1
|
Stubbs DB, Ruzicka JA, Taylor EW. Modular Polymerase Synthesis and Internal Protein Domain Swapping via Dual Opposed Frameshifts in the Ebola Virus L Gene. Pathogens 2024; 13:829. [PMID: 39452701 PMCID: PMC11510084 DOI: 10.3390/pathogens13100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Sequence analysis of the Zaire ebolavirus (EBOV) polymerase (L gene) mRNA, using online tools, identified a highly ranked -1 programmed ribosomal frameshift (FS) signal including an ideal slippery sequence heptamer (UUUAAAA), with an overlapping coding region featuring two tandem UGA codons, immediately followed by an RNA region that is the inverse complement (antisense) to a region of the mRNA of the selenoprotein iodothyronine deiodinase II (DIO2). This antisense interaction was confirmed in vitro via electrophoretic gel shift assay, using cDNAs at the EBOV and DIO2 segments. The formation of a duplex between the two mRNAs could trigger the ribosomal frameshift, by mimicking the enhancing role of a pseudoknot structure, while providing access to the selenocysteine insertion sequence (SECIS) element contained in the DIO2 mRNA. This process would allow the -1 frame UGA codons to be recoded as selenocysteine, forming part of a C-terminal module in a low abundance truncated isoform of the viral polymerase, potentially functioning in a redox role. Remarkably, 90 bases downstream of the -1 FS site, an active +1 FS site can be demonstrated, which, via a return to the zero frame, would enable the attachment of the entire C-terminal of the polymerase protein. Using a construct with upstream and downstream reporter genes, spanning a wildtype or mutated viral insert, we show significant +1 ribosomal frameshifting at this site. Acting singly or together, frameshifting at these sites (both of which are highly conserved in EBOV strains) could enable the expression of several modified isoforms of the polymerase. The 3D modeling of the predicted EBOV polymerase FS variants using the AI tool, AlphaFold, reveals a peroxiredoxin-like active site with arginine and threonine residues adjacent to a putative UGA-encoded selenocysteine, located on the back of the polymerase "hand". This module could serve to protect the viral RNA from peroxidative damage.
Collapse
Affiliation(s)
| | | | - Ethan W. Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, P.O. Box 26170, Greensboro, NC 27402-6170, USA; (D.B.S.); (J.A.R.)
| |
Collapse
|
2
|
Zhang HQ, Zhang QY, Yuan ZM, Zhang B. The potential epidemic threat of Ebola virus and the development of a preventive vaccine. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:67-78. [DOI: 10.1016/j.jobb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Winter SL, Golani G, Lolicato F, Vallbracht M, Thiyagarajah K, Ahmed SS, Lüchtenborg C, Fackler OT, Brügger B, Hoenen T, Nickel W, Schwarz US, Chlanda P. The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J 2023:e113578. [PMID: 37082863 DOI: 10.15252/embj.2023113578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Gonen Golani
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Keerthihan Thiyagarajah
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Insitut, Greifswald-Insel Riems, Greifswald, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
4
|
Alfson KJ, Goez-Gazi Y, Gazi M, Chou YL, Niemuth NA, Mattix ME, Staples H, Klaffke B, Rodriguez GF, Escareno P, Bartley C, Ticer A, Clemmons EA, Dutton III JW, Griffiths A, Meister GT, Sanford DC, Cirimotich CM, Carrion R. Development of a Well-Characterized Cynomolgus Macaque Model of Sudan Virus Disease for Support of Product Development. Vaccines (Basel) 2022; 10:1723. [PMID: 36298588 PMCID: PMC9611481 DOI: 10.3390/vaccines10101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
The primary objective of this study was to characterize the disease course in cynomolgus macaques exposed to Sudan virus (SUDV), to determine if infection in this species is an appropriate model for the evaluation of filovirus countermeasures under the FDA Animal Rule. Sudan virus causes Sudan virus disease (SVD), with an average case fatality rate of approximately 50%, and while research is ongoing, presently there are no approved SUDV vaccines or therapies. Well characterized animal models are crucial for further developing and evaluating countermeasures for SUDV. Twenty (20) cynomolgus macaques were exposed intramuscularly to either SUDV or sterile phosphate-buffered saline; 10 SUDV-exposed animals were euthanized on schedule to characterize pathology at defined durations post-exposure and 8 SUDV-exposed animals were not part of the scheduled euthanasia cohort. Survival was assessed, along with clinical observations, body weights, body temperatures, hematology, clinical chemistry, coagulation, viral load (serum and tissues), macroscopic observations, and histopathology. There were statistically significant differences between SUDV-exposed animals and mock-exposed animals for 26 parameters, including telemetry body temperature, clinical chemistry parameters, hematology parameters, activated partial thromboplastin time, serum viremia, and biomarkers that characterize the disease course of SUDV in cynomolgus macaques.
Collapse
Affiliation(s)
- Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Ying-Liang Chou
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Nancy A. Niemuth
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Marc E. Mattix
- Nonclinical Pathology Services, LLC, 5920 Clubhouse Pointe Dr., Medina, OH 44256, USA
| | - Hilary Staples
- Current affiliation: National Emerging Infectious Diseases Laboratory, Department of Microbiology, Boston University School of Medicine, 620 Albany St, Boston, MA 02118, USA
| | - Benjamin Klaffke
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Gloria F. Rodriguez
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Priscilla Escareno
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Carmen Bartley
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Anysha Ticer
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Elizabeth A. Clemmons
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - John W. Dutton III
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Anthony Griffiths
- Current affiliation: National Emerging Infectious Diseases Laboratory, Department of Microbiology, Boston University School of Medicine, 620 Albany St, Boston, MA 02118, USA
| | - Gabe T. Meister
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Daniel C. Sanford
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Chris M. Cirimotich
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| |
Collapse
|
5
|
Alfson KJ, Goez-Gazi Y, Gazi M, Chou YL, Niemuth NA, Mattix ME, Staples HM, Klaffke B, Rodriguez GF, Bartley C, Ticer A, Clemmons EA, Dutton JW, Griffiths A, Meister GT, Sanford DC, Cirimotich CM, Carrion R. Development of a Well-Characterized Cynomolgus Macaque Model of Marburg Virus Disease for Support of Vaccine and Therapy Development. Vaccines (Basel) 2022; 10:1314. [PMID: 36016203 PMCID: PMC9414819 DOI: 10.3390/vaccines10081314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Marburg virus (MARV) is a filovirus that can infect humans and nonhuman primates (NHPs), causing severe disease and death. Of the filoviruses, Ebola virus (EBOV) has been the primary target for vaccine and therapeutic development. However, MARV has an average case fatality rate of approximately 50%, the infectious dose is low, and there are currently no approved vaccines or therapies targeted at infection with MARV. The purpose of this study was to characterize disease course in cynomolgus macaques intramuscularly exposed to MARV Angola variant. There were several biomarkers that reliably correlated with MARV-induced disease, including: viral load; elevated total clinical scores; temperature changes; elevated ALT, ALP, BA, TBIL, CRP and decreased ALB values; decreased lymphocytes and platelets; and prolonged PTT. A scheduled euthanasia component also provided the opportunity to study the earliest stages of the disease. This study provides evidence for the application of this model to evaluate potential vaccines and therapies against MARV and will be valuable in improving existing models.
Collapse
Affiliation(s)
- Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Yenny Goez-Gazi
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Michal Gazi
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Ying-Liang Chou
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Nancy A. Niemuth
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Marc E. Mattix
- Nonclinical Pathology Services, LLC, 5920 Clubhouse Pointe Dr., Medina, OH 44256, USA
| | - Hilary M. Staples
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Benjamin Klaffke
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Gloria F. Rodriguez
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Carmen Bartley
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Anysha Ticer
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Elizabeth A. Clemmons
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - John W. Dutton
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Anthony Griffiths
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| | - Gabe T. Meister
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Daniel C. Sanford
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Chris M. Cirimotich
- Battelle Biomedical Research Center (BBRC), 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA
| | - Ricardo Carrion
- Texas Biomedical Research Institute, 8715 W. Military Dr., San Antonio, TX 78227, USA
| |
Collapse
|
6
|
Abstract
Marburg virus (MARV) VP40 protein (mVP40) directs egress and spread of MARV, in part, by recruiting specific host WW domain-containing proteins via its conserved PPxY late (L) domain motif to facilitate efficient virus-cell separation. We reported previously that small-molecule compounds targeting the viral PPxY/host WW domain interaction inhibited VP40-mediated egress and spread. Here, we report on the antiviral potency of novel compound FC-10696, which emerged from extensive structure-activity relationship (SAR) of a previously described series of PPxY inhibitors. We show that FC-10696 inhibits egress of mVP40 virus-like particles (VLPs) and egress of authentic MARV from HeLa cells and primary human macrophages. Moreover, FC-10696 treated-mice displayed delayed onset of weight loss and clinical signs and significantly lower viral loads compared to controls, with 14% of animals surviving 21 days following a lethal MARV challenge. Thus, FC-10696 represents a first-in-class, host-oriented inhibitor effectively targeting late stages of the MARV life cycle.
