1
|
Fiers J, Cay AB, Maes D, Tignon M. A Comprehensive Review on Porcine Reproductive and Respiratory Syndrome Virus with Emphasis on Immunity. Vaccines (Basel) 2024; 12:942. [PMID: 39204065 PMCID: PMC11359659 DOI: 10.3390/vaccines12080942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pig production worldwide and responsible for enormous production and economic losses. PRRSV infection in gestating gilts and sows induces important reproductive failure. Additionally, respiratory distress is observed in infected piglets and fattening pigs, resulting in growth retardation and increased mortality. Importantly, PRRSV infection interferes with immunity in the respiratory tract, making PRRSV-infected pigs more susceptible to opportunistic secondary pathogens. Despite the availability of commercial PRRSV vaccines for more than three decades, control of the disease remains a frustrating and challenging task. This paper provides a comprehensive overview of PRRSV, covering its history, economic and scientific importance, and description of the viral structure and genetic diversity. It explores the virus's pathogenesis, including cell tropism, viral entry, replication, stages of infection and epidemiology. It reviews the porcine innate and adaptative immune responses to comprehend the modulation mechanisms employed by PRRS for immune evasion.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
2
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
3
|
Quist EM, Choudhary S, Lang R, Tokarz DA, Hoenerhoff M, Nagel J, Everitt JI. Proceedings of the 2022 National Toxicology Program Satellite Symposium. Toxicol Pathol 2022; 50:836-857. [PMID: 36165586 PMCID: PMC9678128 DOI: 10.1177/01926233221124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 2022 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Austin, Texas at the Society of Toxicologic Pathology's 40th annual meeting during a half-day session on Sunday, June 19. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included induced and spontaneous neoplastic and nonneoplastic lesions in the mouse lung, spontaneous lesions in the reproductive tract of a female cynomolgus macaque, induced vascular lesions in a mouse asthma model and interesting case studies in a rhesus macaque, dog and genetically engineered mouse model.
Collapse
Affiliation(s)
| | | | | | | | - Mark Hoenerhoff
- Unit for Laboratory Animal Medicine In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan Nagel
- University of North Carolina – Chapel Hill, Chapel Hill, NC
- North Carolina State University, Raleigh, NC
| | | |
Collapse
|
4
|
Yang P, Freeman ZT, Dysko RC, Hoenerhoff MJ. Degenerative Myelopathy and Neuropathy in NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) Mice Caused by Lactate Dehydrogenase-Elevating Virus (LDV). Toxicol Pathol 2022; 50:390-396. [PMID: 35450478 DOI: 10.1177/01926233221091747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following implantation of patient-derived xenograft (PDX) breast carcinomas from three separate individuals, 33/51 female NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice presented with progressive, unilateral to bilateral, ascending hindlimb paresis to paralysis. Mice were mildly dehydrated, in thin to poor body condition, with reduced to absent hindlimb withdrawal reflex and deep pain sensation. Microscopically, there was variable axonal swelling, vacuolation, and dilation of myelin sheaths within the ventral spinal cord and spinal nerve roots of the thoracolumbar and sacral spinal cord, as well as within corresponding sciatic nerves. Results of PCR screening of PDX samples obtained at necropsy and pooled environmental swabs from the racks housing affected animals were positive for lactate dehydrogenase-elevating virus (LDV). LDV is transmitted through animal-animal contact or commonly as a contaminant of biologic materials of mouse origin. Infection is associated with progressive degenerative myelopathy and neuropathy in strains of mice harboring endogenous retrovirus (AKR, C58), or in immunosuppressed strains (NOD-SCID, Foxn1nu), and can interfere with normal immune responses and alter engraftment and growth of xenograft tumors in immunosuppressed mice. This is the first reported series of LDV-induced poliomyelitis in NSG mice and should be recognized as a potentially significant confounder to biomedical studies utilizing immunodeficient xenograft models.
Collapse
Affiliation(s)
- P Yang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Z T Freeman
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - R C Dysko
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - M J Hoenerhoff
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,In Vivo Animal Core, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Su CM, Rowland RRR, Yoo D. Recent Advances in PRRS Virus Receptors and the Targeting of Receptor-Ligand for Control. Vaccines (Basel) 2021; 9:vaccines9040354. [PMID: 33916997 PMCID: PMC8067724 DOI: 10.3390/vaccines9040354] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cellular receptors play a critical role in viral infection. At least seven cellular molecules have been identified as putative viral entry mediators for porcine reproductive and respiratory syndrome virus (PRRSV). Accumulating data indicate that among these candidates, CD163, a cysteine-rich scavenger receptor on macrophages, is the major receptor for PRRSV. This review discusses the recent advances and understanding of the entry of PRRSV into cells, viral pathogenesis in CD163 gene-edited swine, and CD163 as a potential target of receptor–ligand for the control of PRRS.
Collapse
|
6
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
7
|
Guo C, Zhu Z, Yu P, Zhang X, Dong W, Wang X, Chen Y, Liu X. Inhibitory effect of iota-carrageenan on porcine reproductive and respiratory syndrome virus in vitro. Antivir Ther 2020; 24:261-270. [PMID: 30747721 DOI: 10.3851/imp3295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen and causes significant economic losses to the swine industry worldwide each year. Current vaccination strategies do not effectively prevent and control the virus. Consequently, it is necessary to develop novel antiviral strategies. Carrageenan, extracted from marine red algae, exhibits anti-coagulant, anti-tumour, anti-virus and immunomodulatory activities. METHODS We investigate the inhibitory effect of iota-carrageenan (CG) on PRRSV strain CH-1a via antiviral assay and viral binding, entry and release assays. RESULTS We found that CG effectively inhibited CH-1a replication at mRNA and protein levels in both Marc-145 cells and porcine alveolar macrophages (PAMs). The antiviral activity of CG occurred during viral attachment and entry in virus life cycle. In addition, CG suppressed viral release in Marc-145 cells, as well as blocked CH-1a-induced apoptosis during the late period of infection. Furthermore, CG inhibited CH-1a-induced NF-κB activation, thus interfering with cytokine production in Marc-145 cells and PAMs, which contributes to its anti-PRRSV activity. CONCLUSIONS Taken together, our data imply that CG might be an ideal candidate that is worthwhile developing into a new anti-PRRSV prophylactic and therapeutic drug.
Collapse
Affiliation(s)
- Chunhe Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| | - Zhenbang Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| | - Piao Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| | - Xiaoxiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| | - Wenjuan Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou, PR China
| |
Collapse
|
8
|
Intrahost Selection Pressure Drives Equine Arteritis Virus Evolution during Persistent Infection in the Stallion Reproductive Tract. J Virol 2019; 93:JVI.00045-19. [PMID: 30918077 DOI: 10.1128/jvi.00045-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a reproductive and respiratory disease of horses. Following natural infection, 10 to 70% of infected stallions can become carriers of EAV and continue to shed virus in the semen. In this study, sequential viruses isolated from nasal secretions, buffy coat cells, and semen of seven experimentally infected and two naturally infected EAV carrier stallions were deep sequenced to elucidate the intrahost microevolutionary process after a single transmission event. Analysis of variants from nasal secretions and buffy coat cells lacked extensive positive selection; however, characteristics of the mutant spectra were different in the two sample types. In contrast, the initial semen virus populations during acute infection have undergone a selective bottleneck, as reflected by the reduction in population size and diversifying selection at multiple sites in the viral genome. Furthermore, during persistent infection, extensive genome-wide purifying selection shaped variant diversity in the stallion reproductive tract. Overall, the nonstochastic nature of EAV evolution during persistent infection was driven by active intrahost selection pressure. Among the open reading frames within the viral genome, ORF3, ORF5, and the nsp2-coding region of ORF1a accumulated the majority of nucleotide substitutions during persistence, with ORF3 and ORF5 having the highest intrahost evolutionary rates. The findings presented here provide a novel insight into the evolutionary mechanisms of EAV and identified critical regions of the viral genome likely associated with the establishment and maintenance of persistent infection in the stallion reproductive tract.IMPORTANCE EAV can persist in the reproductive tract of infected stallions, and consequently, long-term carrier stallions constitute its sole natural reservoir. Previous studies demonstrated that the ampullae of the vas deferens are the primary site of viral persistence in the stallion reproductive tract and the persistence is associated with a significant inflammatory response that is unable to clear the infection. This is the first study that describes EAV full-length genomic evolution during acute and long-term persistent infection in the stallion reproductive tract using next-generation sequencing and contemporary sequence analysis techniques. The data provide novel insight into the intrahost evolution of EAV during acute and persistent infection and demonstrate that persistent infection is characterized by extensive genome-wide purifying selection and a nonstochastic evolutionary pattern mediated by intrahost selective pressure, with important nucleotide substitutions occurring in ORF1a (region encoding nsp2), ORF3, and ORF5.
