary, current evidence indicates that mutant spectra contribute to viral pathogenesis, can modulate the expression of phenotypic traits by subpopulations of viruses, can include memory genomes that reflect the past evolutionary history of the viral lineage, and, furthermore, can participate in viral extinction through lethal mutagenesis. Also, mutant spectra are the target on which selection and random drift act to shape the long-term evolution of viruses. The biological relevance of mutant spectra is the central topic of this chapter.
Collapse
Affiliation(s)
- E Domingo
- Centro de Biologia Molecular, Severo Ochoa, (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Whitton JL, Cornell CT, Feuer R. Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 2005; 3:765-76. [PMID: 16205710 DOI: 10.1038/nrmicro1284] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The family Picornaviridae contains some notable members, including rhinovirus, which infects humans more frequently than any other virus; poliovirus, which has paralysed or killed millions over the years; and foot-and-mouth-disease virus, which led to the creation of dedicated institutes throughout the world. Despite their profound impact on human and animal health, the factors that regulate pathogenesis and tissue tropism are poorly understood. In this article, we review the clinical and economic challenges that these agents pose, summarize current knowledge of host-pathogen interactions and highlight a few of the many outstanding questions that remain to be answered.
Collapse
Affiliation(s)
- J Lindsay Whitton
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
38
|
Perales C, Martín V, Ruiz-Jarabo CM, Domingo E. Monitoring sequence space as a test for the target of selection in viruses. J Mol Biol 2005; 345:451-9. [PMID: 15581890 DOI: 10.1016/j.jmb.2004.10.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/22/2004] [Accepted: 10/22/2004] [Indexed: 10/26/2022]
Abstract
An essential feature of viral quasispecies, predicted from quasispecies theory, is that the target of selection is the mutant distribution as a whole. To test molecularly the mutant composition selected from a viral quasispecies we reconstructed a mutant distribution using 19 antigenic variants of foot-and-mouth disease virus (FMDV). Each variant was marked by a specific amino acid replacement at a major antigenic site of the virus that conferred resistance to a monoclonal antibody (mAb). The variants were introduced in the mutant spectrum of a biological FMDV clone, at a frequency commonly found in FMDV quasispecies. The reconstructed quasispecies (and a number of control populations) were allowed to replicate in the presence or absence of the mAb. The mutant distribution that became dominant as a result of antibody selection included at least ten of the 19 mutants initially used to reconstruct the quasispecies. No such biased mutant repertoire was found in control populations. The results show that a mutant distribution was selected, and are incompatible with selection of an individual genome, which then generated multiple mutants upon further replication. An ample representation of variants immediately following a selection event should contribute to subsequent adaptability of the virus.
Collapse
Affiliation(s)
- Celia Perales
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Pariente N, Sierra S, Airaksinen A. Action of mutagenic agents and antiviral inhibitors on foot-and-mouth disease virus. Virus Res 2005; 107:183-93. [PMID: 15649564 DOI: 10.1016/j.virusres.2004.11.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our current knowledge on foot-and-mouth disease virus (FMDV) entry into error catastrophe is reviewed. FMDV can establish cytolytic and persistent infections in the field and in cell culture. Both types of FMDV infection in cell culture can be treated with mutagens, with or without classical (non-mutagenic) antiviral inhibitors, to drive the virus to extinction. 5-Fluorouracil (FU) and 5-azacytidine (AZC) have been employed as mutagenic agents to treat cytolytic FMDV infections, and ribavirin (Rib) to treat persistent infections. Extinction is dependent on the relative fitness of the viral isolate, as well as on the viral load. In cytolytic infections, extinctions could be efficiently obtained with combinations of mutagens and inhibitors. High-fitness FMDV extinction could only be achieved with treatments that contained a mutagen, and not with combinations of inhibitors that exerted the same antiviral effect. Persistent infections could be cured with Rib treatment alone. The results presented here show entry into error catastrophe as a valid strategy for treatment of viral infections, although much work remains to be done before it can be implemented.