Collapse
|
7
|
Yu Z, Wu H, Huang Q, Zhong Z. Simultaneous detection of Marburg virus and Ebola virus with TaqMan-based multiplex real-time PCR method. J Clin Lab Anal 2021; 35:e23786. [PMID: 33939238 PMCID: PMC8183904 DOI: 10.1002/jcla.23786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Background Marburg virus (MARV) and Ebola virus (EBOV) are acute infections with high case fatality rates. It is of great significance for epidemic monitoring and prevention and control of infectious diseases by the development of a rapid, specific, and sensitive quantitative PCR method to detect two pathogens simultaneously. Methods Primers and TaqMan probes were designed according to highly conserved sequences of these viruses. Sensitivity, specificity, linear range, limit of detection, and the effects of hemolysis and lipid on real‐time qPCR were evaluated. Results The linearity of the curve allowed quantification of nucleic acid concentrations in range from 103 to 109 copies/ml per reaction (MARV and EBOV). The limit of detection of EBOV was 40 copies/ml, and MARV was 100 copies/ml. It has no cross‐reaction with other pathogens such as hepatitis b virus (HBV), hepatitis c virus (HCV), human papillomavirus (HPV), Epstein‐Barr virus (EBV), herpes simplex virus (HSV), cytomegalovirus (CMV), and human immunodeficiency virus (HIV). Repeatability analysis of the two viruses showed that their coefficient of variation (CV) was less than 5.0%. The above results indicated that fluorescence quantitative PCR could detect EBOV and MARV sensitively and specifically. Conclusions The TaqMan probe‐based multiplex fluorescence quantitative PCR assays could detect EBOV and MARV sensitively specifically and simultaneously.
Collapse
Affiliation(s)
- Zhikang Yu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Heming Wu
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Qingyan Huang
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| | - Zhixiong Zhong
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China.,Guangdong Provincial Engineering and Technology Research Center for Clinical Molecular Diagnostics and Antibody Therapeutics, Meizhou People's Hospital (Huangtang Hospital), Meizhou Academy of Medical Sciences, Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou, China
| |
Collapse
|
8
|
Farrag MA, Hamed ME, Amer HM, Almajhdi FN. Epidemiology of respiratory viruses in Saudi Arabia: toward a complete picture. Arch Virol 2019; 164:1981-1996. [PMID: 31139937 PMCID: PMC7087236 DOI: 10.1007/s00705-019-04300-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Acute lower respiratory tract infection is a major health problem that affects more than 15% of the total population of Saudi Arabia each year. Epidemiological studies conducted over the last three decades have indicated that viruses are responsible for the majority of these infections. The epidemiology of respiratory viruses in Saudi Arabia is proposed to be affected mainly by the presence and mobility of large numbers of foreign workers and the gathering of millions of Muslims in Mecca during the Hajj and Umrah seasons. Knowledge concerning the epidemiology, circulation pattern, and evolutionary kinetics of respiratory viruses in Saudi Arabia are scant, with the available literature being inconsistent. This review summarizes the available data on the epidemiology and evolution of respiratory viruses. The demographic features associated with Middle East respiratory syndrome-related coronavirus infections are specifically analyzed for a better understanding of the epidemiology of this virus. The data support the view that continuous entry and exit of pilgrims and foreign workers with different ethnicities and socioeconomic backgrounds in Saudi Arabia is the most likely vehicle for global dissemination of respiratory viruses and for the emergence of new viruses (or virus variants) capable of greater dissemination.
Collapse
Affiliation(s)
- Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia
| | - Maaweya E Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia
| | - Haitham M Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
9
|
Kakooza-Mwesige A, Tshala-Katumbay D, Juliano SL. Viral infections of the central nervous system in Africa. Brain Res Bull 2019; 145:2-17. [PMID: 30658129 DOI: 10.1016/j.brainresbull.2018.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
Viral infections are a major cause of human central nervous system infection, and may be associated with significant mortality, and long-term sequelae. In Africa, the lack of effective therapies, limited diagnostic and human resource facilities are especially in dire need. Most viruses that affect the central nervous system are opportunistic or accidental pathogens. Some of these viruses were initially considered harmless, however they have now evolved to penetrate the nervous system efficiently and exploit neuronal cell biology thus resulting in severe illness. A number of potentially lethal neurotropic viruses have been discovered in Africa and over the course of time shown their ability to spread wider afield involving other continents leaving a devastating impact in their trail. In this review we discuss key viruses involved in central nervous system disease and of major public health concern with respect to Africa. These arise from the families of Flaviviridae, Filoviridae, Retroviridae, Bunyaviridae, Rhabdoviridae and Herpesviridae. In terms of the number of cases affected by these viruses, HIV (Retroviridae) tops the list for morbidity, mortality and long term disability, while the Rift Valley Fever virus (Bunyaviridae) is at the bottom of the list. The most deadly are the Ebola and Marburg viruses (Filoviridae). This review describes their epidemiology and key neurological manifestations as regards the central nervous system such as meningoencephalitis and Guillain-Barré syndrome. The potential pathogenic mechanisms adopted by these viruses are debated and research perspectives suggested.
Collapse
Affiliation(s)
- Angelina Kakooza-Mwesige
- Department of Paediatrics & Child Health, Makerere University College of Health Sciences and Mulago Hospital, Kampala, Uganda; Astrid Lindgren Children's Hospital, Neuropediatric Research Unit, Karolinska Institutet, Sweden.
| | - Desire Tshala-Katumbay
- Department of Neurology and School of Public Health, Oregon Health & Science University, Portland, OR, USA; Department of Neurology, University of Kinshasa, and Institut National de Recherches Biomedicales, University of Kinshasa, Democratic Republic of the Congo.
| | | |
Collapse
|
10
|
Post-exposure immunotherapy for two ebolaviruses and Marburg virus in nonhuman primates. Nat Commun 2019; 10:105. [PMID: 30631063 PMCID: PMC6328579 DOI: 10.1038/s41467-018-08040-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
The 2013-2016 Ebola virus (EBOV) disease epidemic demonstrated the grave consequences of filovirus epidemics in the absence of effective therapeutics. Besides EBOV, two additional ebolaviruses, Sudan (SUDV) and Bundibugyo (BDBV) viruses, as well as multiple variants of Marburg virus (MARV), have also caused high fatality epidemics. Current experimental EBOV monoclonal antibodies (mAbs) are ineffective against SUDV, BDBV, or MARV. Here, we report that a cocktail of two broadly neutralizing ebolavirus mAbs, FVM04 and CA45, protects nonhuman primates (NHPs) against EBOV and SUDV infection when delivered four days post infection. This cocktail when supplemented by the anti-MARV mAb MR191 exhibited 100% efficacy in MARV-infected NHPs. These findings provide a solid foundation for clinical development of broadly protective immunotherapeutics for use in future filovirus epidemics.
Collapse
|
11
|
Brandt J, Wendt L, Hoenen T. Structure and functions of the Ebola virus matrix protein VP40. Future Virol 2019. [DOI: 10.2217/fvl-2018-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The matrix protein VP40 of the highly pathogenic Ebola virus (EBOV), a member of the filovirus family, is the most abundant protein in EBOV virions. During the viral life cycle it mediates assembly and budding from the host cell, and is responsible for the characteristic filamentous shape of EBOV particles. In addition to this classical function as a matrix protein, VP40 was also shown to have a regulatory function in viral transcription. To enable these distinct functions, VP40 can adopt different oligomeric states, in particular, dimers, hexamers and ring-like octameric RNA-binding structures. This review describes the properties and functions of the EBOV matrix protein VP40 and how these different conformations of VP40 contribute to its diverse functions.