Collapse
|
9
|
Liu F, Wang H, Du L, Wei Z, Zhang Q, Feng WH. MicroRNA-30c targets the interferon-alpha/beta receptor beta chain to promote type 2 PRRSV infection. J Gen Virol 2018; 99:1671-1680. [PMID: 30382935 DOI: 10.1099/jgv.0.001166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases in pigs. MicroRNAs (miRNAs) have emerged as an important regulator of virus-host cell interactions and miR-30c has been found to facilitate PRRSV replication. Here, we found that the interferon-alpha/beta receptor beta chain (IFNAR2) was down-regulated, while miR-30c was up-regulated during HV (a highly pathogenic type 2 PRRSV strain) and CH-1a (a classic type 2 PRRSV strain) infection. Subsequently, using bioinformatics analysis, we predicted that the IFNAR2 was targeted by miR-30c. A luciferase assay verified that the 3' UTR of IFNAR2 was targeted by miR-30c, as a mutation on either the target sequence or the miR-30c seed sequence reversed the luciferase activity. In addition, miR-30c and IFNAR2 mRNA were physically co-localized in RNA-induced silencing complex (RISC). Importantly, we showed that miR-30c also impaired the induction of IFN-stimulated genes (ISGs) by targeting IFNAR2. Our findings further reveal the mechanism of miR-30c promoting PRRSV replication.
Collapse
Affiliation(s)
- Fang Liu
- 1State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.,2Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Honglei Wang
- 1State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.,2Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Li Du
- 1State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.,2Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zeyu Wei
- 1State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.,2Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qiong Zhang
- 1State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.,2Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wen-Hai Feng
- 2Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China.,1State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
10
|
Giles J, Perrott M, Roe W, Shrestha K, Aberdein D, Morel P, Dunowska M. Viral RNA load and histological changes in tissues following experimental infection with an arterivirus of possums (wobbly possum disease virus). Virology 2018; 522:73-80. [PMID: 30014860 PMCID: PMC7126967 DOI: 10.1016/j.virol.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022]
Abstract
Tissues from Australian brushtail possums (Trichosurus vulpecula) that had been experimentally infected with wobbly possum disease (WPD) virus (WPDV) were examined to elucidate pathogenesis of WPDV infection. Mononuclear inflammatory cell infiltrates were present in livers, kidneys, salivary glands and brains of WPD-affected possums. Specific staining was detected by immunohistochemistry within macrophages in the livers and kidneys, and undefined cell types in the brains. The highest viral RNA load was found in macrophage-rich tissues. The detection of viral RNA in the salivary gland, serum, kidney, bladder and urine is compatible with transmission via close physical contact during encounters such as fighting or grooming, or by contact with an environment that has been contaminated with saliva or urine. Levels of viral RNA remained high in all tissues tested throughout the study, suggesting that on-going virus replication and evasion of the immune responses may be important in the pathogenesis of disease.
Collapse
Affiliation(s)
- Julia Giles
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Matthew Perrott
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Wendi Roe
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Kshitiz Shrestha
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Danielle Aberdein
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Patrick Morel
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Tennent Drive, Palmerston North, New Zealand.
| |
Collapse
|
11
|
Abstract
The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus.IMPORTANCE Mice carry a wide range of infectious agents with zoonotic potential. Their proximity to humans in the built environment is therefore a concern for public health. Laboratory mice are also the most common experimental model for investigating the pathobiology of infectious diseases. In this survey of mice trapped in multiple locations within New York City over a period of 1 year, we found a diverse collection of viruses that includes some previously not associated with house mice and others that appear to be novel. Although we found no known human pathogens, our findings provide insights into viral ecology and may yield models that have utility for clinical microbiology.
Collapse
|
12
|
Chen J, Xu X, Tao H, Li Y, Nan H, Wang Y, Tian M, Chen H. Structural Analysis of Porcine Reproductive and Respiratory Syndrome Virus Non-structural Protein 7α (NSP7α) and Identification of Its Interaction with NSP9. Front Microbiol 2017; 8:853. [PMID: 28553277 PMCID: PMC5425468 DOI: 10.3389/fmicb.2017.00853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/26/2017] [Indexed: 11/23/2022] Open
Abstract
Non-structural protein 7 (NSP7), which can be further cleaved into NSP7α and NSP7β, is one of the most conserved proteins of porcine reproductive and respiratory syndrome virus (PRRSV). NSP7 plays a role in provoking the humoral immune system in PRRSV-infected swine, but its structure and function are still not fully understood. Here, we analyzed the expression of NSP7, NSP7α, and NSP7β in PRRSV-infected MARC-145 cells. The solution structure of NSP7α was determined by using nuclear magnetic resonance (NMR). Although the structure provided little clue to its function, based on the structure of NSP7α, we predicted and further identified some key amino acids on NSP7α for the interaction of NSP7α with NSP9, the RNA dependent RNA polymerase of PRRSV. This study provided some new insights into the structure and function of PRRSV NSP7.
Collapse
Affiliation(s)
- Jiaping Chen
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Hu Tao
- College of Science, Northwest A&F UniversityYangling, China
| | - Yuan Li
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Hao Nan
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Yuanyuan Wang
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Mengmeng Tian
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F UniversityYangling, China
| |
Collapse
|
13
|
Gaignage M, Marillier RG, Uyttenhove C, Dauguet N, Saxena A, Ryffel B, Michiels T, Coutelier JP, Van Snick J. Mouse nidovirus LDV infection alleviates graft versus host disease and induces type I IFN-dependent inhibition of dendritic cells and allo-responsive T cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:200-213. [PMID: 28474504 PMCID: PMC5418140 DOI: 10.1002/iid3.157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/20/2017] [Accepted: 02/08/2017] [Indexed: 11/09/2022]
Abstract
Introduction Viruses have developed multiple mechanisms to alter immune reactions. In 1969, it was reported that lactate dehydrogenase‐elevating virus (LDV), a single stranded positive sense mouse nidovirus, delays skin allograft rejection and inhibits spleen alterations in graft versus host disease (GVHD). As the underlying mechanisms have remained unresolved and given the need for new therapies of this disease, we reassessed the effects of the virus on GVHD and tried to uncover its mode of action. Methods GVHD was induced by transfer of parent (B6) spleen cells to non‐infected or LDV‐infected B6D2F1 recipients. In vitro mixed‐lymhocyte culture (MLC) reactions were used to test the effects of the virus on antigen‐presenting cells (APC) and responder T cells. Results LDV infection resulted in a threefold increase in survival rate with reduced weight loss and liver inflammation but with the establishment of permanent chimerism that correlated with decreased interleukine (IL)‐27 and interferon (IFN)γ plasma levels. Infected mice showed a transient elimination of splenic CD11b+ and CD8α+ conventional dendritic cells (cDCs) required for allogeneic CD4 and CD8 T cell responses in vitro. This drop of APC numbers was not observed with APCs derived from toll‐like receptor (TLR)7‐deficient mice. A second effect of the virus was a decreased T cell proliferation and IFNγ production during MLC without detectable changes in Foxp3+ regulatory T cell (Tregs) numbers. Both cDC and responder T cell inhibition were type I IFN dependent. Although the suppressive effects were very transient, the GVHD inhibition was long‐lasting. Conclusion A type I IFN‐dependent suppression of DC and T cells just after donor spleen cell transplantation induces permanent chimerism and donor cell implantation in a parent to F1 spleen cell transplantation model. If this procedure can be extended to full allogeneic bone marrow transplantation, it could open new therapeutic perspectives for hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Mélanie Gaignage
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Reece G Marillier
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Nicolas Dauguet
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Anubha Saxena
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Bernard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), University of Orleans, Orleans, France.,Institute of Infectious Disease and Molecular Medicine, RSA, University of Cape Town, Cape Town, South Africa
| | - Thomas Michiels
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Jacques Van Snick
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Cancer Research, Brussels Branch, Brussels, Belgium
| |
Collapse
|
14
|
The Crystal Structure of the Fifth Scavenger Receptor Cysteine-Rich Domain of Porcine CD163 Reveals an Important Residue Involved in Porcine Reproductive and Respiratory Syndrome Virus Infection. J Virol 2017; 91:JVI.01897-16. [PMID: 27881657 DOI: 10.1128/jvi.01897-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/18/2016] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has become an economically critical factor in swine industry since its worldwide spread in the 1990s. Infection by its causative agent, PRRS virus (PRRSV), was proven to be mediated by an indispensable receptor, porcine CD163 (pCD163), and the fifth scavenger receptor cysteine-rich domain (SRCR5) is essential for virus infection. However, the structural details and specific residues of pCD163 SRCR5 involved in infection have not been defined yet. In this study, we prepared recombinant pCD163 SRCR5 in Drosophila melanogaster Schneider 2 (S2) cells and determined its crystal structure at a high resolution of 2.0 Å. This structure includes a markedly long loop region and shows a special electrostatic potential, and these are significantly different from those of other members of the scavenger receptor cysteine-rich superfamily (SRCR-SF). Subsequently, we carried out structure-based mutational studies to identify that the arginine residue at position 561 (Arg561) in the long loop region is important for PRRSV infection. Further, we showed Arg561 probably takes effect on the binding of pCD163 to PRRSV during virus invasion. Altogether the current work provides the first view of the CD163 SRCR domain, expands our knowledge of the invasion mechanism of PRRSV, and supports a molecular basis for prevention and control of the virus. IMPORTANCE PRRS has caused huge economic losses to pig farming. The syndrome is caused by PRRSV, and PRRSV infection has been shown to be mediated by host cell surface receptors. One of them, pCD163, is especially indispensable, and its SRCR5 domain has been further demonstrated to play a significant role in virus infection. However, its structural details and the residues involved in infection are unknown. In this study, we determined the crystal structure of pCD163 SRCR5 and then carried out site-directed mutational studies based on the crystal structure to elucidate which residue is important. Our work not only provides structural information on the CD163 SRCR domain for the first time but also indicates the molecular mechanism of PRRSV infection and lays a foundation for future applications in prevention and control of PRRS.
