1
|
Takahashi H, Ishiyama K, Takeda N, Shimizu T. Nutrient Rescue of Early Maturing and Deteriorating Satellite Cell-Derived Engineered Muscle Tissue. Tissue Eng Part A 2023; 29:633-644. [PMID: 37694582 DOI: 10.1089/ten.tea.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Engineered human muscle tissue is a promising tool for tissue models to better understand muscle physiology and diseases, since they can replicate many biomimetic structures and functions of skeletal muscle in vitro. We have developed a method to produce contractile muscle sheet tissues from human myoblasts, based on our cell sheet fabrication technique. This study reports that our tissue engineering technique allowed us to discover unique characteristics of human muscle satellite cells as a cell source for our muscle sheet tissue. The tissues engineered from satellite cells functionally matured within several days, which is earlier than those created from myoblasts. On the other hand, satellite cell-derived muscle sheet tissues were unable to maintain the contractile ability, whereas the myoblast-derived tissues showed muscle contractions for several weeks. The sarcomere structures and membrane-like structures of laminin and dystrophin were lost along with early functional deterioration. Based on a hypothesis that an insufficiency of nutrients caused a shortened lifetime, we supplemented the culture medium for the satellite cell-derived muscle sheet tissues with 10% serum, although a lower serum medium is commonly used to produce muscle tissues. Further combined with the transforming growth factor (TGF-β1) receptor inhibitor, SB431542, the contractile ability of the muscle tissues was increased remarkably and the tissue microstructures were maintained for a longer term, while retaining the early functionalization and the enriched culture conditions prevented early deterioration. These results strengthened our understanding of the biology of myoblasts and satellite cells in muscle tissue formation and provided new insights into the applications of muscle tissue engineering.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Kaho Ishiyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Naoya Takeda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| |
Collapse
|
2
|
Andrew TW, Kanapathy M, Murugesan L, Muneer A, Kalaskar D, Atala A. Towards clinical application of tissue engineering for erectile penile regeneration. Nat Rev Urol 2019; 16:734-744. [PMID: 31649327 DOI: 10.1038/s41585-019-0246-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 11/09/2022]
Abstract
Penile wounds after traumatic and surgical amputation require reconstruction in the form of autologous tissue transfers. However, currently used techniques are associated with high infection rates, implant erosion and donor site morbidity. The use of tissue-engineered neocorpora provides an alternative treatment option. Contemporary tissue-engineering strategies enable the seeding of a biomaterial scaffold and subsequent implantation to construct a neocorpus. Tissue engineering of penile tissue should focus on two main strategies: first, correcting the volume deficit for structural integrity in order to enable urinary voiding in the standing position and second, achieving erectile function for sexual activity. The functional outcomes of the neocorpus can be addressed by optimizing the use of stem cells and scaffolds, or alternatively, the use of gene therapy. Current research in penile tissue engineering is largely restricted to rodent and rabbit models, but the use of larger animal models should be considered as a better representation of the anatomical and physiological function in humans. The development of a cell-seeded scaffold to achieve and maintain erection continues to be a considerable challenge in humans. However, advances in penile tissue engineering show great promise and, in combination with gene therapy and surgical techniques, have the potential to substantially improve patient outcomes.
Collapse
Affiliation(s)
- Tom W Andrew
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK.
| | - Muholan Kanapathy
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Log Murugesan
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Asif Muneer
- Department of Urology, University College London Hospital, London, UK
| | - Deepak Kalaskar
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA
| |
Collapse
|
3
|
Cui K, Kang N, Banie L, Zhou T, Liu T, Wang B, Ruan Y, Peng D, Wang HS, Wang T, Wang G, Reed-Maldonado AB, Chen Z, Lin G, Lue TF. Microenergy acoustic pulses induced myogenesis of urethral striated muscle stem/progenitor cells. Transl Androl Urol 2019; 8:489-500. [PMID: 32133280 DOI: 10.21037/tau.2019.08.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Stress urinary incontinence (SUI) is a common disorder with high prevalence in women across their life span, but there are no non-surgical curative options for the condition. Stem cell-based therapy, especially endogenous stem cell therapy may be a potential treatment method for SUI. The aims of this study are to identify, isolate, and assay the function of urethral striated muscle derived stem/progenitor cells (uMDSCs) and to assess uMDSC response to microenergy acoustic pulses (MAP). Methods Urethral striated muscle was identified utilizing 3D imaging of solvent organs (3DISCO) and immunofluorescence (IF). uMDSCs were isolated and purified from Zucker Lean (ZL) (ZUC-LEAN) (ZUC-Leprfa 186) rats, with magnetic-activated cell sorting (MACS) and pre-plating methods. The stemness and differentiation potential of the uMDSCs were measured by cell proliferation, EdU, flow cytometry, IF, and Western blot. Results Comparison of the cell proliferation assays between MACS and pre-plating reveals the advantage of MACS over pre-plating. In addition, the study reveals that uMDSCs form myotubes when treated with MAP. Conclusions The uMDSCs within female rat urethral striated muscle could be a therapeutic target of MAP in managing SUI.