Collapse
Affiliation(s)
- Janine Brandt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald – Insel Riems, Germany
| | - Lisa Wendt
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald – Insel Riems, Germany
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald – Insel Riems, Germany
| |
Collapse
|
12
|
Kemenesi G, Kurucz K, Dallos B, Zana B, Földes F, Boldogh S, Görföl T, Carroll MW, Jakab F. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg Microbes Infect 2018; 7:66. [PMID: 29670087 PMCID: PMC5906664 DOI: 10.1038/s41426-018-0067-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | | | - Fanni Földes
- Szentágothai Research Centre, Pécs, H-7624, Hungary
| | - Sándor Boldogh
- Aggtelek National Park Directorate, Jósvafő, H-3758, Hungary
| | - Tamás Görföl
- Department of Zoology, Hungarian Natural History Museum, Budapest, H-1083, Hungary
| | | | - Ferenc Jakab
- Szentágothai Research Centre, Pécs, H-7624, Hungary
| |
Collapse
|
13
|
Bacteriophage M13 May Be Used for the Assessment of Viral Transfer during Doffing of Ebola-Level Personal Protective Equipment. Infect Control Hosp Epidemiol 2018; 39:762-763. [DOI: 10.1017/ice.2018.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Gai W, Zheng X, Wang C, Wang H, Zhao Y, Wang Q, Wong G, Zhang W, Feng N, Qiu B, Chi H, Li N, Wang T, Gao Y, Shan J, Yang S, Xia X. Marburg virus-like particles by co-expression of glycoprotein and matrix protein in insect cells induces immune responses in mice. Virol J 2017; 14:204. [PMID: 29070075 PMCID: PMC5657058 DOI: 10.1186/s12985-017-0869-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 06/14/2023] Open
Abstract
Background Marburg virus (MARV) causes severe haemorrhagic fever in humans and nonhuman primates and has a high mortality rate. However, effective drugs or licensed vaccines are not currently available to control the outbreak and spread of this disease. Methods In this study, we generated MARV virus-like particles (VLPs) by co-expressing the glycoprotein (GP) and matrix protein (VP40) using the baculovirus expression system. MARV VLPs and three adjuvants, Poria cocos polysaccharide (PCP-II), poly(I:C) and aluminium hydroxide, were evaluated after intramuscular vaccination in mice. Results Murine studies demonstrated that vaccination with the MARV VLPs induce neutralizing antibodies and cellar immune responses. MARV VLPs and the PCP-II adjuvant group resulted in high titres of MARV-specific antibodies, activated relatively higher numbers of B cells and T cells in peripheral blood mononuclear cells (PBMCs), and induced greater cytokine secretion from splenocytes than the other adjuvants. Conclusion MARV VLPs with the PCP-II adjuvant may constitute an effective vaccination and PCP-II should be further investigated as a novel adjuvant.
Collapse
Affiliation(s)
- Weiwei Gai
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Xuexing Zheng
- School of Public Health, Shandong University, Jinan, China
| | - Chong Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Qi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China.,College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Gary Wong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weijiao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Boning Qiu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Hang Chi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Nan Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China
| | - Junjie Shan
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China. .,Department of Virology, Institute of Military Veterinary, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, Jilin, 130012, People's Republic of China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China. .,Department of Virology, Institute of Military Veterinary, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, Jilin, 130012, People's Republic of China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, China. .,Department of Virology, Institute of Military Veterinary, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, Jilin, 130012, People's Republic of China.
| |
Collapse
|
15
|
Weiwei G, Xuexing Z, Chong W, Yongkun Z, Qi W, Hualei W, Gary W, Ying X, Haijun W, Zengguo C, Na F, Hang C, Tiecheng W, Yuwei G, Junjie S, Songtao Y, Xianzhu X. Marburg virus-like particles produced in insect cells induce neutralizing antibodies in rhesus macaques. J Med Virol 2017; 89:2069-2074. [DOI: 10.1002/jmv.24832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Gai Weiwei
- College of Veterinary Medicine; Jilin University; Changchun China
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Zheng Xuexing
- School of Public Health; Shandong University; Jinan China
| | - Wang Chong
- State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute; Chinese Academy of Agricultural Sciences; Harbin China
| | - Zhao Yongkun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wang Qi
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
- College of Veterinary Medicine; Jilin Agriculture University; Changchun China
| | - Wang Hualei
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wong Gary
- CAS Key Laboratory of Pathogenic Microbiology and Immunology; Institute of Microbiology, Chinese Academy of Sciences; Beijing China
| | - Xie Ying
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wang Haijun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Cao Zengguo
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Feng Na
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Chi Hang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Wang Tiecheng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Gao Yuwei
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Shan Junjie
- Institute of Pharmacology and Toxicology; Academy of Military Medical Sciences; Beijing China
| | - Yang Songtao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| | - Xia Xianzhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control; Institute of Military Veterinary; Academy of Military Medical Sciences; Changchun China
| |
Collapse
|
16
|
Abstract
Since the discovery of Marburg virus 50 years ago, filoviruses have reemerged in the human population more than 40 times. Already the first episode was as dramatic as most of the subsequent ones, but none of them was as devastating as the West-African Ebola virus outbreak in 2013-2015. Although progress toward a better understanding of the viruses is impressive, there is clearly a need to improve and strengthen the measures to detect and control these deadly infections.
Collapse
Affiliation(s)
- Hans Dieter Klenk
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany.
| | - Werner Slenczka
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
17
|
Vu H, Shulenin S, Grolla A, Audet J, He S, Kobinger G, Unfer RC, Warfield KL, Aman MJ, Holtsberg FW. Quantitative serology assays for determination of antibody responses to Ebola virus glycoprotein and matrix protein in nonhuman primates and humans. Antiviral Res 2015; 126:55-61. [PMID: 26681387 DOI: 10.1016/j.antiviral.2015.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/18/2015] [Accepted: 11/29/2015] [Indexed: 11/27/2022]
Abstract
The West Africa Ebola virus disease (EVD) outbreak has reached unprecedented magnitude and caused worldwide concerns for the spread of this deadly virus. Recent findings in nonhuman primates (NHPs) demonstrate that antibodies can be protective against EVD. However, the role of antibody response in vaccine-mediated protection is not fully understood. To address these questions quantitative serology assays are needed for measurement of the antibody response to key Ebola virus (EBOV) proteins. Serology enzyme-linked immunosorbent assays (ELISA's), using a reference detection antibody, were developed in order to standardize the quantitation of antibody levels in vaccinated NHPs or in humans exposed to EBOV or immunized with an EBOV vaccine. Critical reagents were generated to support the development of the serology ELISAs. Recombinant EBOV matrix protein (VP40) was expressed in Escherichia coli and purified. Two variants of the glycoprotein (GP), the ectodomain lacking the transmembrane domain (GPΔTM), and an engineered GP lacking the mucin-like domain (GPΔmuc) were expressed and purified from mammalian cell systems. Using these proteins, three ELISA methods were developed and optimized for reproducibility and robustness, including stability testing of critical reagents. The assay was used to determine the antibody response against VP40, GPΔTM, and GPΔmuc in a NHP vaccine study using EBOV virus-like particles (VLP) vaccine expressing GP, VP40 and the nucleoprotein. Additionally, these ELISAs were used to successfully detect antibody responses to VP40, GPΔTM and GPΔmuc in human sera from EBOV infected individuals.
Collapse
Affiliation(s)
- Hong Vu
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Sergey Shulenin
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | - Allen Grolla
- Public Health Agency of Canada, Winnipeg, Canada
| | | | - Shihua He
- Public Health Agency of Canada, Winnipeg, Canada
| | | | - Robert C Unfer
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | | | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, MD 20878, USA
| | | |
Collapse
|
18
|
Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. PLoS Pathog 2015; 11:e1005220. [PMID: 26513362 PMCID: PMC4634230 DOI: 10.1371/journal.ppat.1005220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/21/2015] [Indexed: 12/19/2022] Open
Abstract
Hemorrhagic fever viruses, including the filoviruses (Ebola and Marburg) and arenaviruses (Lassa and Junín viruses), are serious human pathogens for which there are currently no FDA approved therapeutics or vaccines. Importantly, transmission of these viruses, and specifically late steps of budding, critically depend upon host cell machinery. Consequently, strategies which target these mechanisms represent potential targets for broad spectrum host oriented therapeutics. An important cellular signal implicated previously in EBOV budding is calcium. Indeed, host cell calcium signals are increasingly being recognized to play a role in steps of entry, replication, and transmission for a range of viruses, but if and how filoviruses and arenaviruses mobilize calcium and the precise stage of virus transmission regulated by calcium have not been defined. Here we demonstrate that expression of matrix proteins from both filoviruses and arenaviruses triggers an increase in host cytoplasmic Ca2+ concentration by a mechanism that requires host Orai1 channels. Furthermore, we demonstrate that Orai1 regulates both VLP and infectious filovirus and arenavirus production and spread. Notably, suppression of the protein that triggers Orai activation (Stromal Interaction Molecule 1, STIM1) and genetic inactivation or pharmacological blockade of Orai1 channels inhibits VLP and infectious virus egress. These findings are highly significant as they expand our understanding of host mechanisms that may broadly control enveloped RNA virus budding, and they establish Orai and STIM1 as novel targets for broad-spectrum host-oriented therapeutics to combat these emerging BSL-4 pathogens and potentially other enveloped RNA viruses that bud via similar mechanisms. Filoviruses (Ebola and Marburg viruses) and arenaviruses (Lassa and Junín viruses) are high-priority pathogens that hijack host proteins and pathways to complete their replication cycles and spread from cell to cell. Here we provide genetic and pharmacological evidence to demonstrate that the host calcium channel protein Orai1 and ER calcium sensor protein STIM1 regulate efficient budding and spread of BSL-4 pathogens Ebola, Marburg, Lassa, and Junín viruses. Our findings are of broad significance as they provide new mechanistic insight into fundamental, immutable, and conserved mechanisms of hemorrhagic fever virus pathogenesis. Moreover, this strategy of targeting highly conserved host cellular protein(s) and mechanisms required by these viruses to complete their life cycle should elicit minimal drug resistance.