Collapse
Affiliation(s)
- Nonia Pariente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
40
|
Virus Evolution in the Face of the Host Response. APPLICATIONS OF GENE-BASED TECHNOLOGIES FOR IMPROVING ANIMAL PRODUCTION AND HEALTH IN DEVELOPING COUNTRIES 2005. [PMCID: PMC7120965 DOI: 10.1007/1-4020-3312-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Abstract
Foot-and-mouth disease virus (FMDV) is genetically and phenotypically variable. As a typical RNA virus, FMDV follows a quasispecies dynamics, with the many biological implications of such a dynamics. Mutant spectra provide a reservoir of FMDV variants, and minority subpopulations may become dominant in response to environmental demands or as a result of statistical fluctuations in population size. Accumulation of mutations in the FMDV genome occurs upon subjecting viral populations to repeated bottleneck events and upon viral replication in the presence of mutagenic base or nucleoside analogs. During serial bottleneck passages, FMDV survive during extended rounds of replication maintaining low average relative fitness, despite linear accumulation of mutations in the consensus genomic sequence. The critical event is the occurrence of a low frequency of compensatory mutations. In contrast, upon replication in the presence of mutagens, the complexity of mutant spectra increases, apparently no compensatory mutations can express their fitness-enhancing potential, and the virus can cross an error threshold for maintenance of genetic information, resulting in virus extinction. Low relative fitness and low viral load favor FMDV extinction in cell culture. The comparison of the molecular basis of resistance to extinction upon bottleneck passage and extinction by enhanced mutagenesis is providing new insights in the understanding of quasispecies dynamics. Such a comparison is contributing to the development of new antiviral strategies based on the transition of viral replication into error catastrophe.
Collapse
Affiliation(s)
- Brian W.J. Mahy
- Centers for Disease Control and Prevention, National Center for Infectious Diseases, Mailstop C 12, 1600 clifton road, Atlanta, GA 30333 USA
| |
Collapse
|
42
|
Kunz S, Sevilla N, Rojek JM, Oldstone MBA. Use of alternative receptors different than alpha-dystroglycan by selected isolates of lymphocytic choriomeningitis virus. Virology 2004; 325:432-45. [PMID: 15246281 DOI: 10.1016/j.virol.2004.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 05/13/2004] [Indexed: 11/15/2022]
Abstract
Long-term infections with viruses permit the generation of variants that evolve specific growth advantages in certain tissues and may show altered disease potentials. The selection of such variants is influenced by the host tissue and often involves virus-receptor interactions. Here we report studies of receptor usage by several lymphocytic choriomeningitis virus (LCMV) isolates that expressed different disease patterns. Consistent with our previous studies, we found that, with one exception, multiple LCMV variants that cause suppression of immune responses bound with high affinity to their cellular receptor alpha-dystroglycan (alpha-DG) and were dependent on alpha-DG for entry and infection. The exception also bound strongly to alpha-DG but was not dependent on alpha-DG for entry and infection. In contrast, those variants of LCMV that do not suppress the immune response either displayed low or no binding affinity for alpha-DG and used alternative receptors in addition to or instead of alpha-DG for entry and infection. For all alpha-DG binding variants, alpha-DG represents the preferred receptor in DG-expressing cells, as soluble alpha-DG blocked their infection of DG-deficient cells, indicating that binding of alpha-DG to the viral glycoprotein (GP) at the virion surface interferes with the GP's interaction with the alternative receptor. Biochemical characterization of the alternative receptor(s) for LCMV indicated that they are either protein(s) or protein-bound entities.