Collapse
Affiliation(s)
- Kai Cui
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ning Kang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tie Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Shanghai Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Tianshu Liu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Hsun Shuan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tianyu Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Zhong Chen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Filip S, Mokrý J, Forostyak O, Dayanithi G. The extracellular matrix and Ca(2+)signaling mechanisms. Physiol Res 2019; 68:161-170. [DOI: 10.33549/physiolres.934081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extracellular matrix (ECM) consists of proteins, glycosaminoglycans and glycoproteins, that support the dynamic interactions between cells, including intercellular communication, cell attachment, cell differentiation, cell growth and migration. As such, the ECM represents an essential and very sensitive system within the tissue microenvironment that is involved in processes such as tissue regeneration and carcinogenesis. The aim of the present review is to evaluate its diversity through Ca(2+) signaling and its role in muscle cell function. Here, we discuss some methodological approaches dissecting Ca(2+) handling mechanisms in myogenic and non-myogenic cells, e.g. the importance of Ca(2+) and calpains in muscle dystrophy. We also consider the reconstruction of skeletal muscle by colonization of decellularized ECM with muscle-derived cells isolated from skeletal muscle. Therefore, it is necessary to establish new methodological procedures based on Ca(2+) signaling in skeletal muscle cells and their effect on ECM homeostasis, allowing the monitoring of skeletal muscle reconstruction and organ repair.
Collapse
Affiliation(s)
- S. Filip
- Charles University, Faculty of Medicine, Dept. of Oncology and Radiotherapy, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
5
|
Engineered DNA plasmid reduces immunity to dystrophin while improving muscle force in a model of gene therapy of Duchenne dystrophy. Proc Natl Acad Sci U S A 2018; 115:E9182-E9191. [PMID: 30181272 DOI: 10.1073/pnas.1808648115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is "foreign," and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.
Collapse
|
6
|
Matthias N, Hunt SD, Wu J, Lo J, Smith Callahan LA, Li Y, Huard J, Darabi R. Volumetric muscle loss injury repair using in situ fibrin gel cast seeded with muscle-derived stem cells (MDSCs). Stem Cell Res 2018; 27:65-73. [PMID: 29331939 PMCID: PMC5851454 DOI: 10.1016/j.scr.2018.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/02/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Volumetric muscle defect, caused by trauma or combat injuries, is a major health concern leading to severe morbidity. It is characterized by partial or full thickness loss of muscle and its bio-scaffold, resulting in extensive fibrosis and scar formation. Therefore, the ideal therapeutic option is to use stem cells combined with bio-scaffolds to restore muscle. For this purpose, muscle-derived stem cells (MDSCs) are a great candidate due to their unique multi-lineage differentiation potential. In this study, we evaluated the regeneration potential of MDSCs for muscle loss repair using a novel in situ fibrin gel casting. Muscle defect was created by a partial thickness wedge resection in the tibialis anterior (TA)muscles of NSG mice which created an average of 25% mass loss. If untreated, this defect leads to severe muscle fibrosis. Next, MDSCs were delivered using a novel in situ fibrin gel casting method. Our results demonstrated MDSCs are able to engraft and form new myofibers in the defect when casted along with fibrin gel. LacZ labeled MDSCs were able to differentiate efficiently into new myofibers and significantly increase muscle mass. This was also accompanied by significant reduction of fibrotic tissue in the engrafted muscles. Furthermore, transplanted cells also contributed to new vessel formation and satellite cell seeding. These results confirmed the therapeutic potential of MDSCs and feasibility of direct in situ casting of fibrin/MDSC mixture to repair muscle mass defects.
Collapse
Affiliation(s)
- Nadine Matthias
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Samuel D Hunt
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Jianbo Wu
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Jonathan Lo
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States
| | - Laura A Smith Callahan
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States; Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Yong Li
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; Department of Pediatric Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | - Radbod Darabi
- Center for Stem Cell and Regenerative Medicine (CSCRM) and the Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), United States; The Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States.
| |
Collapse
|
7
|
González MN, de Mello W, Butler-Browne GS, Silva-Barbosa SD, Mouly V, Savino W, Riederer I. HGF potentiates extracellular matrix-driven migration of human myoblasts: involvement of matrix metalloproteinases and MAPK/ERK pathway. Skelet Muscle 2017; 7:20. [PMID: 29017538 PMCID: PMC5635537 DOI: 10.1186/s13395-017-0138-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 09/22/2017] [Indexed: 12/31/2022] Open
Abstract
Background The hepatocyte growth factor (HGF) is required for the activation of muscle progenitor cells called satellite cells (SC), plays a role in the migration of proliferating SC (myoblasts), and is present as a soluble factor during muscle regeneration, along with extracellular matrix (ECM) molecules. In this study, we aimed at determining whether HGF is able to interact with ECM proteins, particularly laminin 111 and fibronectin, and to modulate human myoblast migration. Methods We evaluated the expression of the HGF-receptor c-Met, laminin, and fibronectin receptors by immunoblotting, flow cytometry, or immunofluorescence and used Transwell assays to analyze myoblast migration on laminin 111 and fibronectin in the absence or presence of HGF. Zymography was used to check whether HGF could modulate the production of matrix metalloproteinases by human myoblasts, and the activation of MAPK/ERK pathways was evaluated by immunoblotting. Results We demonstrated that human myoblasts express c-Met, together with laminin and fibronectin receptors. We observed that human laminin 111 and fibronectin have a chemotactic effect on myoblast migration, and this was synergistically increased when low doses of HGF were added. We detected an increase in MMP-2 activity in myoblasts treated with HGF. Conversely, MMP-2 inhibition decreased the HGF-associated stimulation of cell migration triggered by laminin or fibronectin. HGF treatment also induced in human myoblasts activation of MAPK/ERK pathways, whose specific inhibition decreased the HGF-associated stimulus of cell migration triggered by laminin 111 or fibronectin. Conclusions We demonstrate that HGF induces ERK phosphorylation and MMP production, thus stimulating human myoblast migration on ECM molecules. Conceptually, these data state that the mechanisms involved in the migration of human myoblasts comprise both soluble and insoluble moieties. This should be taken into account to optimize the design of therapeutic cell transplantation strategies by improving the migration of donor cells within the host tissue, a main issue regarding this approach. Electronic supplementary material The online version of this article (10.1186/s13395-017-0138-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Wallace de Mello
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Suse Dayse Silva-Barbosa
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Department of Clinical Research, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013, Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil
| | - Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Manguinhos, Rio de Janeiro, 21045-900, Brazil. .,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, Brasil.
| |
Collapse
|
8
|
Wang B, Zhou J, Banie L, Reed-Maldonado AB, Ning H, Lu Z, Ruan Y, Zhou T, Wang HS, Oh BS, Wang G, Qi SL, Lin G, Lue TF. Low-intensity extracorporeal shock wave therapy promotes myogenesis through PERK/ATF4 pathway. Neurourol Urodyn 2017; 37:699-707. [PMID: 28763567 DOI: 10.1002/nau.23380] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/10/2017] [Indexed: 12/27/2022]
Abstract
AIM Stress urinary incontinence (SUI) is a significant health problem for women. Treatments employing muscle derived stem cells (MDSCs) may be a promising approach to this prevalent, bothersome condition, but these treatments are invasive and require collection of cells from one site for injection into another. It is also unknown whether or not these cells establish themselves and function as muscle cells in the target tissues. Alternatively, low-intensity extracorporeal shock wave therapy (Li-ESWT) is non-invasive and has shown positive outcomes in the treatment of multiple musculoskeletal disorders, but the biological effects responsible for clinical success are not yet well understood. The aim of this study is to explore the possibility of employing Li-ESWT for activation of MDSCs in situ and to further elucidate the underlying biological effects and mechanisms of action in urethral muscle. METHODS Urethral muscle derived stem cells (uMDSCs) were harvest from Zucker Lean (ZUC-LEAN) (ZUC-Leprfa 186) rats and characterized with flow cytometry. Li-ESWT (0.02 mJ/mm2 , 3 Hz, 200 pulses) and GSK2656157, an inhibitor of PERK pathway, were applied to L6 rat myoblast cells. To assess for myotube formation, we used immunofluorescence staining and western blot analysis in uMDSCs and L6 cells. RESULTS The results indicate that uMDSCs could form myotubes. Myotube formation was significantly increased by the Li-ESWT as was the expression of muscle heavy chain (MHC) and myogenic factor 5 (Myf5) in L6 cells in vitro. Li-ESWT activated protein kinase RNA-like ER kinase (PERK) pathway by increasing the phosphorylation levels of PERK and eukaryotic initiation factor 2a (eIF2α) and by increasing activating transcription factor 4 (ATF4). In addition, GSK2656157, an inhibitor of PERK, effectively inhibited the myotube formation in L6 rat myoblast cells. Furthermore, GSK2656157 also attenuated myotube formation induced by Li-ESWT. CONCLUSION In conclusion, this experiment reveals that rat uMDSCs can be isolated successfully and can form myotubes in vitro. PERK/ATF4 pathway was involved in myotube formation, and L6 rat myoblast cells were activated by Li-ESWT to form myotubes. These findings suggest that PERK/ATF4 pathway is activated by Li-ESWT. This study elucidates one of the biochemical pathways responsible for the clinical improvements seen after Li-ESWT. It is possible that this information will help to establish Li-ESWT as an acceptable treatment modality and may help to further refine the use of Li-ESWT in the clinical practice of medicine.
Collapse
Affiliation(s)
- Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California.,Department of Urology, The Second Hospital, Zhejiang University, Hangzhou, China
| | - Jun Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Hongxiu Ning
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Zhihua Lu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Tie Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Hsun Shuan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Byung Seok Oh
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Stanley Lei Qi
- Department of Bioengineering, Stanford University, Stanford, California
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California
| |
Collapse
|
9
|
Abstract
Myoblasts are defined as stem cells containing skeletal muscle cell precursors. A decade of experimental work has revealed many properties of myoblasts, including the stability of resulting hybrid myofibers without immune suppression, the persistence of transgene expression, and the lack of tumorigenicity. Early phase clinical trials also showed that myoblast-based therapy is a promising approach for many intractable clinical conditions, including both muscle-related and non-muscle-related diseases. The potential application of myoblast therapy may be in the treatment of genetic muscle diseases, cardiomyocyte damaged heart diseases, and urinary incontinence. This review will provide an overview of myoblast biology, along with discussion of the potential application in clinical medicine. In addition, problems in current myoblast therapy and possible future improvements will be addressed.
Collapse
Affiliation(s)
- Zhongmin Liu
- Heart Center, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | | | | |
Collapse
|
10
|
Peak TC, Anaissie J, Hellstrom WJG. Current Perspectives on Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2016; 4:247-256. [PMID: 27871958 DOI: 10.1016/j.sxmr.2016.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) is a common sexual disorder that affects the lives of millions of male patients and their partners. Various medical and surgical therapies exist, with the most common being oral intake of phosphodiesterase 5 inhibitors. One therapeutic strategy in preclinical development to treat ED is stem cell transplantation. AIM To examine the studies that have investigated stem cells for the treatment of ED. METHODS A literature review was performed through PubMed focusing on stem cells and ED. MAIN OUTCOME MEASURES An assessment of different types of stem cells and how they may be applied therapeutically in the treatment of ED. RESULTS The stem cell types that have been investigated for the treatment of ED include bone marrow-derived mesenchymal, adipose-derived, muscle-derived, testes, urine-derived, neural crest, and endothelial progenitor. Depending on the cell type, research has demonstrated that with transplantation, stem cells exert a paracrine effect on penile tissue, and can differentiate into smooth muscle, endothelium, and neurons. CONCLUSION Multiple stem cell lines are currently being studied for their potential to treat ED. To date, stem cells have proven safe and effective in both animal and human models of ED. More research is needed to understand their full therapeutic potential.
Collapse
Affiliation(s)
- Taylor C Peak
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - James Anaissie
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Tulane University School of Medicine, Department of Urology, New Orleans, LA, USA.
| |
Collapse
|
11
|
Edmunds KJ, Gargiulo P. Imaging Approaches in Functional Assessment of Implantable Myogenic Biomaterials and Engineered Muscle Tissue. Eur J Transl Myol 2015; 25:4847. [PMID: 26913149 PMCID: PMC4749010 DOI: 10.4081/ejtm.2015.4847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022] Open
Abstract
The fields of tissue engineering and regenerative medicine utilize implantable biomaterials and engineered tissues to regenerate damaged cells or replace lost tissues. There are distinct challenges in all facets of this research, but functional assessments and monitoring of such complex environments as muscle tissues present the current strategic priority. Many extant methods for addressing these questions result in the destruction or alteration of tissues or cell populations under investigation. Modern advances in non-invasive imaging modalities present opportunities to rethink some of the anachronistic methods, however, their standard employment may not be optimal when considering advancements in myology. New image analysis protocols and/or combinations of established modalities need to be addressed. This review focuses on efficacies and limitations of available imaging modalities to the functional assessment of implantable myogenic biomaterials and engineered muscle tissues.
Collapse
Affiliation(s)
- Kyle J. Edmunds
- Institute for Biomedical and Neural Engineering, University of Reykjavík
| | - Paolo Gargiulo
- Institute for Biomedical and Neural Engineering, University of Reykjavík
- University Hospital Landspítali, Reykjavík, Iceland
| |
Collapse
|
12
|
Stem cell treatment of erectile dysfunction. Adv Drug Deliv Rev 2015; 82-83:137-44. [PMID: 25446142 DOI: 10.1016/j.addr.2014.11.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/09/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Erectile Dysfunction (ED) is a common disease that typically affects older men. While oral type-5 phosphodieserase inhibitors (PDE5Is) represent a successful first-line therapy, many patients do not respond to this treatment leading researchers to look for alternative treatment modalities. Stem cell (SC) therapy is a promising new frontier for the treatment of those patients and many studies demonstrated its therapeutic effects. In this article, using a Medline database search of all relevant articles, we present a summary of the scientific principles behind SCs and their use for treatment of ED. We discuss specifically the different types of SCs used in ED, the methods of delivery tested, and the methods attempted to enhance SC therapy effect. In addition, we review the current preclinical literature on SC therapy for ED and present a summary of its findings in addition to the single clinical trial published.
Collapse
|
13
|
Ozasa Y, Gingery A, Thoreson AR, An KN, Zhao C, Amadio PC. A comparative study of the effects of growth and differentiation factor 5 on muscle-derived stem cells and bone marrow stromal cells in an in vitro tendon healing model. J Hand Surg Am 2014; 39:1706-13. [PMID: 24909566 PMCID: PMC4146663 DOI: 10.1016/j.jhsa.2014.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the ability of muscle-derived stem cells (MDSCs) supplemented with growth and differentiation factor-5 (GDF-5) to improve tendon healing compared with bone marrow stromal cells (BMSCs) in an in vitro tendon culture model. METHODS Eighty canine flexor digitorum profundus tendons were assigned into 5 groups: repaired tendon (1) without gel patch interposition (no cell group), (2) with BMSC-seeded gel patch interposition (BMSC group), (3) with MDSC-seeded gel patch interposition (MDSC group), (4) with GDF-5-treated BMSC-seeded gel patch interposition (BMSC+GDF-5 group), and (5) with GDF-5-treated MDSC-seeded gel patch interposition (MDSC+GDF-5 group). After culturing for 2 or 4 weeks, the failure strength of the healing tendons was measured. The tendons were also evaluated histologically. RESULTS The failure strength of the repaired tendon in the MDSC+GDF-5 group was significantly higher than that of the non-cell and BMSC groups. The stiffness of the repaired tendons in the MDSC+GDF-5 group was significantly higher than that of the non-cell group. Histologically, the implanted cells became incorporated into the original tendon in all 4 cell-seeded groups. CONCLUSIONS Interposition of a multilayered GDF-5 and MDSC-seeded collagen gel patch at the repair site enhanced tendon healing compared with a similar patch using BMSC. However, this increase in vitro was relatively small. In the clinical setting, differences between MDSC and BMSC may not be substantially different, and it remains to be shown that such methods might enhance the results of an uncomplicated tendon repair clinically. CLINICAL RELEVANCE Muscle-derived stem cell implantation and administration of GDF-5 may improve the outcome of tendon repair.
Collapse
Affiliation(s)
- Yasuhiro Ozasa
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| | - Anne Gingery
- Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, MN, USA
| | | | - Kai-Nan An
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| | - Chunfeng Zhao
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA
| | - Peter C. Amadio
- Division of Orthopedic Research, Mayo Clinic, Rochester, MN, USA,Corresponding Author: Peter C. Amadio, M.D., Department of Orthopedic Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA, Phone: 507-538-1717; Fax: 507-284-5392,
| |
Collapse
|
14
|
URISH KL, DEASY BM, HUARD J. Automated classification and visualization of fluorescent live cell microscopy images. J Microsc 2013; 249:206-14. [DOI: 10.1111/jmi.12010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Tsao J, Vernet DA, Gelfand R, Kovanecz I, Nolazco G, Bruhn KW, Gonzalez-Cadavid NF. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle. Stem Cell Res Ther 2013; 4:4. [PMID: 23295128 PMCID: PMC3706886 DOI: 10.1186/scrt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs.
Collapse
|
16
|
|
17
|
de la Garza-Rodea AS, van der Velde I, Boersma H, Gonçalves MAFV, van Bekkum DW, de Vries AAF, Knaän-Shanzer S. Long-term contribution of human bone marrow mesenchymal stromal cells to skeletal muscle regeneration in mice. Cell Transplant 2010; 20:217-31. [PMID: 20719081 DOI: 10.3727/096368910x522117] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are attractive for cellular therapy of muscular dystrophies as they are easy to procure, can be greatly expanded ex vivo, and contribute to skeletal muscle repair in vivo. However, detailed information about the contribution of bone marrow (BM)-derived human MSCs (BM-hMSCs) to skeletal muscle regeneration in vivo is very limited. Here, we present the results of a comprehensive study of the fate of LacZ-tagged BM-hMSCs following implantation in cardiotoxin (CTX)-injured tibialis anterior muscles (TAMs) of immunodeficient mice. β-Galactosidase-positive (β-gal(+)) human-mouse hybrid myofibers (HMs) were counted in serial cross sections over the full length of the treated TAMs of groups of mice at monthly intervals. The number of human cells was estimated using chemiluminescence assays. While the number of human cells declined gradually to about 10% of the injected cells at 60 days after transplantation, the number of HMs increased from day 10 onwards, reaching 104 ± 39.1 per TAM at 4 months postinjection. β-gal(+) cells and HMs were distributed over the entire muscle, indicating migration of the former from the central injection site to the ends of the TAMs. The identification of HMs that stained positive for human spectrin suggests myogenic reprogramming of hMSC nuclei. In summary, our findings reveal that BM-hMSCs continue to participate in the regeneration/remodeling of CTX-injured TAMs, resulting in ±5% HMs at 4 months after damage induction. Moreover, donor-derived cells were shown to express genetic information, both endogenous and transgenic, in recipient myofibers.
Collapse
Affiliation(s)
- Anabel S de la Garza-Rodea
- Virus and Stem Cell Biology Laboratory, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Cultured autologous bone marrow stem cells inhibit bony fusion in a rabbit model of posterolateral lumbar fusion with autologous bone graft. J Clin Neurosci 2010; 17:481-5. [PMID: 20171892 DOI: 10.1016/j.jocn.2009.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/26/2009] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from various tissues and expanded in culture. MSCs add osteogenic potential to ceramic scaffolds when used together. A spinal fusion rabbit model was used to evaluate whether a pellet of cultured, autologous bone marrow MSCs (BMSCs) with osteogenic differentiation could increase the fusion rate when co-grafted with an autologous bone graft compared to autograft alone. Thirty rabbits were randomly assigned to two groups. Group 1 received bone autograft alone and Group 2 received bone autograft plus a pellet of cultured and differentiated BMSCs. Group 2 rabbits had a bone marrow puncture, after which the BMSC were cultured and osteoblastic differentiation was induced. BMSC cultures were obtained from 12 of 15 rabbits. The 27 rabbits underwent a bilateral, L4-L5 intertransverse fusion with an autograft and in Group 2 rabbits a pellet of differentiated BMSCs was added to the autograft. In Group 1, the fusion rate was 53% (8 of 15 rabbits) and in Group 2 the fusion rate was 0% (p<0.05). Adding differentiated BMSCs in a pellet without a scaffold not only failed to increase fusion rate, but completely inhibited bony growth.
Collapse
|
19
|
Stimulating vaginal repair in rats through skeletal muscle-derived stem cells seeded on small intestinal submucosal scaffolds. Obstet Gynecol 2009; 114:300-309. [PMID: 19622991 DOI: 10.1097/aog.0b013e3181af6abd] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Grafts are used for vaginal repair after prolapse, but their use to carry stem cells to regenerate vaginal tissue has not been reported. In this study, we investigated whether 1) muscle-derived stem cells (MDSC) grown on small intestinal submucosa (SIS) generate smooth-muscle cells (SMC) in vitro and upon implantation in a rat model of vaginal defects; 2) express markers applicable to the in-vivo detection of vaginal endogenous stem cells; and 3) stimulate the repair of the vagina. METHODS Mouse MDSC grown on monolayer, SIS, or polymeric mesh, were tested for cell differentiation by immunocytochemistry, Western blot and real-time polymerase chain reaction (PCR). Stem cell markers were screened by DNA microarrays followed by real-time PCR, immunocytochemistry, and Western blot. Rats that underwent hysterectomy and partial vaginectomy were left as such or implanted in the vagina with 4',6-Diamidino-2-Phenylindole (DAPI)-labeled MDSC on SIS, or SIS without MDSC, immunosuppressed, and killed at 2-8 weeks. Immunofluorescence, hematoxylin-eosin, and Masson trichrome were applied to tissue sections. RESULTS Muscle-derived stem cell cultures on monolayer and on scaffolds differentiate into SMC, as shown by alpha-smooth muscle actin (ASMA), calponin, and smoothelin markers. Muscle-derived stem cells express embryonic stem cell markers Oct-4 and nanog. Dual DAPI/ASMA fluorescence indicated MDSC conversion to SMC. Muscle-derived stem cells/SIS stimulated vaginal tissue repair, including keratin-5 positive epithelium formation and prevented fibrosis at 4 and 8 weeks. Oct-4+ putative endogenous stem cells were identified. CONCLUSION Muscle-derived stem cells/SIS implants stimulate vaginal tissue repair in the rat, thus autologous MDSC on scaffolds may be a promising approach for the treatment of vaginal repair.
Collapse
|
20
|
Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J. Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 2009; 17:1788-98. [PMID: 19603004 DOI: 10.1038/mt.2009.136] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have isolated a population of muscle-derived stem cells (MDSCs) that, when compared with myoblasts, display an improved regeneration capacity, exhibit better cell survival, and improve myogenesis and angiogenesis. In addition, we and others have observed that the origin of the MDSCs may reside within the blood vessel walls (endothelial cells and pericytes). Here, we investigated the role of vascular endothelial growth factor (VEGF)-mediated angiogenesis in MDSC transplantation-based skeletal muscle regeneration in mdx mice (an animal model of muscular dystrophy). We studied MDSC and MDSC transduced to overexpress VEGF; no differences were observed in vitro in terms of phenotype or myogenic differentiation. However, after in vivo transplantation, we observe an increase in angiogenesis and endogenous muscle regeneration as well as a reduction in muscle fibrosis in muscles transplanted with VEGF-expressing cells when compared to control cells. In contrast, we observe a significant decrease in vascularization and an increase in fibrosis in the muscles transplanted with MDSCs expressing soluble forms-like tyrosine kinase 1 (sFlt1) (VEGF-specific antagonist) when compared to control MDSCs. Our results indicate that VEGF-expressing cells do not increase the number of dystrophin-positive fibers in the injected mdx muscle, when compared to the control MDSCs. Together the results suggest that the transplantation of VEGF-expressing MDSCs improved skeletal muscle repair through modulation of angiogenesis, regeneration and fibrosis in the injected mdx skeletal muscle.
Collapse
Affiliation(s)
- Bridget M Deasy
- Live Cell Imaging Lab, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
21
|
Urish KL, Vella JB, Okada M, Deasy BM, Tobita K, Keller BB, Cao B, Piganelli JD, Huard J. Antioxidant levels represent a major determinant in the regenerative capacity of muscle stem cells. Mol Biol Cell 2008; 20:509-20. [PMID: 19005220 DOI: 10.1091/mbc.e08-03-0274] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Stem cells are classically defined by their multipotent, long-term proliferation, and self-renewal capabilities. Here, we show that increased antioxidant capacity represents an additional functional characteristic of muscle-derived stem cells (MDSCs). Seeking to understand the superior regenerative capacity of MDSCs compared with myoblasts in cardiac and skeletal muscle transplantation, our group hypothesized that survival of the oxidative and inflammatory stress inherent to transplantation may play an important role. Evidence of increased enzymatic and nonenzymatic antioxidant capacity of MDSCs were observed in terms of higher levels of superoxide dismutase and glutathione, which appears to confer a differentiation and survival advantage. Further when glutathione levels of the MDSCs are lowered to that of myoblasts, the transplantation advantage of MDSCs over myoblasts is lost when transplanted into both skeletal and cardiac muscles. These findings elucidate an important cause for the superior regenerative capacity of MDSCs, and provide functional evidence for the emerging role of antioxidant capacity as a critical property for MDSC survival post-transplantation.
Collapse
Affiliation(s)
- Kenneth L Urish
- Department of Orthopaedics and Rehabilitation, and Department of Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kim KS, Lee JH, Ahn HH, Lee JY, Khang G, Lee B, Lee HB, Kim MS. The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds. Biomaterials 2008; 29:4420-8. [DOI: 10.1016/j.biomaterials.2008.08.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 08/04/2008] [Indexed: 12/22/2022]
|
23
|
Bian W, Bursac N. Tissue engineering of functional skeletal muscle: challenges and recent advances. ACTA ACUST UNITED AC 2008; 27:109-13. [PMID: 18799400 DOI: 10.1109/memb.2008.928460] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Serena E, Flaibani M, Carnio S, Boldrin L, Vitiello L, De Coppi P, Elvassore N. Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurol Res 2008; 30:207-14. [PMID: 18397614 DOI: 10.1179/174313208x281109] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The production of engineered three-dimensional (3D) skeletal muscle grafts holds promise for treatment of several diseases. An important factor in the development of such approach involves the capability of preserving myogenicity and regenerative potential during ex vivo culturing. We have previously shown that electrical stimulation of myogenic cells grown in monolayer could improve the differentiation process. Here we investigated the effect of exogenous electrical field, specifically designed to mimic part of the neuronal activity, on muscle precursor cells (MPCs) cultured within 3D collagen scaffolds. Our data showed that electric stimulation did not affect cell viability and increased by 65.6% the release rate of NO(x), an early molecular activator of satellite cells in vivo. NO(x) release rate was decreased by an inhibitor of NO synthase, both in stimulated and non-stimulated cultures, confirming the endocrine origin of the measured NO(x). Importantly, electrical stimulation also increased the expression of two myogenic markers, MyoD and desmin. We also carried out some preliminary experiments aimed at determining the biocompatibility of our seeded collagen scaffolds, implanting them in the tibialis anterior muscles of syngeneic mice. Ten days after transplantation, we could observe the formation of new myofibers both inside the scaffold and at the scaffold/muscle interface. Altogether, our findings indicate that electrical stimulation could be a new strategy for the effective 3D expansion of muscle precursor cells in vitro without losing myogenic potential and that 3D collagen matrices could be a promising tool for delivering myogenic cells in recipient muscles.
Collapse
Affiliation(s)
- Elena Serena
- Department of Chemical Engineering, University of Padova, Via Marzolo, 9 I-35131 Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Cyclic Mechanical Preconditioning Improves Engineered Muscle Contraction. Tissue Eng Part A 2008; 14:473-82. [DOI: 10.1089/tea.2007.0104] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Nolazco G, Kovanecz I, Vernet D, Gelfand RA, Tsao J, Ferrini MG, Magee T, Rajfer J, Gonzalez-Cadavid NF. Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat. BJU Int 2008; 101:1156-64. [PMID: 18294308 DOI: 10.1111/j.1464-410x.2008.07507.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine whether skeletal muscle-derived stem cells (MDSCs) convert into smooth muscle cells (SMCs) both in vitro and in vivo, and in so doing ameliorate the erectile dysfunction (ED) of aged rats, and whether endogenous stem cells are present in the rat corpora cavernosa. MATERIALS AND METHODS MDSCs were obtained from mouse muscle, and shown by immunocytochemistry for alpha-smooth muscle actin (alpha SMA) to originate in vitro in myofibroblasts and SMCs, discriminating SMCs by calponin 1 expression. In vivo these MDSCs, labelled with 4',6-diamidino-2-phenylindole, were implanted into the corpora cavernosa of young adult (5-month old) and aged (20-month old) rats for 2 and 4 weeks. Histological changes were assessed by immunohistochemistry and quantitative Western blot. Functional changes were determined by electrical field stimulation (EFS) of the cavernosal nerve. RESULTS The exogenous cells replicated and converted into SMCs, as shown in corporal tissue sections by confocal immunofluorescence microscopy for proliferating cell nuclear antigen (PCNA), alpha SMA, and smoothelin, and also by Western blot for alpha SMA and PCNA. MDSC differentiation was confirmed by the activation of the alpha SMA promoter-linked beta-galactosidase in transfected cells, both in vitro and after implantation in the corpora. Putative endogenous stem cells were shown in corporal tissue sections and Western blots by detecting CD34 and a possible Sca1 variant. EFS showed that implanted MDSCs raised in aged rats the maximal intracavernosal pressure/mean arterial pressure levels above (2 weeks) or up to (4 weeks) those of young adult rats. CONCLUSIONS MDSCs implanted into the corpora cavernosa of aged rats converted into SMCs and corrected ED, and endogenous cells expressing stem cell markers were also found in untreated tissue. This suggests that exogenous stem cell implantation and/or endogenous stem cell modulation might be viable therapeutic approaches for ageing-related ED.
Collapse
Affiliation(s)
- Gaby Nolazco
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Urology Research Laboratory, Torrance, CA 90509, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shefer G, Ben-Dov N, Halevy O, Oron U. Primary myogenic cells see the light: Improved survival of transplanted myogenic cells following low energy laser irradiation. Lasers Surg Med 2008; 40:38-45. [DOI: 10.1002/lsm.20588] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Cimetta E, Flaibani M, Mella M, Serena E, Boldrin L, De Coppi P, Elvassore N. Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor. Int J Artif Organs 2007; 30:415-28. [PMID: 17551905 DOI: 10.1177/039139880703000509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.
Collapse
Affiliation(s)
- E Cimetta
- Department of Chemical Engineering, University of Padova, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol 2006; 25:24-32. [PMID: 17084475 DOI: 10.1016/j.tibtech.2006.10.010] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/06/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Recent developments in the identification, in vitro culture and differentiation of stem cells point to the unprecedented potential of these cells, or their derivatives, to cure degenerative disorders. Human embryonic stem cells (hESC) offer the particular advantage of prolonged proliferative capacity and great versatility in the lineages that can be formed in culture. Translating these advantages into clinical benefits faces many challenges, including efficient differentiation into the desired cell type(s), maintaining genetic stability during long-term culture and, finally, ensuring the absence of potentially tumorigenic hESC from the final product. It is this final safety issue that will form the focus of this review.
Collapse
Affiliation(s)
- Hannes Hentze
- ES Cell International, 11 Biopolis Way, #05-06 Helios Building, 138667 Singapore, Republic of Singapore
| | | | | |
Collapse
|
30
|
Abstract
As the promise of stem cell-based therapies begins to be realised, and efforts to bring advances to the clinic mount, the source of these cells is increasingly important. The morbidity associated with harvesting stem cells from solid organs and the invasive nature of bone marrow biopsies may limit their practicality for wider clinical applications. An emerging body of literature suggests that adipose tissue may provide an abundant, readily accessible source of cells with similar potential to that described of other adult stem cells. This review will address advances in the use of adipose stem cells in fields as divergent as soft tissue reconstruction and cerebral infarction recovery. Numerous challenges will also be discussed; however, rapidly accumulating advances suggest that adipose stem cells may be as effective as they are abundant.
Collapse
Affiliation(s)
- Anna M Parker
- Department of Plastic Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|