Collapse
|
19
|
Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses. J Virol 2015; 90:266-78. [PMID: 26468533 DOI: 10.1128/jvi.02171-15] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. IMPORTANCE Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines.
Collapse
|
20
|
Jain NK, Sahni N, Kumru OS, Joshi SB, Volkin DB, Russell Middaugh C. Formulation and stabilization of recombinant protein based virus-like particle vaccines. Adv Drug Deliv Rev 2015; 93:42-55. [PMID: 25451136 DOI: 10.1016/j.addr.2014.10.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 02/06/2023]
Abstract
Vaccine formulation development has traditionally focused on improving antigen storage stability and compatibility with conventional adjuvants. More recently, it has also provided an opportunity to modify the interaction and presentation of an antigen/adjuvant to the immune system to better stimulate the desired immune responses for maximal efficacy. In the last decade, there has been a paradigm shift in vaccine antigen and formulation design involving an improved physical understanding of antigens and a better understanding of the immune system. In addition, the discovery of novel adjuvants and delivery systems promises to further improve the design of new, more effective vaccines. Here we describe some of the fundamental aspects of formulation design applicable to virus-like-particle based vaccine antigens (VLPs). Case studies are presented for commercially approved VLP vaccines as well as some investigational VLP vaccine candidates. An emphasis is placed on the biophysical analysis of vaccines to facilitate formulation and stabilization of these particulate antigens.
Collapse
|
21
|
Jeong HS, Kang YJ. Study on Laboratory Diagnosis of the Ebola Virus and Its Current Trends. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2015. [DOI: 10.15324/kjcls.2015.47.3.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hye Seon Jeong
- Department of Laboratory Medicine , St. Vincent Hospital, The Catholic University of Korea, Suwon 16247, Korea
| | - Yun-Jung Kang
- Department of Health Science, Dankook University Graduate School, Cheonan 31116, Korea
| |
Collapse
|
22
|
Abstract
UNLABELLED Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the immune cells circulating in the blood of infected primates respond following exposure to Marburg virus. Our results show that there are three discernible stages of response to infection that correlate with presymptomatic, early, and late symptomatic stages of infection, a response format similar to that seen following challenge with other hemorrhagic fever viruses. In contrast to the ability of the virus to block innate immune signaling in vitro, the earliest and most sustained response is an interferon-like response. Our analysis also identifies a number of cytokines that are transcriptionally upregulated during late stages of infection and suggest that there is a Th2-skewed response to infection. When correlated with companion data describing the animal model from which our samples were collected, our results suggest that the innate immune response may contribute to overall pathogenesis.
Collapse
|
23
|
Zhu FC, Hou LH, Li JX, Wu SP, Liu P, Zhang GR, Hu YM, Meng FY, Xu JJ, Tang R, Zhang JL, Wang WJ, Duan L, Chu K, Liang Q, Hu JL, Luo L, Zhu T, Wang JZ, Chen W. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China: preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet 2015; 385:2272-9. [PMID: 25817373 DOI: 10.1016/s0140-6736(15)60553-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Up to now, all tested Ebola virus vaccines have been based on the virus strain from the Zaire outbreak in 1976. We aimed to assess the safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine expressing the glycoprotein of the 2014 epidemic strain. METHODS We did this randomised, double-blind, placebo-controlled, phase 1 clinical trial at one site in Taizhou County, Jiangsu Province, China. Healthy adults (aged 18-60 years) were sequentially enrolled and randomly assigned (2:1), by computer-generated block randomisation (block size of six), to receive placebo, low-dose adenovirus type-5 vector-based Ebola vaccine, or high-dose vaccine. Randomisation was pre-stratified by dose group. All participants, investigators, and laboratory staff were masked to treatment allocation. The primary safety endpoint was occurrence of solicited adverse reactions within 7 days of vaccination. The primary immunogenicity endpoints were glycoprotein-specific antibody titres and T-cell responses at day 28 after the vaccination. Analysis was by intention to treat. The study is registered with ClinicalTrials.gov, number NCT02326194. FINDINGS Between Dec 28, 2014, and Jan 9, 2015, 120 participants were enrolled and randomly assigned to receive placebo (n=40), low-dose vaccine (n=40), or high-dose vaccine. Participants were followed up for 28 days. Overall, 82 (68%) participants reported at least one solicited adverse reaction within 7 days of vaccination (n=19 in the placebo group vs n=27 in the low-dose group vs n=36 in the high-dose group; p=0·0002). The most common reaction was mild pain at the injection site, which was reported in eight (20%) participants in the placebo group, 14 (35%) participants in the low-dose group, and 29 (73%) participants in the high-dose vaccine group (p<0·0001). We recorded no statistical differences in other adverse reactions and laboratory tests across groups. Glycoprotein-specific antibody titres were significantly increased in participants in the low-dose and high-dose vaccine groups at both day 14 (geometric mean titre 421·4 [95% CI 249·7-711·3] and 820·5 [598·9-1124·0], respectively; p<0·0001) and day 28 (682·7 [424·3-1098·5] and 1305·7 [970·1-1757·2], respectively; p<0·0001). T-cell responses peaked at day 14 at a median of 465·0 spot-forming cells (IQR 180·0-1202·5) in participants in the low-dose group and 765·0 cells (400·0-1460·0) in those in the high-dose group. 21 (18%) participants had mild fever (n=9 in the placebo group, n=6 in the low-dose group, and n=6 in the high-dose group). No serious adverse events were recorded. INTERPRETATION Our findings show that the high-dose vaccine is safe and robustly immunogenic. One shot of the high-dose vaccine could mount glycoprotein-specific humoral and T-cell response against Ebola virus in 14 days. FUNDING China National Science and Technology, Beijing Institute of Biotechnology, and Tianjin CanSino Biotechnology.
Collapse
Affiliation(s)
- Feng-Cai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Li-Hua Hou
- Beijing Institute of Biotechnology, Beijing, China
| | - Jing-Xin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Shi-Po Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Pei Liu
- Department of Public Health, Southeast University, Nanjing, Jiangsu Province, China
| | - Gui-Rong Zhang
- Beijing Institute for Drug and Instrument Quality Control, Beijing, China
| | - Yue-Mei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Fan-Yue Meng
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Jun-Jie Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Rong Tang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | | | - Wen-Juan Wang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Lei Duan
- Tianjin CanSino Biotechnology Inc, Tianjin, China
| | - Kai Chu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Qi Liang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Jia-Lei Hu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Li Luo
- Department of Public Health, Southeast University, Nanjing, Jiangsu Province, China
| | - Tao Zhu
- Tianjin CanSino Biotechnology Inc, Tianjin, China
| | - Jun-Zhi Wang
- National Institute for Food and Drug Control, Beijing, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, China.
| |
Collapse
|
24
|
Liu SQ, Deng CL, Yuan ZM, Rayner S, Zhang B. Identifying the pattern of molecular evolution for Zaire ebolavirus in the 2014 outbreak in West Africa. INFECTION GENETICS AND EVOLUTION 2015; 32:51-9. [PMID: 25745889 DOI: 10.1016/j.meegid.2015.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
The current Ebola virus disease (EVD) epidemic has killed more than all previous Ebola outbreaks combined and, even as efforts appear to be bringing the outbreak under control, the threat of reemergence remains. The availability of new whole-genome sequences from West Africa in 2014 outbreak, together with those from the earlier outbreaks, provide an opportunity to investigate the genetic characteristics, the epidemiological dynamics and the evolutionary history for Zaire ebolavirus (ZEBOV). To investigate the evolutionary properties of ZEBOV in this outbreak, we examined amino acid mutations, positive selection, and evolutionary rates on the basis of 123 ZEBOV genome sequences. The estimated phylogenetic relationships within ZEBOV revealed that viral sequences from the same period or location formed a distinct cluster. The West Africa viruses probably derived from Middle Africa, consistent with results from previous studies. Analysis of the seven protein regions of ZEBOV revealed evidence of positive selection acting on the GP and L genes. Interestingly, all putatively positive-selected sites identified in the GP are located within the mucin-like domain of the solved structure of the protein, suggesting a possible role in the immune evasion properties of ZEBOV. Compared with earlier outbreaks, the evolutionary rate of GP gene was estimated to significantly accelerate in the 2014 outbreak, suggesting that more ZEBOV variants are generated for human to human transmission during this sweeping epidemic. However, a more balanced sample set and next generation sequencing datasets would help achieve a clearer understanding at the genetic level of how the virus is evolving and adapting to new conditions.
Collapse
Affiliation(s)
- Si-Qing Liu
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Cheng-Lin Deng
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhi-Ming Yuan
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Simon Rayner
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bo Zhang
- Key Laboratory of Etiology and Biosafety for Emerging and Highly Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
25
|
Rougeron V, Feldmann H, Grard G, Becker S, Leroy EM. Ebola and Marburg haemorrhagic fever. J Clin Virol 2015; 64:111-9. [PMID: 25660265 PMCID: PMC11080958 DOI: 10.1016/j.jcv.2015.01.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/02/2023]
Abstract
Ebolaviruses and Marburgviruses (family Filoviridae) are among the most virulent pathogens for humans and great apes causing severe haemorrhagic fever and death within a matter of days. This group of viruses is characterized by a linear, non-segmented, single-stranded RNA genome of negative polarity. The overall burden of filovirus infections is minimal and negligible compared to the devastation caused by malnutrition and other infectious diseases prevalent in Africa such as malaria, dengue or tuberculosis. In this paper, we review the knowledge gained on the eco/epidemiology, the pathogenesis and the disease control measures for Marburg and Ebola viruses developed over the last 15 years. The overall progress is promising given the little attention that these pathogen have achieved in the past; however, more is to come over the next decade given the more recent interest in these pathogens as potential public and animal health concerns. Licensing of therapeutic and prophylactic options may be achievable over the next 5-10 years.
Collapse
Affiliation(s)
- V Rougeron
- Laboratoire MiVEGEC, UMR IRD 224 CNRS 5290 UMI, 911 Av. Agropolis, 34394 Montpellier, Cedex 5, France; International Center for Medical Research of Franceville, BP769, Franceville, Gabon.
| | - H Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - G Grard
- International Center for Medical Research of Franceville, BP769, Franceville, Gabon
| | - S Becker
- Institut für Virologie, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, Marburg 35037, Germany
| | - E M Leroy
- Laboratoire MiVEGEC, UMR IRD 224 CNRS 5290 UMI, 911 Av. Agropolis, 34394 Montpellier, Cedex 5, France; International Center for Medical Research of Franceville, BP769, Franceville, Gabon
| |
Collapse
|
26
|
Determination of specific antibody responses to the six species of ebola and Marburg viruses by multiplexed protein microarrays. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1605-12. [PMID: 25230936 DOI: 10.1128/cvi.00484-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses.
Collapse
|
27
|
Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J Virol 2014; 88:7294-306. [PMID: 24741084 DOI: 10.1128/jvi.00591-14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Budding of filoviruses, arenaviruses, and rhabdoviruses is facilitated by subversion of host proteins, such as Nedd4 E3 ubiquitin ligase, by viral PPxY late (L) budding domains expressed within the matrix proteins of these RNA viruses. As L domains are important for budding and are highly conserved in a wide array of RNA viruses, they represent potential broad-spectrum targets for the development of antiviral drugs. To identify potential competitive blockers, we used the known Nedd4 WW domain-PPxY interaction interface as the basis of an in silico screen. Using PPxY-dependent budding of Marburg (MARV) VP40 virus-like particles (VLPs) as our model system, we identified small-molecule hit 1 that inhibited Nedd4-PPxY interaction and PPxY-dependent budding. This lead candidate was subsequently improved with additional structure-activity relationship (SAR) analog testing which enhanced antibudding activity into the nanomolar range. Current lead compounds 4 and 5 exhibit on-target effects by specifically blocking the MARV VP40 PPxY-host Nedd4 interaction and subsequent PPxY-dependent egress of MARV VP40 VLPs. In addition, lead compounds 4 and 5 exhibited antibudding activity against Ebola and Lassa fever VLPs, as well as vesicular stomatitis and rabies viruses (VSV and RABV, respectively). These data provide target validation and suggest that inhibition of the PPxY-Nedd4 interaction can serve as the basis for the development of a novel class of broad-spectrum, host-oriented antivirals targeting viruses that depend on a functional PPxY L domain for efficient egress. IMPORTANCE There is an urgent and unmet need for the development of safe and effective therapeutics against biodefense and high-priority pathogens, including filoviruses (Ebola and Marburg) and arenaviruses (e.g., Lassa and Junin) which cause severe hemorrhagic fever syndromes with high mortality rates. We along with others have established that efficient budding of filoviruses, arenaviruses, and other viruses is critically dependent on the subversion of host proteins. As disruption of virus budding would prevent virus dissemination, identification of small-molecule compounds that block these critical viral-host interactions should effectively block disease progression and transmission. Our findings provide validation for targeting these virus-host interactions as we have identified lead inhibitors with broad-spectrum antiviral activity. In addition, such inhibitors might prove useful for newly emerging RNA viruses for which no therapeutics would be available.
Collapse
|
28
|
Lander HM, Grant AM, Albrecht T, Hill T, Peters CJ. Endothelial cell permeability and adherens junction disruption induced by junín virus infection. Am J Trop Med Hyg 2014; 90:993-1002. [PMID: 24710609 DOI: 10.4269/ajtmh.13-0382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (ECs) in vitro with no visible cytopathic effects. In this study, we show that direct JUNV infection of primary human ECs results in increased vascular permeability as measured by electric cell substrate impedance sensing and transwell permeability assays. We also show that EC adherens junctions are disrupted during virus infection, which may provide insight into the role of the endothelium in the pathogenesis of AHF and possibly, other viral hemorrhagic fevers.
Collapse
Affiliation(s)
- Heather M Lander
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Ashley M Grant
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas Albrecht
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Terence Hill
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Clarence J Peters
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
29
|
Warfield KL, Swenson DL, Demmin G, Bavari S. Filovirus-like particles as vaccines and discovery tools. Expert Rev Vaccines 2014; 4:429-40. [PMID: 16026254 DOI: 10.1586/14760584.4.3.429] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ebola and Marburg viruses are members of the family Filoviridae, which cause severe hemorrhagic fevers in humans. Filovirus outbreaks have been sporadic, with mortality rates currently ranging from 30 to 90%. Unfortunately, there is no efficacious human therapy or vaccine available to treat disease caused by either Ebola or Marburg virus infection. Expression of the filovirus matrix protein, VP40, is sufficient to drive spontaneous production and release of virus-like particles (VLPs) that resemble the distinctively filamentous infectious virions. The addition of other filovirus proteins, including virion proteins (VP)24, 30 and 35 and glycoprotein, increases the efficiency of VLP production and results in particles containing multiple filovirus antigens. Vaccination with Ebola or Marburg VLPs containing glycoprotein and VP40 completely protects rodents from lethal challenge with the homologous virus. These candidate vaccines are currently being tested for immunogenicity and efficacy in nonhuman primates. Furthermore, the Ebola and Marburg VLPs are being used as a surrogate model to further understand the filovirus life cycle, with the goal of developing rationally designed vaccines and therapeutics. Thus, in addition to their use as a vaccine, VLPs are currently being used as tools to learn lessons about filovirus pathogenesis, immunology, replication and assembly requirements.
Collapse
Affiliation(s)
- Kelly L Warfield
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011, USA.
| | | | | | | |
Collapse
|
30
|
Cellular factors implicated in filovirus entry. Adv Virol 2013; 2013:487585. [PMID: 23365575 PMCID: PMC3556833 DOI: 10.1155/2013/487585] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 12/11/2022] Open
Abstract
Although filoviral infections are still occurring in different parts of the world, there are no effective preventive or treatment strategies currently available against them. Not only do filoviruses cause a deadly infection, but they also have the potential of being used as biological weapons. This makes it imperative to comprehensively study these viruses in order to devise effective strategies to prevent the occurrence of these infections. Entry is the foremost step in the filoviral replication cycle and different studies have reported the involvement of a myriad of cellular factors including plasma membrane components, cytoskeletal proteins, endosomal components, and cytosolic factors in this process. Signaling molecules such as the TAM family of receptor tyrosine kinases comprising of Tyro3, Axl, and Mer have also been implicated as putative entry factors. Additionally, filoviruses are suggested to bind to a common receptor and recent studies have proposed T-cell immunoglobulin and mucin domain 1 (TIM-1) and Niemann-Pick C1 (NPC1) as potential receptor candidates. This paper summarizes the existing literature on filoviral entry with a special focus on cellular factors involved in this process and also highlights some fundamental questions. Future research aimed at answering these questions could be very useful in designing novel antiviral therapeutics.
Collapse
|
31
|
A nonreplicating subunit vaccine protects mice against lethal Ebola virus challenge. Proc Natl Acad Sci U S A 2011; 108:20695-700. [PMID: 22143779 DOI: 10.1073/pnas.1117715108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Ebola hemorrhagic fever is an acute and often deadly disease caused by Ebola virus (EBOV). The possible intentional use of this virus against human populations has led to design of vaccines that could be incorporated into a national stockpile for biological threat reduction. We have evaluated the immunogenicity and efficacy of an EBOV vaccine candidate in which the viral surface glycoprotein is biomanufactured as a fusion to a monoclonal antibody that recognizes an epitope in glycoprotein, resulting in the production of Ebola immune complexes (EICs). Although antigen-antibody immune complexes are known to be efficiently processed and presented to immune effector cells, we found that codelivery of the EIC with Toll-like receptor agonists elicited a more robust antibody response in mice than did EIC alone. Among the compounds tested, polyinosinic:polycytidylic acid (PIC, a Toll-like receptor 3 agonist) was highly effective as an adjuvant agent. After vaccinating mice with EIC plus PIC, 80% of the animals were protected against a lethal challenge with live EBOV (30,000 LD(50) of mouse adapted virus). Surviving animals showed a mixed Th1/Th2 response to the antigen, suggesting this may be important for protection. Survival after vaccination with EIC plus PIC was statistically equivalent to that achieved with an alternative viral vector vaccine candidate reported in the literature. Because nonreplicating subunit vaccines offer the possibility of formulation for cost-effective, long-term storage in biothreat reduction repositories, EIC is an attractive option for public health defense measures.