Collapse
Affiliation(s)
- Stefan Kunz
- Division of Virology, Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
43
|
Ruiz-Jarabo CM, Pariente N, Baranowski E, Dávila M, Gómez-Mariano G, Domingo E. Expansion of host-cell tropism of foot-and-mouth disease virus despite replication in a constant environment. J Gen Virol 2004; 85:2289-2297. [PMID: 15269370 DOI: 10.1099/vir.0.80126-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) variants adapted to BHK-21 cells showed an expanded host-cell tropism that extended to primate and human cell lines. Virus replication in human HeLa and Jurkat cells has been documented by titration of virus infectivity, quantification of virus RNA, expression of a virus-specific non-structural antigen, and serial passage of virus in the cells. Parallel serial infections of human Jurkat cells with the same variant FMDVs indicates a strong stochastic component in the progression of infection. Chimeric viruses identified the capsid as a genomic region involved in tropism expansion. These results indicate that, contrary to theoretical predictions, replication of an RNA virus in a constant cellular environment may lead to expansion of cellular tropism, rather than to a more specialized infection of the cellular type to which the virus has been adapted.
Collapse
Affiliation(s)
- Carmen M Ruiz-Jarabo
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Nonia Pariente
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Eric Baranowski
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Mercedes Dávila
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Gema Gómez-Mariano
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
44
|
González-López C, Arias A, Pariente N, Gómez-Mariano G, Domingo E. Preextinction viral RNA can interfere with infectivity. J Virol 2004; 78:3319-24. [PMID: 15016853 PMCID: PMC371084 DOI: 10.1128/jvi.78.7.3319-3324.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Accepted: 12/05/2003] [Indexed: 11/20/2022] Open
Abstract
When the error rate during the copying of genetic material exceeds a threshold value, the genetic information cannot be maintained. This concept is the basis of a new antiviral strategy termed lethal mutagenesis or virus entry into error catastrophe. Critical for its success is preventing survival of residual infectious virus or virus mutants that escape the transition into error catastrophe. Here we document that mutated, preextinction foot-and-mouth disease virus (FMDV) RNA can interfere with and delay viral production up to 30 h when cotransfected in BHK-21 cells with standard RNA. Interference depended on the physical integrity of preextinction RNA and was not observed with unrelated RNAs or with nonmutated, defective FMDV RNA. These results suggest that this type of interference requires large size, preextinction FMDV RNA and is mediated neither by small interfering RNAs nor by RNAs that can compete with infectious RNA for host cell factors. A model based on the aberrant expression of mutated RNA as it is expected to occur in the initial stages of the transition into error catastrophe is proposed. Interference mediated by preextinction RNA indicates an advantage of mutagenesis versus inhibition in preventing the survival of virus escape mutants during antiviral treatments.
Collapse
Affiliation(s)
- Claudia González-López
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
45
|
Ruiz-Jarabo CM, Miller E, Gómez-Mariano G, Domingo E. Synchronous loss of quasispecies memory in parallel viral lineages: a deterministic feature of viral quasispecies. J Mol Biol 2003; 333:553-63. [PMID: 14556744 DOI: 10.1016/j.jmb.2003.08.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Viral quasispecies are endowed with a memory of their past evolutionary history in the form of minority genomes of their mutant spectra. To determine the fate of memory genomes in evolving viral quasispecies, we have measured memory levels of antigenic variant of foot-and-mouth disease virus (FMDV) RED, which includes an Arg-Glu-Asp (RED) at a surface antigenic loop of the viral capsid. The RED reverted to the standard Arg-Gly-Asp (RGD), and the RED remained as memory in the evolving quasispecies. In four parallel evolutionary lineages, memory reduction followed a strikingly similar pattern, and at passage 60 memory levels were indistinguishable from those of control populations (devoid of memory). Nucleotide sequence analyses indicated that memory loss occurred synchronously despite its ultimate molecular basis being the stochastic occurrence of mutations in the evolving quasispecies. These results on the kinetics of memory levels have unveiled a deterministic feature of viral quasispecies. Molecular mechanisms that may underlie synchronous memory loss are the averaging of noise signals derived from mutational input, and constraints to genome diversification imposed by a nucleotide sequence context in the viral genome. Possible implications of the behaviour of complex, adaptive viral systems as experimental models to address primary mechanisms of neurological memory are discussed.
Collapse
Affiliation(s)
- Carmen M Ruiz-Jarabo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
46
|
|