Collapse
|
15
|
Chen J, Xu X, Tao H, Wang Y, Chen H. Chemical shift assignments of nsp7α from porcine reproductive and respiratory syndrome virus. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:391-394. [PMID: 27613612 DOI: 10.1007/s12104-016-9706-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome, a destructive disease of swine. PRRSV has a single strand positive-sense RNA genome which contains at least ten open reading frames, of these, ORF1a and ORF1b encode polyproteins pp1a and pp1ab. Subsequently, pp1a is cleaved into ten nonstructural proteins, including nonstructural protein 7α and 7β (nsp7α and 7β), the internal cleavage products of a conserved nonstructural protein nsp7. Nsp7 plays a role in provoking the humoral immune system into producing anti-nsp7 antibodies which can be highly and persistently expressed in PRRSV-infected swine. However, the functions of nsp7α and 7β remain unknown. Western blot and radioimmunoprecipitation analysis of the two proteins showed that only cleaved nsp7α was detectable and cleaved nsp7β was not detected in the infected cells. Here, we reported the (1)H, (13)C and (15)N resonance assignment of nsp7α from PRRSV as a basis for further structural and functional studies.
Collapse
Affiliation(s)
- Jiaping Chen
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, China
| | - Xiaodong Xu
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, China
| | - Hu Tao
- College of Science, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, China
| | - Yuanyuan Wang
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, China
| | - Hongying Chen
- College of Life Sciences, Northwest A&F University, No.22 Xinong Road, Yangling, Shaanxi, China.
| |
Collapse
|
16
|
Equine Arteritis Virus Uses Equine CXCL16 as an Entry Receptor. J Virol 2016; 90:3366-84. [PMID: 26764004 DOI: 10.1128/jvi.02455-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/05/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from <3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated that EAV preferentially infects subpopulations of horse CD14(+) monocytes expressing EqCXCL16 and that infection of these cells is significantly reduced by pretreatment with Gp anti-EqCXCL16 pAb. The collective data from this study provide confirmatory evidence that the transmembrane form of EqCXCL16 likely plays a major role in EAV host cell entry processes, possibly acting as a primary receptor molecule for this virus. IMPORTANCE Outbreaks of EVA can be a source of significant economic loss for the equine industry from high rates of abortion in pregnant mares, death in young foals, establishment of the carrier state in stallions, and trade restrictions imposed by various countries. Similar to other arteriviruses, EAV primarily targets cells of the monocyte/macrophage lineage, which, when infected, are believed to play a critical role in EVA pathogenesis. To this point, however, the host-specified molecules involved in EAV binding and entry into monocytes/macrophages have not been identified. Identification of the cellular receptors for EAV may provide insights to design antivirals and better prophylactic reagents. In this study, we have demonstrated that EqCXCL16 acts as an EAV entry receptor in EAV-susceptible cells, equine monocytes. These findings represent a significant advance in our understanding of the fundamental mechanisms associated with the entry of EAV into susceptible cells.
Collapse
|
17
|
Lauck M, Alkhovsky SV, Bào Y, Bailey AL, Shevtsova ZV, Shchetinin AM, Vishnevskaya TV, Lackemeyer MG, Postnikova E, Mazur S, Wada J, Radoshitzky SR, Friedrich TC, Lapin BA, Deriabin PG, Jahrling PB, Goldberg TL, O'Connor DH, Kuhn JH. Historical Outbreaks of Simian Hemorrhagic Fever in Captive Macaques Were Caused by Distinct Arteriviruses. J Virol 2015; 89:8082-7. [PMID: 25972539 PMCID: PMC4505640 DOI: 10.1128/jvi.01046-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/07/2015] [Indexed: 02/04/2023] Open
Abstract
Simian hemorrhagic fever (SHF) is lethal for macaques. Based on clinical presentation and serological diagnosis, all reported SHF outbreaks were thought to be caused by different strains of the same virus, simian hemorrhagic fever virus (SHFV; Arteriviridae). Here we show that the SHF outbreaks in Sukhumi in 1964 and in Alamogordo in 1989 were caused not by SHFV but by two novel divergent arteriviruses. Our results indicate that multiple divergent simian arteriviruses can cause SHF.
Collapse
Affiliation(s)
- Michael Lauck
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sergey V Alkhovsky
- D. I. Ivanovsky Institute of Virology, N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yīmíng Bào
- Information Engineering Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam L Bailey
- University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zinaida V Shevtsova
- Scientific-Research Institute of Experimental Pathology and Therapy, Abkhazian Academy of Sciences, Sukhumi, Georgia
| | - Alexey M Shchetinin
- D. I. Ivanovsky Institute of Virology, N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatyana V Vishnevskaya
- D. I. Ivanovsky Institute of Virology, N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Matthew G Lackemeyer
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Elena Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Steven Mazur
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jiro Wada
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Sheli R Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | | | - Boris A Lapin
- Scientific-Research Institute of Medical Primatology, Russian Academy of Medical Sciences, Sochi, Russia
| | - Petr G Deriabin
- D. I. Ivanovsky Institute of Virology, N. F. Gamaleya Federal Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Peter B Jahrling
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | | | | | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
18
|
Giles JC, Perrott MR, Dunowska M. Primary possum macrophage cultures support the growth of a nidovirus associated with wobbly possum disease. J Virol Methods 2015; 222:66-71. [PMID: 26028426 DOI: 10.1016/j.jviromet.2015.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 11/29/2022]
Abstract
The objective of the study was to establish a system for isolation of a recently described, thus far uncultured, marsupial nidovirus associated with a neurological disease of possums, termed wobbly possum disease (WPD). Primary cultures of possum macrophages were established from livers of adult Australian brushtail possums (Trichosurus vulpecula). High viral copy numbers (up to 6.9×10(8)/mL of cell lysate) were detected in infected cell culture lysates from up to the 5th passage of the virus, indicating that the putative WPD virus (WPDV) was replicating in cultured cells. A purified virus stock with a density of 1.09 g/mL was prepared using iodixanol density gradient ultracentrifugation. Virus-like particles approximately 60 nm in diameter were observed using electron microscopy in negatively stained preparations of the purified virus. The one-step growth curve of WPDV in macrophage cultures showed the highest increase in intracellular viral RNA between 6 and 12h post-infection. Maximum levels of cell-associated viral RNA were detected at 24h post-infection, followed by a decline. Levels of extracellular RNA increased starting at 9h post-infection, with maximum levels detected at 48 h post-infection. The establishment of the in vitro system to culture WPDV will facilitate further characterisation of this novel nidovirus.
Collapse
Affiliation(s)
- Julia C Giles
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | - Matthew R Perrott
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Magdalena Dunowska
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
19
|
Zhang Q, Yoo D. PRRS virus receptors and their role for pathogenesis. Vet Microbiol 2015; 177:229-41. [PMID: 25912022 DOI: 10.1016/j.vetmic.2015.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/25/2015] [Accepted: 04/01/2015] [Indexed: 02/09/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is endemic in most pig producing countries worldwide and causes enormous economic losses to the swine industry. Specifically differentiated porcine alveolar macrophages are the primary target for PRRSV infection in pigs. At least six cellular molecules have been described so far as putative receptors for PRRSV, and they include heparan sulfate, vimentin, CD151, sialoadhesin (CD169; siglec-1), dendritic cell-specific intercellular adhesion melecule-3-grabbing non-integrin (DC-SIGN; CD209), and CD163 (SRCR, cysteine-rich scavenger receptor). Progress has been made to shed light on the interactions between cells and PRRSV, and this review describes the advances and current understanding of the entry of PRRSV to cells with a particular focus on the role of CD163 and sialoadhesin for infection and PRRSV pathogenesis. CD163 is most likely the primary and core receptor for PRRSV and determines the susceptibility of cells to the virus. Sialoadhesin is either unnecessary for infection or may function as an accessory protein. Sialoadhesin has been mostly studied for genotype I PRRSV whereas the utilization of CD163 has been mostly studied using genotype II PRRSV, and whether each genotype indeed utilizes a different receptor is unclear.
Collapse
Affiliation(s)
- Qingzhan Zhang
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Dongwan Yoo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
20
|
Kappes MA, Faaberg KS. PRRSV structure, replication and recombination: Origin of phenotype and genotype diversity. Virology 2015; 479-480:475-86. [PMID: 25759097 PMCID: PMC7111637 DOI: 10.1016/j.virol.2015.02.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/23/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory disease virus (PRRSV) has the intrinsic ability to adapt and evolve. After 25 years of study, this persistent pathogen has continued to frustrate efforts to eliminate infection of herds through vaccination or other elimination strategies. The purpose of this review is to summarize the research on the virion structure, replication and recombination properties of PRRSV that have led to the extraordinary phenotype and genotype diversity that exists worldwide. Review of structure, replication and recombination of porcine reproductive and respiratory syndrome virus. Homologous recombination to produce conventional subgenomic messenger RNA as well as heteroclite RNA. Discussion of structure, replication and recombination mechanisms that have yielded genotypic and phenotypic diversity.
Collapse
Affiliation(s)
- Matthew A Kappes
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA
| | - Kay S Faaberg
- Virus and Prion Research Unit, USDA-ARS-National Animal Disease Center, Ames, IA, USA.
| |
Collapse
|
21
|
Regulation and evasion of antiviral immune responses by porcine reproductive and respiratory syndrome virus. Virus Res 2014; 202:101-11. [PMID: 25529442 PMCID: PMC7132515 DOI: 10.1016/j.virusres.2014.12.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Five PRRSV viral proteins are shown to inhibit type I IFN induction and signaling by targeting different intracellular signaling intermediates. PRRSV regulates the expression of IL-10 and TNFα. PRRSV modulates apoptosis during infection. MicroRNAs might play significant roles in subverting immunity for PRRSV. PRRSV escapes from adaptive immunity by impairing antigen presentation, activating Tregs, and ADE.
Virus infection of mammalian cells triggers host innate immune responses to restrict viral replication and induces adaptive immunity for viral elimination. In order to survive and propagate, viruses have evolved sophisticated mechanisms to subvert host defense system by encoding proteins that target key components of the immune signaling pathways. Porcine reproductive and respiratory syndrome virus (PRRSV), a RNA virus, impairs several processes of host immune responses including interfering with interferon production and signaling, modulating cytokine expression, manipulating apoptotic responses and regulating adaptive immunity. In this review, we highlight the molecular mechanisms of how PRRSV interferes with the different steps of initial antiviral host responses to establish persistent infection in pigs. Dissection of the PRRSV–host interaction is the key in understanding PRRSV pathogenesis and will provide a basis for the rational design of vaccines.
Collapse
|
22
|
Yun SI, Lee YM. Overview: Replication of porcine reproductive and respiratory syndrome virus. J Microbiol 2013; 51:711-23. [PMID: 24385346 PMCID: PMC7091224 DOI: 10.1007/s12275-013-3431-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus that causes significant losses in the pig industry, is one of the most important animal pathogens of global significance. Since the discovery of the virus, significant progress has been made in understanding its epidemiology and transmission, but no adequate control measures are yet available to eliminate infection with this pathogen. The genome replication of PRRSV is required to reproduce, within a few hours of infection, the millions of progeny virions that establish, disseminate, and maintain infection. Replication of the viral RNA genome is a multistep process involving a replication complex that is formed not only from components of viral and cellular origin but also from the viral genomic RNA template; this replication complex is embedded within particular virus-induced membrane vesicles. PRRSV RNA replication is directed by at least 14 replicase proteins that have both common enzymatic activities, including viral RNA polymerase, and also unusual and poorly understood RNA-processing functions. In this review, we summarize our current understanding of PRRSV replication, which is important for developing a successful strategy for the prevention and control of this pathogen.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah Science Technology and Research, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322-4815 USA
| |
Collapse
|
23
|
Balasuriya UBR, Go YY, MacLachlan NJ. Equine arteritis virus. Vet Microbiol 2013; 167:93-122. [PMID: 23891306 PMCID: PMC7126873 DOI: 10.1016/j.vetmic.2013.06.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of equids. There has been significant recent progress in understanding the molecular biology of EAV and the pathogenesis of its infection in horses. In particular, the use of contemporary genomic techniques, along with the development and reverse genetic manipulation of infectious cDNA clones of several strains of EAV, has generated significant novel information regarding the basic molecular biology of the virus. Therefore, the objective of this review is to summarize current understanding of EAV virion architecture, replication, evolution, molecular epidemiology and genetic variation, pathogenesis including the influence of host genetics on disease susceptibility, host immune response, and potential vaccination and treatment strategies.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
24
|
Abstract
Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
25
|
Zhang M, Cao Z, Xie J, Zhu W, Zhou P, Gu H, Sun L, Su S, Zhang G. Mutagenesis analysis of porcine reproductive and respiratory syndrome virus nonstructural protein 7. Virus Genes 2013; 47:467-77. [PMID: 23892545 DOI: 10.1007/s11262-013-0957-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/09/2013] [Indexed: 12/01/2022]
Abstract
Nonstructural protein 7 (nsp7), which is flanked by nsp6 and nsp8, is one of the most conserved nonstructural proteins of porcine reproductive and respiratory syndrome virus (PRRSV). Nonstructural protein (nsp)-specific antibodies are produced in high titers in response to virus replication, especially against nsp1a, nsp1b, nsp2, and nsp7. However, many regional aspects of nsp7 are still veiled, such as its impact on viral replication and virulence or the immunological mechanism between virus and host. Based on the structure of the predicted nsp7 domain, we have constructed a series of large mutations and deletions. We ultimately demonstrated all mutations (nsp7, nsp7α/nspβ) and the majority of substitutions of nsp7 affected the PRRSV replicative cycle in some ways and were fatal for viral recovery, which indicates that these are significant to structure or function of the nsp7. What's more, the mutant vOKXH-nsp7 (F40A) indeed caused some of the variation compared with the parental virus vOKXH-GD, which shortens the amount of time needed to reach its highest viral titer, and decreases the concentration of the highest viral titer, obstructing viral mRNA and protein synthesis. Consequently, these valuable results possibly provide the first direct evidence that the nsp7 is really a critical protein domain for the RNA synthesis and the translation of viral protein of PRRSV.
Collapse
Affiliation(s)
- Minze Zhang
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shang Y, Wang G, Yin S, Tian H, Du P, Wu J, Chen Y, Yang S, Jin Y, Zhang K, Lu Z, Liu X. Pathogenic characteristics of three genotype II porcine reproductive and respiratory syndrome viruses isolated from China. Virol J 2013; 10:7. [PMID: 23282224 PMCID: PMC3616938 DOI: 10.1186/1743-422x-10-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background We examined differences in pathogenicity in pigs from China that had been experimentally infected with porcine reproductive and respiratory syndrome virus (PRRSV). Methods We compared pathogenic characteristics of a field isolate (GX-1/2008F), two PRRSV isolates (HN-1/2008, YN-1/2008) propagated in cells, and GX-1/2008F that had been propagated in cells (GX-1/2008). The clinical courses, along with humoral and cell-mediated responses, were monitored for 21 days post-infection (DPI). Animals were sacrificed and tissue samples used for gross pathological, histopathological and ultrastructure examination. Results At 2–3 DPI, animals infected with cell-propagated viruses exhibited signs of coughing, anorexia and fever. However their rectal temperature did not exceed 40.5°C. Viremia was detectable as early as 3 DPI in animals infected with HN-1/2008 and YN-1/2008. Animals inoculated with GX-1/2008F displayed clinical signs at 6 DPI; the rectal temperature of two animals in this group exceeded 41.0°C, with viremia first detected at 7 DPI. Seroconversion for all challenged pigs, except those infected with GX-1/2008, was seen as early as 7 DPI. All of these pigs had fully seroconverted by 11 DPI. All animals challenged with GX-1/2008 remained seronegative until the end of the experiment. Innate immunity was inhibited, with levels of IFN-α and IL-1 not significantly different between control and infected animals. The cytokines IFN-γ and IL-6 transiently increased during acute infection. All virus strains caused gross lesions including multifocal interstitial pneumonia and hyperplasia of lymph nodes. Inflammation of the stomach and small intestine was also observed. Lesions in the group infected with GX-1/2008F were more serious than in other groups. Transmission electron microscopy revealed that alveolar macrophages, plasmacytes and lymphocytes had fractured cytomembranes, and hepatocytes had disrupted organelles and swollen mitochondria. Conclusions The pathogenicity of the PRRSV field isolate became attenuated when propagated in MARC-145 cells. Tissue tropism of highly pathogenic strains prevailing in China was altered compared with classical PRRSV strains. The observed damage to immune cells and modulation of cytokine production could be mechanisms that PRRSV employs to evade host immune responses.
Collapse
Affiliation(s)
- Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Chengguan District, Lanzhou 730046, The People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Duley AK, Ploquin MJY, Eksmond U, Ammann CG, Messer RJ, Myers L, Hasenkrug KJ, Kassiotis G. Negative impact of IFN-γ on early host immune responses to retroviral infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:2521-9. [PMID: 22821964 DOI: 10.4049/jimmunol.1201125] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immune system is tasked with defending against a myriad of microbial infections, and its response to a given infectious microbe may be strongly influenced by coinfection with another microbe. It was shown that infection of mice with lactate dehydrogenase-elevating virus (LDV) impairs early adaptive immune responses to Friend virus (FV) coinfection. To investigate the mechanism of this impairment, we examined LDV-induced innate immune responses and found LDV-specific induction of IFN-α and IFN-γ. LDV-induced IFN-α had little effect on FV infection or immune responses, but unexpectedly, LDV-induced IFN-γ production dampened Th1 adaptive immune responses and enhanced FV infection. Two distinct effects were identified. First, LDV-induced IFN-γ signaling indirectly modulated FV-specific CD8+ T cell responses. Second, intrinsic IFN-γ signaling in B cells promoted polyclonal B cell activation and enhanced early FV infection, despite promotion of germinal center formation and neutralizing Ab production. Results from this model reveal that IFN-γ production can have detrimental effects on early adaptive immune responses and virus control.
Collapse
Affiliation(s)
- Amanda K Duley
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
N-linked glycosylation of GP5 of porcine reproductive and respiratory syndrome virus is critically important for virus replication in vivo. J Virol 2012; 86:9941-51. [PMID: 22761373 DOI: 10.1128/jvi.07067-11] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
It has been proposed that the N-linked glycan addition at certain sites in GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) is important for production of infectious viruses and viral infectivity. However, such specific N-linked glycosylation sites do not exist in some field PRRSV isolates. This implies that the existence of GP5-associated glycan per se is not vital to the virus life cycle. In this study, we found that mutation of individual glycosylation sites at N30, N35, N44, and N51 in GP5 did not affect virus infectivity in cultured cells. However, the mutants carrying multiple mutations at N-linked glycosylation sites in GP5 had significantly reduced virus yields compared with the wild-type (wt) virus. As a result, no viremia and antibody response were detected in piglets that were injected with a mutant without all N-linked glycans in GP5. These results suggest that the N-linked glycosylation of GP5 is critically important for virus replication in vivo. The study also showed that removal of N44-linked glycan from GP5 increased the sensitivity of mutant virus to convalescent-phase serum samples but did not elicit a high-level neutralizing antibody response to wt PRRSV. The results obtained from the present study have made significant contributions to better understanding the importance of glycosylation of GP5 in the biology of PRRSV.
Collapse
|
29
|
Wei Z, Tian D, Sun L, Lin T, Gao F, Liu R, Tong G, Yuan S. Influence of N-linked glycosylation of minor proteins of porcine reproductive and respiratory syndrome virus on infectious virus recovery and receptor interaction. Virology 2012; 429:1-11. [DOI: 10.1016/j.virol.2012.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 12/31/2011] [Accepted: 03/07/2012] [Indexed: 01/27/2023]
|
30
|
Lu Z, Zhang J, Huang CM, Go YY, Faaberg KS, Rowland RRR, Timoney PJ, Balasuriya UBR. Chimeric viruses containing the N-terminal ectodomains of GP5 and M proteins of porcine reproductive and respiratory syndrome virus do not change the cellular tropism of equine arteritis virus. Virology 2012; 432:99-109. [PMID: 22739441 DOI: 10.1016/j.virol.2012.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/15/2012] [Accepted: 05/27/2012] [Indexed: 11/18/2022]
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) are members of family Arteriviridae; they are highly species specific and differ significantly in cellular tropism in cultured cells. In this study we examined the role of the two major envelope proteins (GP5 and M) of EAV and PRRSV in determining their cellular tropism. We generated three viable EAV/PRRSV chimeric viruses by swapping the N-terminal ectodomains of these two proteins from PRRSV IA1107 strain into an infectious cDNA clone of EAV (rMLVB4/5 GP5ecto, rMLVB4/5/6 Mecto and rMLVB4/5/6 GP5&Mecto). The three chimeric viruses could only infect EAV susceptible cell lines but not PRRSV susceptible cells in culture. Therefore, these data unequivocally demonstrate that the ectodomains of GP5 and M are not the major determinants of cellular tropism, further supporting the recent findings that the minor envelope proteins are the critical proteins in mediating cellular tropism (Tian et al., 2012).
Collapse
Affiliation(s)
- Zhengchun Lu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sun Y, Xiao S, Wang D, Luo R, Li B, Chen H, Fang L. Cellular membrane cholesterol is required for porcine reproductive and respiratory syndrome virus entry and release in MARC-145 cells. SCIENCE CHINA-LIFE SCIENCES 2011; 54:1011-8. [PMID: 22173307 PMCID: PMC7088586 DOI: 10.1007/s11427-011-4236-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/27/2011] [Indexed: 11/27/2022]
Abstract
Cholesterol represents one of the key constituents of small, dynamic, sterol- and sphingolipid-enriched domains on the plasma membrane. It has been reported that many viruses depend on plasma membrane cholesterol for efficient infection. In this study, the role of the plasma membrane cholesterol in porcine reproductive and respiratory syndrome virus (PRRSV) infection of MARC-145 cells was investigated. Pretreatment of MARC-145 cells with methyl-β-cyclodextrin (MβCD), a drug used to deplete cholesterol from cellular membrane, significantly reduced PRRSV infection in a dose-dependent manner. This inhibition was partially reversed by supplementing exogenous cholesterol following MβCD treatment, suggesting that the inhibition of PRRSV infection was specifically mediated by removal of cellular cholesterol. Further detailed studies showed that depletion of cellular membrane cholesterol significantly inhibited virus entry, especially virus attachment and release. These results indicate that the presence of cholesterol in the cellular membrane is a key component of PRRSV infection.
Collapse
Affiliation(s)
- Ying Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Linhares DCL, Cano JP, Wetzell T, Nerem J, Torremorell M, Dee SA. Effect of modified-live porcine reproductive and respiratory syndrome virus (PRRSv) vaccine on the shedding of wild-type virus from an infected population of growing pigs. Vaccine 2011; 30:407-13. [PMID: 22063389 DOI: 10.1016/j.vaccine.2011.10.075] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/27/2011] [Indexed: 11/15/2022]
Abstract
There are ongoing efforts to eliminate porcine reproductive and respiratory syndrome virus (PRRSv) from regions in the United States swine industry. However, an important challenge for the accomplishment of those efforts is the re-infection of pig units due to the area spread of PRRSv. The objective of this study was to evaluate the effect of PRRS modified-live virus vaccine (MLV) on viral shedding and on dynamics of PRRSv infection in pig populations raised under commercial conditions. The study composed of two rooms of 1000 pigs each. Ten percent of pigs of each room were inoculated with a field isolate of PRRSv. Rooms had separate air spaces and strict scientifically validated biosecurity protocols were adopted to avoid movement of pathogens between rooms. At 8 and 36 dpi (days post inoculation), all pigs of the challenge-vaccine group were inoculated with a MLV vaccine. Pigs of the challenge-control group were placebo-inoculated. Blood and oral fluid samples were collected from each room at 0, 8, 36, 70, 96 and 118 dpi for PRRSv RNA detection using PCR. PRRSv-antibodies were also screened from blood serum samples with a commercially available ELISA test. Additionally, tonsil scraping samples were collected from both groups at 70, 96 and 118 dpi. Moreover, air samples were collected 6 times per week from 0 to 118 dpi and were tested for PRRSv RNA using qPCR assay. There was no difference in the PRRSv infection dynamics measured as duration and magnitude of viremia and seroconversion. Also, there was no difference in the frequency of tonsil scraping samples PRRSv-positive by PCR. However, the challenge-vaccine group had significantly less PRRSv shed compared to the challenge-control group. The challenge-vaccine group had significant less PRRSv-positive oral fluids at 36 dpi. Moreover, the challenge-vaccine group had significant reduction in the cumulative PRRSv shed in the air.
Collapse
Affiliation(s)
- Daniel C L Linhares
- Swine Disease Eradication Center, University of Minnesota, College of Veterinary Medicine, 385C Animal Science Veterinary Medicine Building, 1988 Fitch Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
33
|
Carlson Scholz JA, Garg R, Compton SR, Allore HG, Zeiss CJ, Uchio EM. Poliomyelitis in MuLV-infected ICR-SCID mice after injection of basement membrane matrix contaminated with lactate dehydrogenase-elevating virus. Comp Med 2011; 61:404-411. [PMID: 22330347 PMCID: PMC3193062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/03/2011] [Accepted: 05/09/2011] [Indexed: 05/31/2023]
Abstract
The arterivirus lactate dehydrogenase-elevating virus (LDV) causes life-long viremia in mice. Although LDV infection generally does not cause disease, infected mice that are homozygous for the Fv1(n) allele are prone to develop poliomyelitis when immunosuppressed, a condition known as age-dependent poliomyelitis. The development of age-dependent poliomyelitis requires coinfection with endogenous murine leukemia virus. Even though LDV is a common contaminant of transplantable tumors, clinical signs of poliomyelitis after inadvertent exposure to LDV have not been described in recent literature. In addition, LDV-induced poliomyelitis has not been reported in SCID or ICR mice. Here we describe the occurrence of poliomyelitis in ICR-SCID mice resulting from injection of LDV-contaminated basement membrane matrix. After exposure to LDV, a subset of mice presented with clinical signs including paresis, which was associated with atrophy of the hindlimb musculature, and tachypnea; in addition, some mice died suddenly with or without premonitory signs. Mice presenting within the first 6 mo after infection had regions of spongiosis, neuronal necrosis and astrocytosis of the ventral spinal cord, and less commonly, brainstem. Axonal degeneration of ventral roots prevailed in more chronically infected mice. LDV was identified by RT-PCR in 12 of 15 mice with typical neuropathology; positive antiLDV immunolabeling was identified in all PCR-positive animals (n = 7) tested. Three of 8 mice with neuropathology but no clinical signs were LDV negative by RT-PCR. RT-PCR yielded murine leukemia virus in spinal cords of all mice tested, regardless of clinical presentation or neuropathology.
Collapse
Affiliation(s)
- Jodi A Carlson Scholz
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Baig TT, Zakhartchouk A. New insights into RNA packaging in porcine reproductive and respiratory syndrome virus. J Gen Virol 2011; 92:2865-2870. [PMID: 21918012 DOI: 10.1099/vir.0.036079-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While identifying whether the smallest packaged heteroclite subgenomic RNA (S9) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a packaging signal, we found that S9 was capable of binding to the basic amino acid-rich domain (synthetic peptide of aa 34-53) of the packaging protein (N). In addition, by using truncations at the 5' and 3' ends of S9, a minimal binding region of 35 nt was found to be essential for binding to both the synthetic peptide and to the full-length N protein. Furthermore, by using cell-culture experiments, we found that S9 was capable of packaging non-viral RNA sequence into PRRSV particles and that the 35 nt region was essential for this activity. Taken together, our data suggest that this 35 nt region might be an important element for packaging PRRSV genomic RNA into virus particles.
Collapse
Affiliation(s)
- Tayyba T Baig
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Alexander Zakhartchouk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
35
|
Song BH, Kim JM, Kim JK, Jang HS, Yun GN, Choi EJ, Song JY, Yun SI, Lee YM. Packaging of porcine reproductive and respiratory syndrome virus replicon RNA by a stable cell line expressing its nucleocapsid protein. J Microbiol 2011; 49:516-23. [PMID: 21717343 PMCID: PMC7091078 DOI: 10.1007/s12275-011-1280-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/13/2011] [Indexed: 11/05/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the Arteriviridae family, is one of the most common and economically important swine pathogens. Although both live-attenuated and killed-inactivated vaccines against the virus have been available for a decade, PRRSV is still a major problem in the swine industry worldwide. To explore the possibility of producing single-round infectious PRRSV replicon particles as a potential vaccine strategy, we have now generated two necessary components: 1) a stable cell line (BHK/Sinrepl9/PRRSV-N) that constitutively expresses the viral nucleocapsid (N) protein localized to the cytoplasm and the nucleolus and 2) a PRRSV replicon vector (pBAC/PRRSV/Replicon-AN) with a 177-nucleotide deletion, removing the 3′-half portion of ORF7 in the viral genome, from which the self-replicating propagation-defective replicon RNAs were synthesized in vitro by SP6 polymerase run-off transcription. Transfection of this replicon RNA into N protein-expressing BHK-21 cells led to the secretion of infectious particles that packaged the replicon RNA, albeit with a low production efficiency of 0.4 × 102 to 1.1 × 102 infectious units/ml; the produced particles had only single-round infectivity with no cell-to-cell spread. This trans-complementation system for PRRSV provides a useful platform for studies to define the packaging signals and motifs present within the viral genome and N protein, respectively, and to develop viral replicon-based antiviral vaccines that will stop the infection and spread of this pathogen.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arterivirus‡. THE SPRINGER INDEX OF VIRUSES 2011. [PMCID: PMC7176216 DOI: 10.1007/978-0-387-95919-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an enveloped, positive-sense single-stranded RNA virus belonging to the Arteriviridae family. Arteriviruses and coronaviruses are grouped together in the order Nidovirales, based on similarities in genome organization and expression strategy. Over the past decade, crystal structures of several viral proteins, electron microscopic studies of the virion, as well as biochemical and in vivo studies on protein-protein interactions have led to a greatly increased understanding of PRRSV structural biology. At this point, crystal structures are available for the viral proteases NSP1α, NSP1β and NSP4 and the nucleocapsid protein, N. The NSP1α and NSP1β structures have revealed additional non-protease domains that may be involved in modulation of host functions. The N protein forms a dimer with a novel fold so far only seen in PRRSV and other nidoviruses. Cryo-electron tomographic studies have shown the three-dimensional organization of the PRRSV virion and suggest that the viral nucleocapsid has an asymmetric, linear arrangement, rather than the isometric core previously described. Together, these studies have revealed a closer structural relationship between arteri- and coronaviruses than previously anticipated.
Collapse
Affiliation(s)
- Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
38
|
An TQ, Tian ZJ, He YX, Xiao Y, Jiang YF, Peng JM, Zhou YJ, Liu D, Tong GZ. Porcine reproductive and respiratory syndrome virus attachment is mediated by the N-terminal domain of the sialoadhesin receptor. Vet Microbiol 2010; 143:371-8. [DOI: 10.1016/j.vetmic.2009.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 10/30/2009] [Accepted: 11/10/2009] [Indexed: 11/29/2022]
|
39
|
Cruz JLG, Zúñiga S, Bécares M, Sola I, Ceriani JE, Juanola S, Plana J, Enjuanes L. Vectored vaccines to protect against PRRSV. Virus Res 2010; 154:150-60. [PMID: 20600388 PMCID: PMC7114413 DOI: 10.1016/j.virusres.2010.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/14/2010] [Indexed: 12/18/2022]
Abstract
PRRSV is the causative agent of the most important infectious disease affecting swine herds worldwide, producing great economic losses. Commercially available vaccines are only partially effective in protection against PRRSV. Moreover, modified live vaccines may allow virus shedding, and could revert generating virulent phenotypes. Therefore, new efficient vaccines are required. Vaccines based on recombinant virus genomes (virus vectored vaccines) against PRRSV could represent a safe alternative for the generation of modified live vaccines. In this paper, current vectored vaccines to protect against PRRSV are revised, including those based on pseudorabies virus, poxvirus, adenovirus, and virus replicons. Special attention has been provided to the use of transmissible gastroenteritis virus (TGEV) as vector for the expression of PRRSV antigens. This vector has the capability of expressing high levels of heterologous genes, is a potent interferon-α inducer, and presents antigens in mucosal surfaces, eliciting both secretory and systemic immunity. A TGEV derived vector (rTGEV) was generated, expressing PRRSV wild type or modified GP5 and M proteins, described as the main inducers of neutralizing antibodies and cellular immune response, respectively. Protection experiments showed that vaccinated animals developed a faster and stronger humoral immune response than the non-vaccinated ones. Partial protection in challenged animals was observed, as vaccinated pigs showed decreased lung damage when compared with the non-vaccinated ones. Nevertheless, the level of neutralizing antibodies was low, what may explain the limited protection observed. Several strategies are proposed to improve current rTGEV vectors expressing PRRSV antigens.
Collapse
Affiliation(s)
- Jazmina L G Cruz
- Centro Nacional de Biotecnología, CSIC, Department of Molecular and Cell Biology, Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Phylogeny-based evolutionary, demographical, and geographical dissection of North American type 2 porcine reproductive and respiratory syndrome viruses. J Virol 2010; 84:8700-11. [PMID: 20554771 DOI: 10.1128/jvi.02551-09] [Citation(s) in RCA: 317] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type 2 (or North American-like) porcine reproductive and respiratory syndrome virus (PRRSV) was first recorded in 1987 in the United States and now occurs in most commercial swine industries throughout the world. In this study, we investigated the epidemiological and evolutionary behaviors of type 2 PRRSV. Based on phylogenetic analyses of 8,624 ORF5 sequences, we described a comprehensive picture of the diversity of type 2 PRRSVs and systematically classified all available sequences into lineages and sublineages, including a number of previously undescribed lineages. With the rapid growth of sequence deposition into the databases, it would be technically difficult for veterinary researchers to genotype their sequences by reanalyzing all sequences in the databases. To this end, a set of reference sequences was established based on our classification system, which represents the principal diversity of all available sequences and can readily be used for further genotyping studies. In addition, we further investigated the demographic histories of these lineages and sublineages by using Bayesian coalescence analyses, providing evolutionary insights into several important epidemiological events of type 2 PRRSV. Moreover, by using a phylogeographic approach, we were able to estimate the transmission frequencies between the pig-producing states in the United States and identified several states as the major sources of viral spread, i.e., "transmission centers." In summary, this study represents the most extensive phylogenetic analyses of type 2 PRRSV to date, providing a basis for future genotyping studies and dissecting the epidemiology of type 2 PRRSV from phylogenetic perspectives.
Collapse
|
41
|
Liu YS, Zhou JH, Chen HT, Ma LN, Ding YZ, Wang M, Zhang J. Analysis of synonymous codon usage in porcine reproductive and respiratory syndrome virus. INFECTION GENETICS AND EVOLUTION 2010; 10:797-803. [PMID: 20438864 PMCID: PMC7106271 DOI: 10.1016/j.meegid.2010.04.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/23/2010] [Accepted: 04/24/2010] [Indexed: 11/30/2022]
Abstract
In this study, we calculated the relative synonymous codon usage (RSCU) values and codon usage bias (CUB) values to implement a comparative analysis of codon usage pattern of open reading frames (ORFs) which belong to the two main genotypes of porcine reproductive and respiratory syndrome virus (PRRSV). By analysis of synonymous codon usage values in each ORF of PRRSV, the optimal codons for most amino acids were all C or G-ended codons except GAU for Asp, CAU for His, UUU for Phe and CCU for Pro. The synonymous codon usage patterns in different ORFs of PRRSV were different and genetically conserved. Among them, ORF1a, ORF4, ORF5 and ORF7 could cluster these strains into the two main serotypes (EU and US). Due to mutational pressure, compositional constraint played an important role in shaping the synonymous codon usage pattern in different ORFs, and the synonymous codon usage diversity in ORFs was correlated with gene function. The degree of CUB for some particular amino acids under strong selection pressure probably served as a potential genetic marker for each ORF in PRRSV. However, gene length and translational selection in nature had no effect on the synonymous codon usage pattern in PRRSV. These conclusions could not only offer an insight into the synonymous codon usage pattern and differentiation of gene function, but also assist in understanding the discrepancy of evolution among ORFs in PRRSV.
Collapse
Affiliation(s)
- Yong-sheng Liu
- Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, PR China
| | | | | | | | | | | | | |
Collapse
|
42
|
Go YY, Zhang J, Timoney PJ, Cook RF, Horohov DW, Balasuriya UBR. Complex interactions between the major and minor envelope proteins of equine arteritis virus determine its tropism for equine CD3+ T lymphocytes and CD14+ monocytes. J Virol 2010; 84:4898-911. [PMID: 20219931 PMCID: PMC2863813 DOI: 10.1128/jvi.02743-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/01/2010] [Indexed: 01/20/2023] Open
Abstract
Extensive cell culture passage of the virulent Bucyrus (VB) strain of equine arteritis virus (EAV) to produce the modified live virus (MLV) vaccine strain has altered its tropism for equine CD3(+) T lymphocytes and CD14(+) monocytes. The VB strain primarily infects CD14(+) monocytes and a small subpopulation of CD3(+) T lymphocytes (predominantly CD4(+) T lymphocytes), as determined by dual-color flow cytometry. In contrast, the MLV vaccine strain has a significantly reduced ability to infect CD14(+) monocytes and has lost its capability to infect CD3(+) T lymphocytes. Using a panel of five recombinant chimeric viruses, we demonstrated that interactions among the GP2, GP3, GP4, GP5, and M envelope proteins play a major role in determining the CD14(+) monocyte tropism while the tropism for CD3(+) T lymphocytes is determined by the GP2, GP4, GP5, and M envelope proteins but not the GP3 protein. The data clearly suggest that there are intricate interactions among these envelope proteins that affect the binding of EAV to different cell receptors on CD3(+) T lymphocytes and CD14(+) monocytes. This study shows, for the first time, that CD3(+) T lymphocytes may play an important role in the pathogenesis of equine viral arteritis when horses are infected with the virulent strains of EAV.
Collapse
Affiliation(s)
- Yun Young Go
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - Jianqiang Zhang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - Peter J. Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - R. Frank Cook
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| | - Udeni B. R. Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky 40546-0099
| |
Collapse
|
43
|
Xia PA, Dang ZG, Qiu H, Fan X, Zhou B, Cui BA, Chen PY. Function of PRRSV GP5 envelope protein by using pseudotyped virus. Vet Microbiol 2009; 138:297-303. [DOI: 10.1016/j.vetmic.2009.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/18/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
|
44
|
Ammann CG, Messer RJ, Peterson KE, Hasenkrug KJ. Lactate dehydrogenase-elevating virus induces systemic lymphocyte activation via TLR7-dependent IFNalpha responses by plasmacytoid dendritic cells. PLoS One 2009; 4:e6105. [PMID: 19568424 PMCID: PMC2699471 DOI: 10.1371/journal.pone.0006105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/25/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lactate dehydrogenase-elevating virus (LDV) is a natural infectious agent of mice. Like several other viruses, LDV causes widespread and very rapid but transient activation of both B cells and T cells in lymphoid tissues and the blood. The mechanism of this activation has not been fully described and is the focus of the current studies. PRINCIPAL FINDINGS A known inducer of early lymphocyte activation is IFNalpha, a cytokine strongly induced by LDV infection. Neutralization of IFNalpha in the plasma from infected mice ablated its ability to activate lymphocytes in vitro. Since the primary source of virus-induced IFNalpha in vivo is often plasmacytoid dendritic cells (pDC's), we depleted these cells prior to LDV infection and tested for lymphocyte activation. Depletion of pDC's in vivo eradicated both the LDV-induced IFNalpha response and lymphocyte activation. A primary receptor in pDC's for single stranded RNA viruses such as LDV is the toll-like receptor 7 (TLR7) pattern recognition receptor. Infection of TLR7-knockout mice revealed that both the IFNalpha response and lymphocyte activation were dependent on TLR7 signaling in vivo. Interestingly, virus levels in both TLR7 knockout mice and pDC-depleted mice were indistinguishable from controls indicating that LDV is largely resistant to the systemic IFNalpha response. CONCLUSION Results indicate that LDV-induced activation of lymphocytes is due to recognition of LDV nucleic acid by TLR7 pattern recognition receptors in pDC's that respond with a lymphocyte-inducing IFNalpha response.
Collapse
Affiliation(s)
- Christoph G. Ammann
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
45
|
Isolator and other neonatal piglet models in developmental immunology and identification of virulence factors. Anim Health Res Rev 2009; 10:35-52. [DOI: 10.1017/s1466252308001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe postnatal period is a ‘critical window’, a time when innate and passive immunity protect the newborn mammal while its own adaptive immune system is developing. Neonatal piglets, especially those reared in isolators, provide valuable tools for studying immunological development during this period, since environmental factors that cause ambiguity in studies with conventional animals are controlled by the experimenter. However, these models have limited value unless the swine immune system is first characterized and the necessary immunological reagents developed. Characterization has revealed numerous features of the swine immune system that did not fit mouse paradigms but may be more generally true for most mammals. These include fetal class switch recombination that is uncoupled from somatic hypermutation, the relative importance of the molecular mechanisms used to develop the antibody repertoire, the role of gut lymphoid tissue in that process, and the limited heavy chain repertoire but diverse IgG subclass repertoire. Knowledge gained from studies of adaptive immunity in isolator-reared neonatal pigs suggests that isolator piglets can be valuable in identification of virulence factors that are often masked in studies using conventional animals.
Collapse
|
46
|
Nozawa K, Fritzler MJ, Ikeda K, Takasaki Y, Satoh M, Chan EK. Differential Anti-Golgi Complex Autoantibody Production Following Murine Lactate Dehydrogenase-Elevating Virus Infection. Immunopharmacol Immunotoxicol 2008; 30:13-25. [DOI: 10.1080/08923970701812191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Misinzo GM, Delputte PL, Nauwynck HJ. Involvement of proteases in porcine reproductive and respiratory syndrome virus uncoating upon internalization in primary macrophages. Vet Res 2008; 39:55. [PMID: 18651989 DOI: 10.1051/vetres:2008031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 07/22/2008] [Indexed: 11/14/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in differentiated macrophages. In macrophages, heparan sulphate glycosaminoglycans mediate the initial PRRSV attachment and the receptor sialoadhesin mediates both PRRSV attachment and internalization into endosomes. Upon a pH drop, PRRSV is uncoated and its genome is released from the endosomes into the cytoplasm, which allows virus replication. However, expression of heparan sulphate and sialoadhesin in non-susceptible cells only allows virus internalization, but no virus uncoating and infection, indicating that other factors are involved. In the present study, it is shown that treatment of macrophages with serum (mainly the alpha-globulin fraction) inhibited PRRSV infection without affecting attachment and internalization. Because alpha-globulins contain several protease inhibitors, macrophages were treated with different protease inhibitors to investigate the involvement of proteases in PRRSV uncoating. Treatment of macrophages with broadly active inhibitors of serine or aspartic proteases, but not cysteine- or metallo-proteases, inhibited PRRSV uncoating and infection. Further investigation using specific inhibitors indicated that the aspartic protease cathepsin E is involved during PRRSV uncoating, but did not allow identification of the serine protease involved. The involvement of cathepsin E during PRRSV uncoating was confirmed by partial co-localization of internalized PRRSV with cathepsin E. Furthermore, cathepsin E expression increased with macrophage cultivation, which was positively correlated with an increased susceptibility to PRRSV infection. Together, these data show that, in macrophages, both the aspartic protease cathepsin E and an unidentified trypsin-like serine protease are involved in uncoating of internalized PRRSV and subsequent infection.
Collapse
Affiliation(s)
- Gerald M Misinzo
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | | | | |
Collapse
|
48
|
Cafruny WA, Duman RG, Rowland RR, Nelson EA, Wong GH. Antibiotic-Mediated Inhibition of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection: A Novel Quinolone Function Which Potentiates the Antiviral Cytokine Response in MARC-145 Cells and Pig Macrophages. Virology (Auckl) 2008. [DOI: 10.4137/vrt.s527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically significant agent for which there currently are no effective treatments. Development of antiviral agents for PRRSV as well as many other viruses has been limited by toxicity of known antiviral compounds. In contrast, antibiotics for non-virus microbial infections have been widely useful, in part because of their acceptable toxicity in animals. We report here the discovery that the quinolone-containing compound Plasmocin™, as well as the quinolones nalidixic acid and ciprofloxacin, have potent anti-PRRSV activity in vitro. PRRSV replication was inhibited by these antibiotics in both cultured MARC-145 cells and cultured primary alveolar porcine macrophages (PAMs). Furthermore, sub-optimal concentrations of nalidixic acid synergized with antiviral cytokines (AK-2 or IFN-γ) to quantitatively and qualitatively inhibit PRRSV replication in MARC-145 cells or PAMs. The antiviral activity of Plasmocin and nalidixic acid correlated with reduced actin expression in MARC-145 cells. Replication of the related lactate dehydrogenase-elevating virus (LDV) was also inhibited in primary mouse macrophages by Plasmocin. These results are significant to the development of antiviral strategies with potentially reduced toxicity, and provide a model system to better understand regulation of arterivirus replication.
Collapse
Affiliation(s)
- William A. Cafruny
- Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, S.D. 57069
| | - Richard G. Duman
- Sanford School of Medicine, University of South Dakota, 414 E. Clark St., Vermillion, S.D. 57069
| | - Raymond R. Rowland
- Department of Diagnostic Medicine and Pathobiology, L-229 Mosier Hall, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506
| | - Eric A. Nelson
- Department of Veterinary Science/ADRDL, North Campus Drive, South Dakota State University, Brookings, SD 57007
| | - Grace H. Wong
- Actokine Therapeutics, 12 Middlesex Rd. #411, Chestnut Hill, MA 02467
| |
Collapse
|
49
|
Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 2008; 4:e1000017. [PMID: 18369468 PMCID: PMC2265414 DOI: 10.1371/journal.ppat.1000017] [Citation(s) in RCA: 632] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 01/30/2008] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-alpha/beta (type I IFN) and IFN-lambda (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-alpha/beta and IFN-lambda systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-lambda. In the brain, IFN-alpha/beta was readily produced after infection with various RNA viruses, whereas expression of IFN-lambda was low in this organ. In the liver, virus infection induced the expression of both IFN-alpha/beta and IFN-lambda genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-alpha/beta and IFN-lambda to be compared. The response to IFN-lambda correlated with expression of the alpha subunit of the IFN-lambda receptor (IL-28R alpha). The IFN-lambda response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-lambda in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-alpha/beta was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-lambda system probably evolved to specifically protect epithelia. IFN-lambda might contribute to the prevention of viral invasion through skin and mucosal surfaces.
Collapse
Affiliation(s)
- Caroline Sommereyns
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, Brussels, Belgium
| | - Sophie Paul
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, Brussels, Belgium
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, Brussels, Belgium
| |
Collapse
|
50
|
Zhou EM, Xiao Y, Shi Y, Li X, Ma L, Jing S, Peng J. Generation of internal image monoclonal anti-idiotypic antibodies against idiotypic antibodies to GP5 antigen of porcine reproductive and respiratory syndrome virus. J Virol Methods 2008; 149:300-8. [PMID: 18336924 DOI: 10.1016/j.jviromet.2008.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 12/23/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
Syngeneic monoclonal anti-idiotypic antibodies (Mab2s) were generated against idiotypic antibodies to membrane glycoprotein GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) using the sequential immunization method. Six of 12 Mab2s possessed potential internal image characteristics by recognizing a common idiotype on murine and swine anti-GP5 antibodies. Further serological characterization demonstrated that one of the Mab2 (Mab2-5G2) represents internal image anti-idiotope which mimicked the GP5 antigen that inhibited the interaction between idiotypic anti-GP5 antibodies and GP5 antigen, its reaction with the idiotypic anti-GP5 antibody was inhibited by GP5 antigen and detected the common Id on anti-PRRSV antibodies from pigs that were experimentally infected with PRRSV. In addition, Mab2-5G2 identified a soluble protein on MA-104 and porcine alveolar macrophages. These results indicate that Mab2-5G2 may be a useful candidate as an alternative PRRSV serodiagnostic reagent and a useful probe to study PRRSV-cell interaction.
Collapse
Affiliation(s)
- En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, TaiAn, Shandong 271018, China.
| | | | | | | | | | | | | |
Collapse
|