Collapse
|
32
|
Hu L, Trefethen JM, Zeng Y, Yee L, Ohtake S, Lechuga‐Ballesteros D, Warfield KL, Aman MJ, Shulenin S, Unfer R, Enterlein SG, Truong‐Le V, Volkin DB, Joshi SB, Middaugh CR. Biophysical Characterization and Conformational Stability of Ebola and Marburg Virus-Like Particles. J Pharm Sci 2011; 100:5156-73. [DOI: 10.1002/jps.22724] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/01/2011] [Accepted: 07/13/2011] [Indexed: 11/11/2022]
|
33
|
Grolla A, Jones SM, Fernando L, Strong JE, Ströher U, Möller P, Paweska JT, Burt F, Pablo Palma P, Sprecher A, Formenty P, Roth C, Feldmann H. The use of a mobile laboratory unit in support of patient management and epidemiological surveillance during the 2005 Marburg Outbreak in Angola. PLoS Negl Trop Dis 2011; 5:e1183. [PMID: 21629730 PMCID: PMC3101190 DOI: 10.1371/journal.pntd.0001183] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/11/2011] [Indexed: 12/12/2022] Open
Abstract
Background Marburg virus (MARV), a zoonotic pathogen causing severe hemorrhagic fever in man, has emerged in Angola resulting in the largest outbreak of Marburg hemorrhagic fever (MHF) with the highest case fatality rate to date. Methodology/Principal Findings A mobile laboratory unit (MLU) was deployed as part of the World Health Organization outbreak response. Utilizing quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in Uige, the epicentre of the outbreak. The MLU operated over a period of 88 days and tested 620 specimens from 388 individuals. Specimens included mainly oral swabs and EDTA blood. Following establishing on site, the MLU operation allowed a diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age. The outbreak had a high number of paediatric cases and breastfeeding may have been a factor in MARV transmission as indicated by the epidemiology and MARV positive breast milk specimens. Oral swabs were a useful alternative specimen source to whole blood/serum allowing testing of patients in circumstances of resistance to invasive procedures but limited diagnostic testing to molecular approaches. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention. Conclusions/Significance The MLU was an important outbreak response asset providing support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation. A mobile laboratory unit (MLU) was deployed to Uige, Angola as part of the World Health Organization response to an outbreak of viral hemorrhagic fever caused by Marburg virus (MARV). Utilizing mainly quantitative real-time PCR assays, this laboratory provided specific MARV diagnostics in the field. The MLU operated for 88 consecutive days allowing MARV-specific diagnostic response in <4 hours from sample receiving. Most cases were found among females in the child-bearing age and in children less than five years of age including a high number of paediatric cases implicating breastfeeding as potential transmission route. Oral swabs were identified as a useful alternative specimen source to the standard whole blood/serum specimens for patients refusing blood draw. There was a high concordance in test results between the MLU and the reference laboratory in Luanda operated by the US Centers for Disease Control and Prevention. The MLU was an important outbreak response asset providing valuable support in patient management and epidemiological surveillance. Field laboratory capacity should be expanded and made an essential part of any future outbreak investigation.
Collapse
Affiliation(s)
- Allen Grolla
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Steven M. Jones
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lisa Fernando
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - James E. Strong
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ute Ströher
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peggy Möller
- Institut für Virologie, Philipps-Universität, Marburg, Hessen, Germany
| | - Janusz T. Paweska
- Special Pathogens Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | - Felicity Burt
- Special Pathogens Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | | | | | | | - Cathy Roth
- World Health Organization, Geneva, Switzerland
| | - Heinz Feldmann
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
34
|
Usami K, Matsuno K, Igarashi M, Denda-Nagai K, Takada A, Irimura T. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin. Biochem Biophys Res Commun 2011; 407:74-8. [PMID: 21362405 DOI: 10.1016/j.bbrc.2011.02.110] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 02/22/2011] [Indexed: 11/24/2022]
Abstract
Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.
Collapse
Affiliation(s)
- Katsuaki Usami
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Piercy TJ, Smither SJ, Steward JA, Eastaugh L, Lever MS. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J Appl Microbiol 2010; 109:1531-9. [PMID: 20553340 DOI: 10.1111/j.1365-2672.2010.04778.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Filoviruses are associated with high morbidity and lethality rates in humans, are capable of human-to-human transmission, via infected material such as blood, and are believed to have low infectious doses for humans. Filoviruses are able to infect via the respiratory route and are lethal at very low doses in experimental animal models, but there is minimal information on how well the filoviruses survive within aerosol particles. There is also little known about how well filoviruses survive in liquids or on solid surfaces which is important in management of patients or samples that have been exposed to filoviruses. METHODS AND RESULTS Filoviruses were tested for their ability to survive in different liquids and on different solid substrates at different temperatures. The decay rates of filoviruses in a dynamic aerosol were also determined. CONCLUSIONS Our study has shown that Lake Victoria marburgvirus (MARV) and Zaire ebolavirus (ZEBOV) can survive for long periods in different liquid media and can also be recovered from plastic and glass surfaces at low temperatures for over 3 weeks. The decay rates of ZEBOV and Reston ebolavirus (REBOV) plus MARV within a dynamic aerosol were calculated. ZEBOV and MARV had similar decay rates, whilst REBOV showed significantly better survival within an aerosol. SIGNIFICANCE AND IMPACT OF THE STUDY Data on the survival of two ebolaviruses are presented for the first time. Extended data on the survival of MARV are presented. Data from this study extend the knowledge on the survival of filoviruses under different conditions and provide a basis with which to inform risk assessments and manage exposure to filoviruses.
Collapse
Affiliation(s)
- T J Piercy
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Salisbury, Wiltshire, UK
| | | | | | | | | |
Collapse
|
36
|
Leung DW, Shabman RS, Farahbakhsh M, Prins KC, Borek DM, Wang T, Mühlberger E, Basler CF, Amarasinghe GK. Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain. J Mol Biol 2010; 399:347-57. [PMID: 20399790 DOI: 10.1016/j.jmb.2010.04.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/10/2010] [Accepted: 04/12/2010] [Indexed: 12/01/2022]
Abstract
Ebolaviruses are causative agents of lethal hemorrhagic fever in humans and nonhuman primates. Among the filoviruses characterized thus far, Reston Ebola virus (REBOV) is the only Ebola virus that is nonpathogenic to humans despite the fact that REBOV can cause lethal disease in nonhuman primates. Previous studies also suggest that REBOV is less effective at inhibiting host innate immune responses than Zaire Ebola virus (ZEBOV) or Marburg virus. Virally encoded VP35 protein is critical for immune suppression, but an understanding of the relative contributions of VP35 proteins from REBOV and other filoviruses is currently lacking. In order to address this question, we characterized the REBOV VP35 interferon inhibitory domain (IID) using structural, biochemical, and virological studies. These studies reveal differences in double-stranded RNA binding and interferon inhibition between the two species. These observed differences are likely due to increased stability and loss of flexibility in REBOV VP35 IID, as demonstrated by thermal shift stability assays. Consistent with this finding, the 1.71-A crystal structure of REBOV VP35 IID reveals that it is highly similar to that of ZEBOV VP35 IID, with an overall backbone r.m.s.d. of 0.64 A, but contains an additional helical element at the linker between the two subdomains of VP35 IID. Mutations near the linker, including swapping sequences between REBOV and ZEBOV, reveal that the linker sequence has limited tolerance for variability. Together with the previously solved ligand-free and double-stranded-RNA-bound forms of ZEBOV VP35 IID structures, our current studies on REBOV VP35 IID reinforce the importance of VP35 in immune suppression. Functional differences observed between REBOV and ZEBOV VP35 proteins may contribute to observed differences in pathogenicity, but these are unlikely to be the major determinant. However, the high level of similarity in structure and the low tolerance for sequence variability, coupled with the multiple critical roles played by Ebola virus VP35 proteins, highlight the viability of VP35 as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Daisy W Leung
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Venkatesan G, Balamuruga V, Gandhale P, Singh R, Bhanupraka V. Viral Zoonosis: A Comprehensive Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajava.2010.77.92] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Conserved motifs within Ebola and Marburg virus VP40 proteins are important for stability, localization, and subsequent budding of virus-like particles. J Virol 2009; 84:2294-303. [PMID: 20032189 DOI: 10.1128/jvi.02034-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the (96)LPLGVA(101) sequence of eVP40 and the corresponding (84)LPLGIM(89) sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the (96)LPLGVA(101) motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the (96)LPLGVA(101) motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-DeltaLPLGVA failed to rescue the budding defective eVP40-DeltaLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-DeltaLPLGIM successfully rescued budding of mVP40-DeltaLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.
