1
|
Aziz AA, Siddiqui RA, Amtul Z. Engineering of fluorescent or photoactive Trojan probes for detection and eradication of β-Amyloids. Drug Deliv 2020; 27:917-926. [PMID: 32597244 PMCID: PMC8216438 DOI: 10.1080/10717544.2020.1785048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/04/2022] Open
Abstract
Trojan horse technology institutes a potentially promising strategy to bring together a diagnostic or cell-based drug design and a delivery platform. It provides the opportunity to re-engineer a novel multimodal, neurovascular detection probe, or medicine to fuse with blood-brain barrier (BBB) molecular Trojan horse. In Alzheimer's disease (AD) this could allow the targeted delivery of detection or therapeutic probes across the BBB to the sites of plaques and tangles development to image or decrease amyloid load, enhance perivascular Aβ clearance, and improve cerebral blood flow, owing principally to the significantly improved cerebral permeation. A Trojan horse can also be equipped with photosensitizers, nanoparticles, quantum dots, or fluorescent molecules to function as multiple targeting theranostic compounds that could be activated following changes in disease-specific processes of the diseased tissue such as pH and protease activity, or exogenous stimuli such as, light. This concept review theorizes the use of receptor-mediated transport-based platforms to transform such novel ideas to engineer systemic and smart Trojan detection or therapeutic probes to advance the neurodegenerative field.
Collapse
Affiliation(s)
- Amal A. Aziz
- Sir Wilfrid Laurier Secondary School, Thames Valley District School Board, London, Canada
| | - Rafat A. Siddiqui
- Nutrition Science and Food Chemistry Laboratory, Agricultural Research Station, Virginia State University, Petersburg, VA, USA
| | - Zareen Amtul
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
2
|
Iannuzzi C, Irace G, Sirangelo I. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity. Molecules 2015; 20:2510-28. [PMID: 25648594 PMCID: PMC6272481 DOI: 10.3390/molecules20022510] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023] Open
Abstract
Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs) are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| | - Gaetano Irace
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| | - Ivana Sirangelo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| |
Collapse
|
3
|
Miyamoto K, Tanaka N, Moriguchi K, Ueno R, Kadomatsu K, Kitagawa H, Kusunoki S. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis. Glycobiology 2014; 24:469-75. [PMID: 24584141 DOI: 10.1093/glycob/cwu014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.
Collapse
MESH Headings
- Acetylglucosamine/genetics
- Acetylglucosamine/immunology
- Acetylglucosamine/metabolism
- Animals
- Chondroitin Sulfates/genetics
- Chondroitin Sulfates/immunology
- Chondroitin Sulfates/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Enzymologic/immunology
- Mice
- Mice, Knockout
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Sulfotransferases/genetics
- Sulfotransferases/immunology
- Sulfotransferases/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Carbohydrate Sulfotransferases
Collapse
Affiliation(s)
- Katsuichi Miyamoto
- Department of Neurology, Kinki University School of Medicine, Osaka-Sayama, Japan
| | | | | | | | | | | | | |
Collapse
|
4
|
Wang H, Raleigh DP. The ability of insulin to inhibit the formation of amyloid by pro-islet amyloid polypeptide processing intermediates is significantly reduced in the presence of sulfated glycosaminoglycans. Biochemistry 2014; 53:2605-14. [PMID: 24654599 PMCID: PMC4010284 DOI: 10.1021/bi4015488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Islet
amyloid polypeptide (IAPP) is responsible for amyloid deposition
in type 2 diabetes and plays an important role in the loss of β-cell
mass associated with the disease and in the failure of islet transplants, but the mechanism of islet amyloid formation is not understood. The
incorrect processing of proIAPP to produce partially processed forms
of the peptide has been proposed to play a role in the initiation
of islet amyloid in vivo by promoting interactions
with proteoglycans of the extracellular matrix. Insulin is a potent
inhibitor of the formation of amyloid by IAPP in vitro in a homogeneous solution; however, its ability to inhibit IAPP
in the presence of proteoglycans has not been tested, nor has its
effect on the formation of amyloid by proIAPP processing intermediates
been examined. Here we show that insulin is a much less effective
amyloid inhibitor of both IAPP and proIAPP processing intermediates in vitro in the presence of model glycosaminoglycans, but
does inhibit the formation of amyloid by proIAPP processing intermediates
in a homogeneous solution. This highlights another mechanism by which
sulfated proteoglycans could enhance islet amyloid formation in vivo. Interactions with sulfated proteoglycans can directly
promote amyloid formation and can also significantly reduce the effectiveness
of natural inhibitors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, State University of New York at Stony Brook , Stony Brook, New York 11794-3400, United States
| | | |
Collapse
|
5
|
Wang H, Cao P, Raleigh DP. Amyloid formation in heterogeneous environments: islet amyloid polypeptide glycosaminoglycan interactions. J Mol Biol 2012; 425:492-505. [PMID: 23154166 DOI: 10.1016/j.jmb.2012.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/25/2012] [Accepted: 11/03/2012] [Indexed: 11/20/2022]
Abstract
Amyloid formation plays an important role in a broad range of diseases, and the search for amyloid inhibitors is an active area of research. Amyloid formation takes places in a heterogeneous environment in vivo with the potential for interactions with membranes and with components of the extracellular matrix. Naturally occurring amyloid deposits are associated with sulfated proteoglycans and other factors. However, the vast majority of in vitro assays of amyloid formation and amyloid inhibition are conducted in homogeneous solution where the potential for interactions with membranes or sulfated proteoglycans is lacking and it is possible that different results may be obtained in heterogeneous environments. We show that variants of islet amyloid polypeptide (IAPP), which are non-amyloidogenic in homogeneous solution, can be readily induced to form amyloid in the presence of glycosaminoglycans (GAGs). GAGs are found to be more effective than anionic lipid vesicles at inducing amyloid formation on a per-charge basis. Several known inhibitors of IAPP amyloid formation are shown to be less effective in the presence of GAGs.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | | | |
Collapse
|
6
|
Kokjohn TA, Maarouf CL, Roher AE. Is Alzheimer's disease amyloidosis the result of a repair mechanism gone astray? Alzheimers Dement 2011; 8:574-83. [PMID: 22047632 DOI: 10.1016/j.jalz.2011.05.2429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 01/21/2023]
Abstract
Here, we synthesize several lines of evidence supporting the hypothesis that at least one function of amyloid-β is to serve as a part of the acute response to brain hemodynamic disturbances intended to seal vascular leakage. Given the resilient and adhesive physicochemical properties of amyloid, an abluminal hemostatic repair system might be highly advantageous, if deployed on a limited and short-term basis, in young individuals. However, in the aged, inevitable cardiovascular dysfunction combined with brain microvascular lesions may yield global chronic hypoperfusion that may lead to continuous amyloid deposition and consequential negative effects on neuronal viability. A large body of experimental evidence supports the hypothesis of an amyloid-β rescue function gone astray. Preventing or inducing the removal of amyloid in Alzheimer's disease (AD) has been simultaneously successful and disappointing. Amyloid deposits clearly play major roles in AD, but they may not represent the preeminent factor in dementia pathogenesis. Successful application of AD preventative approaches may hinge on an accurate and comprehensive view of comorbidities, including cardiovascular disease, diabetes, and head trauma.
Collapse
Affiliation(s)
- Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | |
Collapse
|
7
|
Meng F, Raleigh DP. Inhibition of glycosaminoglycan-mediated amyloid formation by islet amyloid polypeptide and proIAPP processing intermediates. J Mol Biol 2010; 406:491-502. [PMID: 21195086 DOI: 10.1016/j.jmb.2010.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 02/07/2023]
Abstract
Islet amyloid polypeptide (IAPP; also known as amylin) is responsible for islet amyloid formation in type 2 diabetes, and IAPP-induced toxicity is believed to contribute to the loss of β-cell mass associated with the late stages of type 2 diabetes. Islet amyloid formation may also play a role in graft failure after transplantation. IAPP is produced as a prohormone, pro-islet amyloid polypeptide (proIAPP), and processed in the secretory granules of the pancreatic β-cells. Partially processed forms of proIAPP are found in amyloid deposits; most notable is a 48-residue intermediate, proIAPP(1-48), which includes the N-terminal pro-extension, but which has been properly processed at the C-terminus. Incomplete processing may play a role in islet amyloid formation by promoting interactions with sulfated proteoglycans of the extracellular matrix, which, in turn, promote amyloid formation. We show that acid fuchsin (3-(1-(4-amino-3-methyl-5-sulphonatophenyl)-1-(4-amino-3-sulphonatophenyl)methylene)cyclohexa-1,4-dienesulphonic acid), a simple sulfonated triphenyl methyl derivative, is a potent inhibitor of amyloid formation by the proIAPP(1-48) intermediate. The more complicated triphenyl methane derivative fast green FCF {ethyl-[4-[[4-[ethyl-[(3-sulfophenyl)methyl]amino]phenyl]-(4-hydroxy-2-sulfophenyl)methylidene]-1-cyclohexa-2,5-dienylidene]-[(3-sulfophenyl)methyl]azanium} also inhibits amyloid formation by IAPP and the proIAPP processing intermediate. Both compounds inhibit amyloid formation by mixtures of the proIAPP intermediate and the model glycosaminoglycan heparan sulfate. Acid fuchsin also inhibits glycosaminoglycan-mediated amyloid formation by mature IAPP. The ability to inhibit amyloid formation is not simply due to the compounds being sulfonated, since the sulfonated inhibitor of amyloid-β, tramiprosate, is not an inhibitor of amyloid formation by proIAPP(1-48).
Collapse
Affiliation(s)
- Fanling Meng
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
8
|
Ye M, Zhang Y, Li H, Xie M, Hu J. Supramolecular Structures of Amyloid-Related Peptides in an Ambient Water Nanofilm. J Phys Chem B 2010; 114:15759-65. [PMID: 21077660 DOI: 10.1021/jp105501x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Ye
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Muyun Xie
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China and Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Abedini A, Raleigh DP. A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides. Protein Eng Des Sel 2009; 22:453-9. [PMID: 19596696 DOI: 10.1093/protein/gzp036] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amyloidogenic proteins and polypeptides can be divided into two structural classes, namely those which are flexible and are intrinsically disordered in their unaggregated state and those which form a compact globular structure with a well-defined tertiary fold in their normally soluble state. This review article is focused on amyloid formation by natively disordered polypeptides. Important examples of this class include islet amyloid polypeptide (IAPP, amylin), pro-IAPP processing intermediates, alpha-synuclein, the Abeta peptide, atrial natriuretic factor, calcitonin, pro-calcitonin, the medin polypeptide, as well as a range of de novo designed peptides. Amyloid formation is a complex process consisting of a lag phase during which no detectable fibril material is formed, followed by a rapid growth phase that leads to amyloid fibrils. A critical analysis of the literature suggests that a subset of intrinsically disordered polypeptides populate a helical intermediate during the lag phase. In this scenario, early formation of multimeric species is promoted by helix-helix association involving one region of the polypeptide chain which leads to a high effective concentration of an amyloidogenic sequence located in a different region of the chain. Helical intermediates appear to be particularly important in membrane-catalyzed amyloid formation and have been implicated in glycosaminoglycan mediated amyloid formation as well. There is suggestive evidence that targeting helix-helix interactions can be a viable strategy to inhibit amyloid formation. The characterization of transient helical intermediates is challenging, but new methods are being developed that offer the prospect of providing residue-specific information in real time.
Collapse
Affiliation(s)
- Andisheh Abedini
- Division of Surgical Science, Department of Surgery, College of Physicians and Surgeons, Columbia University, New York, NY 11794, USA.
| | | |
Collapse
|
10
|
Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009; 48:3030-59. [PMID: 19330877 DOI: 10.1002/anie.200802808] [Citation(s) in RCA: 486] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mind how you go: The current strategies for the development of therapies for Alzheimer's disease are very diverse. Particular attention is given to the search for inhibitors (see picture for two examples) of the proteolytic enzyme beta- and gamma-secretase, which inhibits the cleavage of the amyloid precursor proteins into amyloid beta peptides, from which the disease-defining deposits of plaque in the brains of Alzheimer's patients originates.Research on senile dementia and Alzheimer's disease covers an extremely broad range of scientific activities. At the recent international meeting of the Alzheimer's Association (ICAD 2008, Chicago) more than 2200 individual scientific contributions were presented. The aim of this Review is to give an overview of the field and to outline its main areas, starting from behavioral abnormalities and visible pathological findings and then focusing on the molecular details of the pathology. The "amyloid hypothesis" of Alzheimer's disease is given particular attention, since the majority of the ongoing therapeutic approaches are based on its theoretical framework.
Collapse
Affiliation(s)
- Roland Jakob-Roetne
- F.Hoffmann-La Roche AG, Medicinal Chemistry, Bldg 92/8.10B, 4070 Basel, Switzerland.
| | | |
Collapse
|
11
|
Jakob-Roetne R, Jacobsen H. Die Alzheimer-Demenz: von der Pathologie zu therapeutischen Ansätzen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200802808] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Abedini A, Raleigh DP. A role for helical intermediates in amyloid formation by natively unfolded polypeptides? Phys Biol 2009; 6:015005. [PMID: 19208933 DOI: 10.1088/1478-3975/6/1/015005] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Amyloid formation and aberrant protein aggregation have been implicated in more than 15 different human diseases and an even wider range of proteins form amyloid in vitro. From a structural perspective the proteins which form amyloid can be divided into two classes: those which adopt a compact globular fold and must presumably at least partially unfold to form amyloid and those which are unstructured in their monomeric state. Important examples of the latter include the Abeta peptide of Alzheimer's disease, atrial natriuretic factor, calcitonin, pro-calcitonin, islet amyloid polypeptide (IAPP, amylin), alpha-synuclein and the medin polypeptide. The kinetics of amyloid assembly are complex and typically involve a lag phase during which little or no fibril material is formed, followed by a rapid growth stage leading to the beta-sheet-rich amyloid structure. Increasing evidence suggests that some natively unfolded polypeptides populate a helical intermediate during the lag phase. We propose a model in which early oligomerization is linked to helix formation and is promoted by helix-helix association. Recent work has highlighted the potential importance of polypeptide membrane interactions in amyloid formation and helical intermediates appear to play an important role here as well. Characterization of helical intermediates is experimentally challenging but new spectroscopic techniques are emerging which hold considerable promise and even have the potential to provide residue specific information.
Collapse
Affiliation(s)
- Andisheh Abedini
- Joslin Diabetes Center, Division of Cellular and Molecular Physiology, Harvard Medical School, One Joslin Place, Boston, MA 02250, USA.
| | | |
Collapse
|
13
|
Chen K, Maley J, Yu PH. Potential implications of endogenous aldehydes in ?-amyloid misfolding, oligomerization and fibrillogenesis. J Neurochem 2006; 99:1413-24. [PMID: 17074066 DOI: 10.1111/j.1471-4159.2006.04181.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aldehydes are capable of inducing protein cross-linkage. An increase in aldehydes has been found in Alzheimer's disease. Formaldehyde and methylglyoxal are produced via deamination of, respectively, methylamine and aminoacetone catalyzed by semicarbazide-sensitive amine oxidase (SSAO, EC 1.4.3.6. The enzyme is located on the outer surface of the vasculature, where amyloidosis is often initiated. A high SSAO level has been identified as a risk factor for vascular disorders. Serum SSAO activity has been found to be increased in Alzheimer's patients. Malondialdehyde and 4-hydroxynonenal are derived from lipid peroxidation under oxidative stress, which is also associated with Alzheimer's disease. Aldehydes may potentially play roles in beta-amyloid aggregation related to the pathology of Alzheimer's disease. In the present study, thioflavin-T fluorometry, dynamic light scattering, circular dichroism spectroscopy and atomic force microscopy were employed to reveal the effect of endogenous aldehydes on beta-amyloid at different stages, i.e. beta-sheet formation, oligomerization and fibrillogenesis. Formaldehyde, methylglyoxal and malondialdehyde and, to a lesser extent, 4-hydroxynonenal are not only capable of enhancing the rate of formation of beta-amyloid beta-sheets, oligomers and protofibrils but also of increasing the size of the aggregates. The possible relevance to Alzheimer's disease of the effects of these aldehydes on beta-amyloid deposition is discussed.
Collapse
Affiliation(s)
- Kun Chen
- Neuropsychiatry Research Unit, Department of Psychiatry, Saskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
14
|
Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, Vitek MP, Hovanesian V, Stopa EG. Microvascular injury and blood-brain barrier leakage in Alzheimer's disease. Neurobiol Aging 2006; 28:977-86. [PMID: 16782234 DOI: 10.1016/j.neurobiolaging.2006.05.016] [Citation(s) in RCA: 348] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/07/2006] [Accepted: 05/09/2006] [Indexed: 02/02/2023]
Abstract
Thinning and discontinuities within the vascular basement membrane (VBM) are associated with leakage of the plasma protein prothrombin across the blood-brain barrier (BBB) in Alzheimer's disease (AD). Prothrombin immunohistochemistry and ELISA assays were performed on prefrontal cortex. In severe AD, prothrombin was localized within the wall and neuropil surrounding microvessels. Factor VIII staining in severe AD patients indicated that prothrombin leakage was associated with shrinkage of endothelial cells. ELISA revealed elevated prothrombin levels in prefrontal cortex AD cases that increased with the Braak stage (Control=1.39, I-II=1.76, III-IV=2.28, and V-VI=3.11 ng prothrombin/mg total protein). Comparing these four groups, there was a significant difference between control and Braak V-VI (p=0.0095) and also between Braak stages I-II and V-VI (p=0.0048). There was no significant difference in mean prothrombin levels when cases with versus without cerebral amyloid angiopathy (CAA) were compared (p-value=0.3627). When comparing AD patients by APOE genotype (ApoE3,3=2.00, ApoE3,4=2.49, and ApoE4,4=2.96 ng prothrombin/mg total protein) an analysis of variance indicated a difference between genotypes at the 10% significance level (p=0.0705). Tukey's test indicated a difference between the 3,3 and 4,4 groups (p=0.0607). These studies provide evidence that in advanced AD (Braak stage V-VI), plasma proteins like prothrombin can be found within the microvessel wall and surrounding neuropil, and that leakage of the blood-brain barrier may be more common in patients with at least one APOE4 allele.
Collapse
Affiliation(s)
- B D Zipser
- Department of Pathology (Neuropathology Division), Brown Medical School, Rhode Island Hospital, Providence, RI 02903, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rolls A, Cahalon L, Bakalash S, Avidan H, Lider O, Schwartz M. A sulfated disaccharide derived from chondroitin sulfate proteoglycan protects against inflammation-associated neurodegeneration. FASEB J 2006; 20:547-9. [PMID: 16396993 DOI: 10.1096/fj.05-4540fje] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chondroitin sulfate proteoglycan (CSPG), a matrix protein that occurs naturally in the central nervous system (CNS), is considered to be a major inhibitor of axonal regeneration and is known to participate in activation of the inflammatory response. The degradation of CSPG by a specific enzyme, chondroitinase ABC, promotes repair. We postulated that a disaccharidic degradation product of this glycoprotein (CSPG-DS), generated following such degradation, participates in the modulation of the inflammatory responses and can, therefore, promote recovery in immune-induced neuropathologies of the CNS, such as experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune uveitis (EAU). In these pathologies, the dramatic increase in T cells infiltrating the CNS is far in excess of the numbers needed for regular maintenance. Here, we show that CSPG-DS markedly alleviated the clinical symptoms of EAE and protected against the neuronal loss in EAU. The last effect was associated with a reduction in the numbers of infiltrating T cells and marked microglia activation. This is further supported by our in vitro results indicating that CSPG-DS attenuated T cell motility and decreased secretion of the cytokines interferon-gamma and tumor necrosis factor-alpha. Mechanistically, these effects are associated with an increase in SOCS-3 levels and a decrease in NF-kappaB. Our results point to a potential therapeutic modality, in which a compound derived from an endogenous CNS-resident molecule, known for its destructive role in CNS recovery, might be helpful in overcoming inflammation-induced neurodegenerative conditions.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/isolation & purification
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Apoptosis/drug effects
- Autoimmune Diseases/complications
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/pathology
- Cell Adhesion
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Cells, Cultured/metabolism
- Chemotaxis/drug effects
- Chondroitin Sulfate Proteoglycans/chemistry
- Chondroitin Sulfate Proteoglycans/isolation & purification
- Chondroitin Sulfate Proteoglycans/pharmacology
- Chondroitin Sulfate Proteoglycans/therapeutic use
- Cytokines/metabolism
- Disaccharides/isolation & purification
- Disaccharides/pharmacology
- Disaccharides/therapeutic use
- Drug Evaluation, Preclinical
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Humans
- Hypersensitivity, Delayed/drug therapy
- Hypersensitivity, Delayed/prevention & control
- Immunologic Factors/isolation & purification
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Interferon-gamma/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microglia/drug effects
- Microglia/pathology
- Molecular Sequence Data
- NF-kappa B/metabolism
- Nerve Degeneration/etiology
- Nerve Degeneration/prevention & control
- Rats
- Rats, Inbred Lew
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/pathology
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins/biosynthesis
- Suppressor of Cytokine Signaling Proteins/genetics
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Uveitis/complications
- Uveitis/drug therapy
- Uveitis/pathology
Collapse
Affiliation(s)
- Asya Rolls
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
16
|
Koo OM, Rubinstein I, Onyuksel H. Role of nanotechnology in targeted drug delivery and imaging: a concise review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2005; 1:193-212. [PMID: 17292079 DOI: 10.1016/j.nano.2005.06.004] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 06/28/2005] [Indexed: 01/02/2023]
Abstract
The use of nanotechnology in drug delivery and imaging in vivo is a rapidly expanding field. The emphases of this review are on biophysical attributes of the drug delivery and imaging platforms as well as the biological aspects that enable targeting of these platforms to injured and diseased tissues and cells. The principles of passive and active targeting of nanosized carriers to inflamed and cancerous tissues with increased vascular leakiness, overexpression of specific epitopes, and cellular uptake of these nanoscale systems are discussed. Preparation methods-properties of nanoscale systems including liposomes, micelles, emulsions, nanoparticulates, and dendrimer nanocomposites, and clinical indications are outlined separately for drug delivery and imaging in vivo. Taken together, these relatively new and exciting data indicate that the future of nanomedicine is very promising, and that additional preclinical and clinical studies in relevant animal models and disease states, as well as long-term toxicity studies, should be conducted beyond the "proof-of-concept" stage. Large-scale manufacturing and costs of nanomedicines are also important issues to be addressed during development for clinical indications.
Collapse
Affiliation(s)
- Otilia M Koo
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, Illinois 60612-7231, USA
| | | | | |
Collapse
|
17
|
Mousseau DD, Chapelsky S, De Crescenzo G, Kirkitadze MD, Magoon J, Inoue S, Teplow DB, O'Connor-McCourt MD. A direct interaction between transforming growth factor (TGF)-betas and amyloid-beta protein affects fibrillogenesis in a TGF-beta receptor-independent manner. J Biol Chem 2003; 278:38715-22. [PMID: 12867422 DOI: 10.1074/jbc.m304080200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) receptor-mediated signaling has been proposed to mediate both the beneficial and deleterious roles for this cytokine in amyloid-beta protein (Abeta) function. In order to assess receptor dependence of these events, we used PC12 cell cultures, which are devoid of TGF-beta receptors. Surprisingly, TGF-beta potentiated the neurotoxic effects of the 40-residue Abeta peptide, Abeta-(1-40), in this model suggesting that there may be a direct, receptor-independent interaction between TGF-beta and Abeta-(1-40). Surface plasmon resonance confirmed that TGF-beta binds with high affinity directly to Abeta-(1-40) and electron microscopy revealed that TGF-beta enhances Abeta-(1-40) oligomerization. Immunohistochemical examination of mouse brain revealed that hippocampal CA1 and dentate gyrus, two regions classically associated with Abeta-mediated pathology, lack TGF-beta Type I receptor immunoreactivity, thus indicating that TGF-beta receptor-mediated signaling would not be favored in these regions. Our observations not only provide for a unique, receptor-independent mechanism of action for TGF-beta, but also help to reconcile the literature interpreting the role of TGF-beta in Abeta function. These data support a critical etiological role for this mechanism in neuropathological amyloidoses.
Collapse
Affiliation(s)
- Darrell D Mousseau
- Cell Signaling Group, Neuropsychiatry Research Unit, Department of Psychiatry, University of Saskatchewan, