1
|
Gräf R, Grafe M, Meyer I, Mitic K, Pitzen V. The Dictyostelium Centrosome. Cells 2021; 10:cells10102657. [PMID: 34685637 PMCID: PMC8534566 DOI: 10.3390/cells10102657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.
Collapse
|
2
|
CDK5RAP2 Is an Essential Scaffolding Protein of the Corona of the Dictyostelium Centrosome. Cells 2018; 7:cells7040032. [PMID: 29690637 PMCID: PMC5946109 DOI: 10.3390/cells7040032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 01/02/2023] Open
Abstract
Dictyostelium centrosomes consist of a nucleus-associated cylindrical, three-layered core structure surrounded by a corona consisting of microtubule-nucleation complexes embedded in a scaffold of large coiled-coil proteins. One of them is the conserved CDK5RAP2 protein. Here we focus on the role of Dictyostelium CDK5RAP2 for maintenance of centrosome integrity, its interaction partners and its dynamic behavior during interphase and mitosis. GFP-CDK5RAP2 is present at the centrosome during the entire cell cycle except from a short period during prophase, correlating with the normal dissociation of the corona at this stage. RNAi depletion of CDK5RAP2 results in complete disorganization of centrosomes and microtubules suggesting that CDK5RAP2 is required for organization of the corona and its association to the core structure. This is in line with the observation that overexpressed GFP-CDK5RAP2 elicited supernumerary cytosolic MTOCs. The phenotype of CDK5RAP2 depletion was very reminiscent of that observed upon depletion of CP148, another scaffolding protein of the corona. BioID interaction assays revealed an interaction of CDK5RAP2 not only with the corona markers CP148, γ-tubulin, and CP248, but also with the core components Cep192, CP75, and CP91. Furthermore, protein localization studies in both depletion strains revealed that CP148 and CDK5RAP2 cooperate in corona organization.
Collapse
|
3
|
Mana-Capelli S, Gräf R, Larochelle DA. Dictyostelium centrin B localization during cell cycle progression. Commun Integr Biol 2011; 3:39-41. [PMID: 20539780 DOI: 10.4161/cib.3.1.9721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 11/19/2022] Open
Abstract
Recently, we have reported the initial characterization of a novel centrin from Dictyostelium discoideum (DdCenB).1 Sequence and phylogenetic analyses clearly establish DdCenB as a centrin, yet further characterization revealed some interesting peculiarities about this novel centrin. Figure 1 depicts the localization of DdCenB at three points in the cell cycle: interphase, mitosis and cytokinesis. In interphase DdCenB primarily localizes to the nuclear envelope (NE). Although the NE remains intact during mitosis and cytokinesis in Dictyostelium, DdCenB disappears from the NE at these two stages of the cell cycle. In addition to localization at the NE, we also see weak localization in the nucleoplasm and cytoplasm (weakest). Although the nucleoplasmic concentration appears constant throughout the cell cycle, the very faint localization in the cytoplasm does appear to increase to the level of the nucleoplasm during mitosis and cytokinesis. Unlike most centrins characterized to date, we found no evidence of DdCenB at the centrosome at any point in the cell cycle. Here we examine the importance of DdCenB localization in cell cycle progression, as well as several other roles.
Collapse
|
4
|
Schulz I, Erle A, Gräf R, Krüger A, Lohmeier H, Putzler S, Samereier M, Weidenthaler S. Identification and cell cycle-dependent localization of nine novel, genuine centrosomal components inDictyostelium discoideum. ACTA ACUST UNITED AC 2009; 66:915-28. [DOI: 10.1002/cm.20384] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Sato MJ, Ueda M, Takagi H, Watanabe TM, Yanagida T, Ueda M. Input-output relationship in galvanotactic response of Dictyostelium cells. Biosystems 2006; 88:261-72. [PMID: 17184899 DOI: 10.1016/j.biosystems.2006.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 06/30/2006] [Indexed: 11/25/2022]
Abstract
Under a direct current electric field, Dictyostelium cells exhibit migration towards the cathode. To determine the input-output relationship of the cell's galvanotactic response, we developed an experimental instrument in which electric signals applied to the cells are highly reproducible and the motile response are analyzed quantitatively. With no electric field, the cells moved randomly in all directions. Upon applying an electric field, cell migration speeds became about 1.3 times faster than those in the absence of an electric field. Such kinetic effects of electric fields on the migration were observed for cells stimulated between 0.25 and 10 V/cm of the field strength. The directions of cell migrations were biased toward the cathode in a positive manner with field strength, showing galvanotactic response in a dose-dependent manner. Quantitative analysis of the relationship between field strengths and directional movements revealed that the biased movements of the cells depend on the square of electric field strength, which can be described by one simple phenomenological equation. The threshold strength for the galvanotaxis was between 0.25 and 1 V/cm. Galvanotactic efficiency reached to half-maximum at 2.6 V/cm, which corresponds to an approximate 8 mV voltage difference between the cathode and anode direction of 10 microm wide, round cells. Based on these results, possible mechanisms of galvanotaxis in Dictyostelium cells were discussed. This development of experimental system, together with its good microscopic accessibility for intracellular signaling molecules, makes Dictyostelium cells attractive as a model organism for elucidating stochastic processes in the signaling systems responsible for cell motility and its regulations.
Collapse
Affiliation(s)
- Masayuki J Sato
- Laboratories for Nanobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Rehberg M, Kleylein-Sohn J, Faix J, Ho TH, Schulz I, Gräf R. Dictyostelium LIS1 is a centrosomal protein required for microtubule/cell cortex interactions, nucleus/centrosome linkage, and actin dynamics. Mol Biol Cell 2005; 16:2759-71. [PMID: 15800059 PMCID: PMC1142422 DOI: 10.1091/mbc.e05-01-0069] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The widespread LIS1-proteins were originally identified as the target for sporadic mutations causing lissencephaly in humans. Dictyostelium LIS1 (DdLIS1) is a microtubule-associated protein exhibiting 53% identity to human LIS1. It colocalizes with dynein at isolated, microtubule-free centrosomes, suggesting that both are integral centrosomal components. Replacement of the DdLIS1 gene by the hypomorphic D327H allele or overexpression of an MBP-DdLIS1 fusion disrupted various dynein-associated functions. Microtubules lost contact with the cell cortex and were dragged behind an unusually motile centrosome. Previously, this phenotype was observed in cells overexpressing fragments of dynein or the XMAP215-homologue DdCP224. DdLIS1 was coprecipitated with DdCP224, suggesting that both act together in dynein-mediated cortical attachment of microtubules. Furthermore, DdLIS1-D327H mutants showed Golgi dispersal and reduced centrosome/nucleus association. Defects in DdLIS1 function also altered actin dynamics characterized by traveling waves of actin polymerization correlated with a reduced F-actin content. DdLIS1 could be involved in actin dynamics through Rho-GTPases, because DdLIS1 interacted directly with Rac1A in vitro. Our results show that DdLIS1 is required for maintenance of the microtubule cytoskeleton, Golgi apparatus and nucleus/centrosome association, and they suggest that LIS1-dependent alterations of actin dynamics could also contribute to defects in neuronal migration in lissencephaly patients.
Collapse
Affiliation(s)
- Markus Rehberg
- A.-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität München, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Gräf R, Daunderer C, Schulz I. Molecular and functional analysis of the dictyostelium centrosome. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:155-202. [PMID: 15548420 DOI: 10.1016/s0074-7696(04)41003-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The centrosome is a nonmembranous, nucleus-associated organelle that functions not only as the main microtubule-organizing center but also as a cell cycle control unit. How the approximately 100 different proteins that make up a centrosome contribute to centrosome function is still largely unknown. Considerable progress in the understanding of centrosomal functions can be expected from comparative cell biology of morphologically different centrosomal structures fulfilling conserved functions. Dictyostelium is an alternative model organism for centrosome research in addition to yeast and animal cells. With the elucidation of morphological changes and dynamics of centrosome duplication, the establishment of a centrosome isolation protocol, and the identification of many centrosomal components, there is a solid basis for understanding the biogenesis and function of this fascinating organelle. Here we give an overview of the prospective protein inventory of the Dictyostelium centrosome based on database searches. Moreover, we focus on the comparative cell biology of known components of the Dictyostelium centrosome including the gamma-tubulin complex and the homologues of centrin, Nek2, XMAP215, and EB1.
Collapse
Affiliation(s)
- Ralph Gräf
- Adolf-Butenandt-Institut?Zellbiologie, Universität München, D-80336 München, Germany
| | | | | |
Collapse
|
8
|
Hestermann A, Rehberg M, Gräf R. Centrosomal microtubule plus end tracking proteins and their role in Dictyostelium cell dynamics. J Muscle Res Cell Motil 2003; 23:621-30. [PMID: 12952061 DOI: 10.1023/a:1024450922609] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microtubules interact with huge protein complexes not only with their minus ends but also with their peripheral plus ends. The centrosome at their minus ends nucleates and organizes the microtubule cytoskeleton. The microtubule plus end complex seems to be required for the capture of microtubule tips at cortical sites by mediating interactions of microtubule tips with cortical actin as well as with membrane proteins. This process plays a major role in nuclear migration, spindle orientation and directional cell movement. Five potential members of the microtubule plus end complex have already been identified in Dictyostelium, DdCP224, DdEB1, DdLIS1, the dynein heavy chain and dynein intermediate chain. DdCP224 and DdEB1 are the Dictyostelium representatives of the XMAP215- and EB1-family, respectively. Both are not only concentrated at microtubule tips, they are also centrosomal components. The centrosomal binding domain of DdCP224 resides within the C-terminal fifth of the protein. DdCP224 is involved in the centrosome duplication cycle and cytokinesis. DdEB1 is the first member of the EB1 protein family that is also a genuine centrosomal component. A DdEB1 null mutant revealed that DdEB1 is required for mitotic spindle formation. DdEB1 coprecipitates and colocalizes with DdCP224 suggesting that these proteins act together in their functions. One of these functions could be dynein/dynactin-dependent interaction of microtubule tips with the cell cortex that is thought to determine the positioning of the microtubule-organizing center (MTOC) and the direction of migration.
Collapse
Affiliation(s)
- A Hestermann
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Schillerstrasse 42, D-80336 München, Germany
| | | | | |
Collapse
|
9
|
Klopfenstein DR, Holleran EA, Vale RD. Kinesin motors and microtubule-based organelle transport in Dictyostelium discoideum. J Muscle Res Cell Motil 2003; 23:631-8. [PMID: 12952062 DOI: 10.1023/a:1024403006680] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Movement of membrane cargoes and chromosomes is driven by kinesin and dynein motors in most eukaryotic cells. In this review, we describe the known kinesin and dynein genes in Dictyostelium. Dictyostelium primarily utilizes two conventional kinesins, an Unc104/KIF1 kinesin, and cytoplasmic dynein to transport membrane organelles within its cytoplasm. We describe how the biological functions of these motors has been dissected through a combination of biochemical to genetic approaches.
Collapse
Affiliation(s)
- Dieter R Klopfenstein
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 600 16th Street, San Francisco, CA 94107, USA
| | | | | |
Collapse
|
10
|
Abstract
Regulation of the centrosome, the major microtubule organizing centre in an animal cell, is in large part controlled by cell cycle-dependent protein phosphorylation. Along with cyclin dependent kinases, polo kinases and Aurora kinases, NIMA-related kinases are emerging as critical regulators of centrosome structure and function. Nek2 is the most closely related vertebrate protein by sequence to the essential mitotic regulator NIMA of Aspergillus nidulans. Nek2 is highly enriched at the centrosome and functional studies in human and Xenopus systems support a role for Nek2 in both maintenance and modulation of centrosome architecture. In particular, current evidence supports a model in which one function of Nek2 kinase activity is to promote the splitting of duplicated centrosomes at the onset of mitosis through phosphorylation of core centriolar proteins. Recent studies in lower organisms have raised the possibility that kinases related to Nek2 may have conserved functions in MTOC organization, as well as in other aspects of mitotic progression.
Collapse
Affiliation(s)
- Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
11
|
Rehberg M, Gräf R. Dictyostelium EB1 is a genuine centrosomal component required for proper spindle formation. Mol Biol Cell 2002; 13:2301-10. [PMID: 12134070 PMCID: PMC117314 DOI: 10.1091/mbc.e02-01-0054] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
EB1 proteins are ubiquitous microtubule-associated proteins involved in microtubule search and capture, regulation of microtubule dynamics, cell polarity, and chromosome stability. We have cloned a complete cDNA of Dictyostelium EB1 (DdEB1), the largest known EB1 homolog (57 kDa). Immunofluorescence analysis and expression of a green fluorescent protein-DdEB1 fusion protein revealed that DdEB1 localizes along microtubules, at microtubule tips, centrosomes, and protruding pseudopods. During mitosis, it was found at the spindle, spindle poles, and kinetochores. DdEB1 is the first EB1-homolog that is also a genuine centrosomal component, because it was localized at isolated centrosomes that are free of microtubules. Furthermore, centrosomal DdEB1 distribution was unaffected by nocodazole treatment. DdEB1 colocalized with DdCP224, the XMAP215 homolog, at microtubule tips, the centrosome, and kinetochores. Furthermore, both proteins were part of the same cytosolic protein complex, suggesting that they may act together in their functions. DdEB1 deletion mutants expressed as green fluorescent protein or maltose-binding fusion proteins indicated that microtubule binding requires homo-oligomerization, which is mediated by a coiled-coil domain. A DdEB1 null mutant was viable but retarded in prometaphase progression due to a defect in spindle formation. Because spindle elongation was normal, DdEB1 seems to be required for the initiation of the outgrowth of spindle microtubules.
Collapse
Affiliation(s)
- Markus Rehberg
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany
| | | |
Collapse
|
12
|
Gräf R. DdNek2, the first non-vertebrate homologue of human Nek2, is involved in the formation of microtubule-organizing centers. J Cell Sci 2002; 115:1919-29. [PMID: 11956323 DOI: 10.1242/jcs.115.9.1919] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium Nek2 (DdNek2) is the first structural and functional non-vertebrate homologue of human Nek2, a NIMA-related serine/threonine kinase required for centrosome splitting in early mitosis. DdNek2 shares 43% overall amino-acid identity with its human counterpart and 54% identity within the catalytic domain. Both proteins can be subdivided in an N-terminal catalytic domain, a leucine zipper and a C-terminal domain. Kinase assays with bacterially expressed DdNek2 and C-terminal deletion mutants revealed that catalytic activity requires the presence of the leucine zipper and that autophosphorylation occurs at the C-terminus. Microscopic analyses with DdNek2 antibodies and expression of a GFP-DdNek2 fusion protein in Dictyostelium showed that DdNek2 is a permanent centrosomal resident and suggested that it is a component of the centrosomal core. The GFP-DdNek2-overexpressing mutants frequently exhibit supernumerary microtubule-organizing centers (MTOCs). This phenotype did not require catalytic activity because it was also observed in cells expressing inactive GFP-K33R. However, it was shown to be caused by overexpression of the C-terminal domain since it also occurred in GFP-mutants expressing only the C-terminus or a leucine zipper/C-terminus construct but not in those mutants expressing only the catalytic domain or a catalytic domain/leucine zipper construct. These results suggest that DdNek2 is involved in the formation of MTOCs. Furthermore, the localization of the GFP-fusion proteins revealed two independent centrosomal targeting domains of DdNek2, one within the catalytic or leucine zipper domain and one in the C-terminal domain.
Collapse
Affiliation(s)
- Ralph Gräf
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Schillerstrasse 42, D-80336 Münich, Germany.
| |
Collapse
|
13
|
Daunderer C, Gräf RO. Molecular analysis of the cytosolic Dictyostelium gamma-tubulin complex. Eur J Cell Biol 2002; 81:175-84. [PMID: 12018385 DOI: 10.1078/0171-9335-00241] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
gamma-Tubulin plays an essential role in microtubule nucleation and organization and occurs, besides its centrosomal localization, in the cytosol, where it forms soluble complexes with other proteins. We investigated the size and composition of gamma-tubulin complexes in Dictyostelium, using a mutant cell line in which the endogenous copy of the gamma-tubulin gene had been replaced by a tagged version. Dictyostelium gamma-tubulin complexes were generally much smaller than the large gamma-tubulin ring complexes found in higher organisms. The stability of the small Dictyostelium gamma-tubulin complexes depended strongly on the purification conditions, with a striking stabilization of the complexes under high salt conditions. Furthermore, we cloned the Dictyostelium homolog of Spc97 and an almost complete sequence of the Dictyostelium homolog of Spc98, which are both components of gamma-tubulin complexes in other organisms. Both proteins localize to the centrosome in Dictyostelium throughout the cell cycle and are also present in a cytosolic pool. We could show that the prevailing small complex present in Dictyostelium consists of DdSpc98 and gamma-tubulin, whereas DdSpc97 does not associate. Dictyostelium is thus the first organism investigated so far where the three proteins do not interact stably in the cytosol.
Collapse
|
14
|
Affiliation(s)
- R Gräf
- Adolf-Butenandt-Institut/Zellbiologie Ludwig-Maximilians-Universität München D-80336 München, Germany
| |
Collapse
|
15
|
Daunderer C, Schliwa M, Gräf R. Dictyostelium centrin-related protein (DdCrp), the most divergent member of the centrin family, possesses only two EF hands and dissociates from the centrosome during mitosis. Eur J Cell Biol 2001; 80:621-30. [PMID: 11713866 DOI: 10.1078/0171-9335-00198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have identified a Dictyostelium discoideum cDNA sequence with homology to centrins. The derived protein, Dictyostelium discoideum centrinn-related protein (DdCrp), is the most divergent member of the centrin family. Most strikingly it lacks the first two EF-hand consensus motifs, whereas a number of other centrin-specific sequence features are conserved. Southern and Northern blot analysis and the data presently available from the Dictyostelium genome and cDNA projects suggest that DdCrp is the only centrin isoform present in Dictyostelium. Immunofluorescence analysis with anti-DdCrp antibodies revealed that the protein is localized to the centrosome, to a second, centrosome-associated structure close to the nucleus and to the nucleus itself. Confocal microscopy resolved that the centrosomal label is confined to the corona surrounding the centrosome core. Unlike for other centrins the localization of DdCrp is cell cycle-dependent. Both the centrosomal and the centrosome-associated label disappear during prometaphase, most likely in concert with the dissociation of the corona at this stage. The striking differences of DdCrp to all other centrins may be related to the distinct structure and duplication mode of the Dictyostelium centrosome.
Collapse
Affiliation(s)
- C Daunderer
- Adolf-Butenandt-Institut/Zellbiologie, Universität München, Germany
| | | | | |
Collapse
|
16
|
MacWilliams H, Gaudet P, Deichsel H, Bonfils C, Tsang A. Biphasic expression of rnrB in Dictyostelium discoideum suggests a direct relationship between cell cycle control and cell differentiation. Differentiation 2001; 67:12-24. [PMID: 11270119 DOI: 10.1046/j.1432-0436.2001.067001012.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell differentiation in Dictyostelium is strongly affected by the cell cycle. Cell cycle control is well-understood in other systems, but this has had almost no impact on the study of Dictyostelium cell differentiation, in part because the cell cycle in Dictyostelium is unusual, lacking a G1 phase. Here we describe the cell-cycle regulated expression of rnrB, which codes for the small subunit of ribonucleotide reductase and is a marker of late G1 in many systems. There appear to be two expression peaks, one in mid-G2 and the other near the G2/M transition. Using Xgal/anti-BrdU double staining, we show that cells in asynchronously growing cultures express in both phases, with a gap between them during which the gene is transcriptionally silent. Cold-synchronized cells show exclusively G2/M expression, while mid-G2 expression is seen in high-density synchronized cells and can also be inferred in cells undergoing synchronization by either method. rnrB expression occurs in other systems shortly after cells pass a point (the "restriction point" or "start") at which they commit to complete their current cell cycle. We demonstrate a similar commitment point in Dictyostelium and show that this occurs shortly before the mid-G2 rnrB expression peak. The Dictyostelium cell cycle thus appears to include a well-defined though inconspicuous event, between early and mid-G2, with some features which are normally associated with the G1/S transition. Others have described a switch from stalk to spore differentiation preference at about this time. Since Dictyostelium cells switch back from spore to stalk preference approximately at the G2/M rnrB expression maximum, cell differentiation as well as rnrB expression may be regulated directly by fundamental cell cycle control processes.
Collapse
Affiliation(s)
- H MacWilliams
- Zoologisches Institut, Ludwig-Maximilians-Universitat Luisenstrasse 14, 80333 München 2, Germany.
| | | | | | | | | |
Collapse
|