Collapse
|
39
|
Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus. J Virol 2009; 83:7296-304. [PMID: 19386702 DOI: 10.1128/jvi.00561-09] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filoviruses Marburg virus and Ebola virus cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (VSV) that expresses a single filovirus glycoprotein (GP) in place of the VSV glycoprotein (G). Here, we performed a proof-of-concept study in order to determine the potential of having one single-injection vaccine capable of protecting nonhuman primates against Sudan ebolavirus (SEBOV), Zaire ebolavirus (ZEBOV), Cote d'Ivoire ebolavirus (CIEBOV), and Marburgvirus (MARV). In this study, 11 cynomolgus monkeys were vaccinated with a blended vaccine consisting of equal parts of the vaccine vectors VSVDeltaG/SEBOVGP, VSVDeltaG/ZEBOVGP, and VSVDeltaG/MARVGP. Four weeks later, three of these animals were challenged with MARV, three with CIEBOV, three with ZEBOV, and two with SEBOV. Three control animals were vaccinated with VSV vectors encoding a nonfilovirus GP and challenged with SEBOV, ZEBOV, and MARV, respectively, and five unvaccinated control animals were challenged with CIEBOV. Importantly, none of the macaques vaccinated with the blended vaccine succumbed to a filovirus challenge. As expected, an experimental control animal vaccinated with VSVDeltaG/ZEBOVGP and challenged with SEBOV succumbed, as did the positive controls challenged with SEBOV, ZEBOV, and MARV, respectively. All five control animals challenged with CIEBOV became severely ill, and three of the animals succumbed on days 12, 12, and 14, respectively. The two animals that survived CIEBOV infection were protected from subsequent challenge with either SEBOV or ZEBOV, suggesting that immunity to CIEBOV may be protective against other species of Ebola virus. In conclusion, we developed an immunization scheme based on a single-injection vaccine that protects nonhuman primates against lethal challenge with representative strains of all human pathogenic filovirus species.
Collapse
|
40
|
|
41
|
Fuller CL, Ruthel G, Warfield KL, Swenson DL, Bosio CM, Aman MJ, Bavari S. NKp30-dependent cytolysis of filovirus-infected human dendritic cells. Cell Microbiol 2007; 9:962-76. [PMID: 17381429 DOI: 10.1111/j.1462-5822.2006.00844.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding how protective innate immune responses are generated is crucial to defeating highly lethal emerging pathogens. Accumulating evidence suggests that potent innate immune responses are tightly linked to control of Ebola and Marburg filoviral infections. Here, we report that unlike authentic or inactivated Ebola and Marburg, filovirus-derived virus-like particles directly activated human natural killer (NK) cells in vitro, evidenced by pro-inflammatory cytokine production and enhanced cytolysis of permissive target cells. Further, we observed perforin- and CD95L-mediated cytolysis of filovirus-infected human dendritic cells (DCs), primary targets of filovirus infection, by autologous NK cells. Gene expression knock-down studies directly linked NK cell lysis of infected DCs to upregulation of the natural cytotoxicity receptor, NKp30. These results are the first to propose a role for NK cells in the clearance of infected DCs and the potential involvement of NKp30-mediated cytolysis in control of viral infection in vivo. Further elucidation of the biology of NK cell activation, specifically natural cytotoxicity receptors like NKp30 and NKp46, promises to aid our understanding of microbial pathology.
Collapse
Affiliation(s)
- Claudette L Fuller
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Das D, Jacobs F, Feldmann H, Jones SM, Suresh MR. Differential expression of the Ebola virus GP(1,2) protein and its fragments in E. coli. Protein Expr Purif 2007; 54:117-25. [PMID: 17383893 DOI: 10.1016/j.pep.2007.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 12/20/2022]
Abstract
Bacterial expression platforms are frequently used for the expression and production of different recombinant proteins. The full length Ebola virus (EBOV) GP(1,2) gene and subfragments of the GP(1) gene were cloned in a bacterial expression vector as a C-terminal His(6) fusion protein. Surprisingly, the full length EBOV GP(1,2) gene could not be expressed in Escherichia coli. The subfragments of GP(1) were only expressed in small amounts with the exception of one small fragment (subfragment D) which was expressed at very high levels as inclusion bodies. This was seen even in the in vitro translation system with no expression of full length GP(1,2), GP(1) subfragments A and C and low level expression of subfragment B. Only the subfragment D showed high level of expression. In E. coli (Top10), the recombinant GP(1) subfragment D protein was expressed exclusively as an insoluble approximately 25 kDa His(6) fusion protein, which is the expected size for a non-glycosylated recombinant protein. The IMAC purified and refolded non-glycosylated protein was used to immunize mice for the development of monoclonal anti-EBOV antibodies which successfully yielded several monoclonal antibodies with different specificities. The monoclonal and polyclonal antiserum derived from the animals immunized with this recombinant GP(1) subfragment D protein was found to specifically recognize the full length glycosylated EBOV GP(1,2) protein expressed in mammalian 293T cells, thus, demonstrating the immunogenicity of the recombinant subfragment.
Collapse
Affiliation(s)
- Dipankar Das
- University of Alberta, Edmonton, Alta., Canada T6G 2N8
| | | | | | | | | |
Collapse
|
43
|
Yaddanapudi K, Palacios G, Towner JS, Chen I, Sariol CA, Nichol ST, Lipkin WI. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J 2006; 20:2519-30. [PMID: 17023517 DOI: 10.1096/fj.06-6151com] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ebola and Marburg viruses can cause hemorrhagic fever (HF) outbreaks with high mortality in primates. Whereas Marburg (MARV), Ebola Zaire (ZEBOV), and Ebola Sudan (SEBOV) viruses are pathogenic in humans, apes, and monkeys, Ebola Reston (REBOV) is pathogenic only in monkeys. Early immunosuppression may contribute to pathogenesis by facilitating viral replication. Lymphocyte depletion, intravascular apoptosis, and cytokine dysregulation are prominent in fatal cases. Here we functionally characterize a 17 amino acid domain in filoviral glycoproteins that resembles an immunosuppressive motif in retroviral envelope proteins. Activated human or rhesus peripheral blood mononuclear cells (PBMC) were exposed to inactivated ZEBOV or a panel of 17mer peptides representing all sequenced strains of filoviruses, then analyzed for CD4+ and CD8+ T cell activation, apoptosis, and cytokine expression. Exposure of human and rhesus PBMC to ZEBOV, SEBOV, or MARV peptides or inactivated ZEBOV resulted in decreased expression of activation markers on CD4 and CD8 cells; CD4 and CD8 cell apoptosis as early as 12 h postexposure; inhibition of CD4 and CD8 cell cycle progression; decreased interleukin (IL)-2, IFN-gamma, and IL12-p40 expression; and increased IL-10 expression. In contrast, only rhesus T cells were sensitive to REBOV peptides. These findings are consistent with the observation that REBOV is not pathogenic in humans and have implications for understanding the pathogenesis of filoviral HF.
Collapse
Affiliation(s)
- Kavitha Yaddanapudi
- Jerome L. and Dawn Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, 722 West 168th St., New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Galarza JM, Latham T, Cupo A. Virus-like particle vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol 2005; 18:365-72. [PMID: 16035948 DOI: 10.1089/vim.2005.18.365] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously demonstrated the formation and release of influenza virus-like particles (VLPs) from the surface of Sf9 cells infected with either a quadruple baculovirus recombinant that simultaneously expresses the influenza structural proteins hemagglutinin (HA), neuraminidase (NA), matrix 1 (M1), and matrix 2 (M2), or a combination of single recombinants that include the M1 protein. In this work, we present data on the immunogenicity and protective efficacy afforded by VLPs (formed by M1 and HA) after immunization of mice. VLP vaccine ( approximately 1 microg HA) were formulated with or without IL-12 as adjuvant and administered twice, at 2-week intervals, by either intranasal instillation or intramuscular injection. All VLP-vaccinated and influenza-immunized control mice demonstrated high antibody titers to the HA protein; however, intranasal instillation of VLPs elicited antibody titers that were higher than those induced by either intramuscular inoculation of VLPs or intranasal inoculation with two sub-lethal doses of the challenge influenza virus (control group). Antibody responses were enhanced when VLP vaccine was formulated with IL12 as adjuvant. All mice were challenged with 5 LD50 of a mouse-adapted influenza A/Hong Kong/68 (H3N2) virus. Intramuscular administration of VLP vaccine formulated with or without IL-12 afforded 100% protection against a lethal influenza virus challenge. Similarly, intranasal instillation of VLP vaccine alone protected 100% of the mice, whereas VLP formulated with IL-12 protected 90% of the vaccinated mice. Not only do these results suggest a novel approach to the development of VLP vaccines for diverse influenza virus strains, but also the creation of multivalent vaccines by decoration of the surface of the VLPs with antigens from other pathogens.
Collapse
Affiliation(s)
- Jose M Galarza
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA.
| | | | | |
Collapse
|
45
|
Warfield KL, Olinger G, Deal EM, Swenson DL, Bailey M, Negley DL, Hart MK, Bavari S. Induction of Humoral and CD8+ T Cell Responses Are Required for Protection against Lethal Ebola Virus Infection. THE JOURNAL OF IMMUNOLOGY 2005; 175:1184-91. [PMID: 16002721 DOI: 10.4049/jimmunol.175.2.1184] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ebola virus (EBOV)-like particles (eVLP), composed of the EBOV glycoprotein and matrix viral protein (VP)40 with a lipid membrane, are a highly efficacious method of immunization against EBOV infection. The exact requirements for immunity against EBOV infection are poorly defined at this time. The goal of this work was to determine the requirements for EBOV immunity following eVLP vaccination. Vaccination of BALB/c or C57BL/6 mice with eVLPs in conjunction with QS-21 adjuvant resulted in mixed IgG subclass responses, a Th1-like memory cytokine response, and protection from lethal EBOV challenge. Further, this vaccination schedule led to the generation of both CD4(+) and CD8(+) IFN-gamma(+) T cells recognizing specific peptides within glycoprotein and VP40. The transfer of both serum and splenocytes, but not serum or splenocytes alone, from eVLP-vaccinated mice conferred protection against lethal EBOV infection in these studies. B cells were required for eVLP-mediated immunity to EBOV because B cell-deficient mice vaccinated with eVLPs were not protected from lethal EBOV challenge. We also found that CD8(+), but not CD4(+), T cells are absolutely required for eVLP-mediated protection against EBOV infection. Further, eVLP-induced protective mechanisms were perforin-independent, but IFN-gamma-dependent. Taken together, both EBOV-specific humoral and cytotoxic CD8(+) T cell responses are critical to mediate protection against filoviruses following eVLP vaccination.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Amino Acid Sequence
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/physiology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cells, Cultured
- Ebolavirus/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/prevention & control
- Interferon-gamma/biosynthesis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Sequence Data
- Saponins/administration & dosage
- Saponins/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Viral Envelope Proteins/immunology
- Viral Matrix Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- Virion/immunology
Collapse
Affiliation(s)
- Kelly L Warfield
- U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Nguyen TL, Schoehn G, Weissenhorn W, Hermone AR, Burnett JC, Panchal RG, McGrath C, Zaharevitz DW, Aman MJ, Gussio R, Bavari S. An all-atom model of the pore-like structure of hexameric VP40 from Ebola: Structural insights into the monomer–hexamer transition. J Struct Biol 2005; 151:30-40. [PMID: 15908231 DOI: 10.1016/j.jsb.2005.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/17/2005] [Accepted: 02/27/2005] [Indexed: 11/23/2022]
Abstract
The matrix protein VP40 is an indispensable component of viral assembly and budding by the Ebola virus. VP40 is a monomer in solution, but can fold into hexameric and octameric states, two oligomeric conformations that play central roles in the Ebola viral life cycle. While the X-ray structures of monomeric and octameric VP40 have been determined, the structure of hexameric VP40 has only been solved by three-dimensional electron microscopy (EM) to a resolution of approximately 30 A. In this paper, we present the refinement of the EM reconstruction of truncated hexameric VP40 to approximately 20 A and the construction of an all-atom model (residues 44-212) using the EM model at approximately 20 A and the X-ray structure of monomeric VP40 as templates. The hexamer model suggests that the monomer-hexamer transition involves a conformational change in the N-terminal domain that is not evident during octamerization and therefore, may provide the basis for elucidating the biological function of VP40.
Collapse
Affiliation(s)
- Tam Luong Nguyen
- Target Structure-Based Drug Discovery Group, Developmental Therapeutics Program, SAIC, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kallstrom G, Warfield KL, Swenson DL, Mort S, Panchal RG, Ruthel G, Bavari S, Aman MJ. Analysis of Ebola virus and VLP release using an immunocapture assay. J Virol Methods 2005; 127:1-9. [PMID: 15893559 DOI: 10.1016/j.jviromet.2005.02.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Revised: 02/18/2005] [Accepted: 02/22/2005] [Indexed: 11/20/2022]
Abstract
Ebola virus (EBOV), an emerging pathogen, is the causative agent of a rapidly progressive hemorrhagic fever with high mortality rates. There are currently no approved vaccines or treatments available for Ebola hemorrhagic fever. Standard plaque assays are currently the only reliable techniques for enumerating the virus. Effective drug-discovery screening as well as target identification and validation require simple and more rapid detection methods. This report describes the development of a rapid ELISA that measures virus release with high sensitivity. This assay detects both Ebola virus and EBOV-like particles (VLPs) directly from cell-culture supernatants with the VP40 matrix protein serving as antigen. Using this assay, the contribution of the EBOV nucleocapsid (NC) proteins in VLP release was determined. These findings indicate that a combination of NC proteins together with the envelope components is optimal for VLP formation and release, a finding that is important for vaccination with Ebola VLPs. Furthermore, this assay can be used in surrogate models in non-biocontainment environment, facilitating both basic research on the mechanism of EBOV assembly and budding as well as drug-discovery research.
Collapse
Affiliation(s)
- George Kallstrom
- Division of Virology, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Swenson DL, Warfield KL, Negley DL, Schmaljohn A, Aman MJ, Bavari S. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine 2005; 23:3033-42. [PMID: 15811650 DOI: 10.1016/j.vaccine.2004.11.070] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/24/2004] [Accepted: 11/29/2004] [Indexed: 11/27/2022]
Abstract
A safe and effective pan-filovirus vaccine is highly desirable since the filoviruses Ebola virus (EBOV) and Marburg virus (MARV) cause highly lethal disease typified by unimpeded viral replication and severe hemorrhagic fever. Previously, we showed that expression of the homologous glycoprotein (GP) and matrix protein VP40 from a single filovirus, either EBOV or MARV, resulted in formation of wild-type virus-like particles (VLPs) in mammalian cells. When used as a vaccine, the wild-type VLPs protected from homologous filovirus challenge. The aim of this work was to generate a multi-agent vaccine that would simultaneously protect against multiple and diverse members of the Filoviridae family. Our initial approach was to construct hybrid VLPs containing heterologous viral proteins, of EBOV and MARV, and test the efficacy of the hybrid VLPs in a guinea pig model. Our data indicate that vaccination with GP was required and sufficient to protect against a homologous filovirus challenge, as heterologous wild-type VLPs or hybrid VLPs that did not contain the homologous GP failed to protect. Alternately, we vaccinated guinea pigs with a mixture of wild-type Ebola and Marburg VLPs. Vaccination with a single dose of the multivalent VLP vaccine elicited strong immune responses to both viruses and protected animals against EBOV and MARV challenge. This work provides a critical foundation towards the development of a pan-filovirus vaccine that is safe and effective for use in primates and humans.
Collapse
Affiliation(s)
- Dana L Swenson
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702-5011, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Galarza JM, Latham T, Cupo A. Virus-Like Particle (VLP) Vaccine Conferred Complete Protection against a Lethal Influenza Virus Challenge. Viral Immunol 2005; 18:244-51. [PMID: 15802970 DOI: 10.1089/vim.2005.18.244] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously demonstrated the formation and release of influenza virus-like particles (VLPs) from the surface of Sf9 cells infected with either a quadruple baculovirus recombinant that simultaneously expresses the influenza structural proteins hemagglutinin (HA), neuraminidase (NA), matrix 1 (M1) and M2, or a combination of single recombinants that include the M1 protein. In this work, we present data on the immunogenicity and protective efficacy afforded by VLPs (formed by M1 and HA) following immunization of mice. VLP vaccine (approximately 1 microg HA) were formulated with or without IL-12 as adjuvant and administered twice, at two weeks intervals, by either intranasal instillation or intramuscular injection. All VLP-vaccinated and influenza-immunized control mice demonstrated high antibody titers to the HA protein; however, intranasal instillation of VLPs elicited antibody titers that were higher than those induced by either intramuscular inoculation of VLPs or intranasal inoculation with two sub-lethal doses of the challenge influenza virus (control group). Antibody responses were enhanced when VLP vaccine was formulated with IL12 as adjuvant. All mice were challenged with 5 LD50 of a mouse-adapted influenza A/Hong Kong/68 (H3N2) virus. Intramuscular administration of VLP vaccine formulated with or without IL-12 afforded 100% protection against a lethal influenza virus challenge. Similarly, intranasal instillation of VLP vaccine alone protected 100% of the mice, whereas VLP formulated with IL-12 protected 90% of the vaccinated mice. Not only do these results suggest a novel approach to the development of VLP vaccines for diverse influenza virus strains, but also the creation of multivalent vaccines by decoration of the surface of the VLPs with antigens from other pathogens.
Collapse
Affiliation(s)
- Jose M Galarza
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
50
|
|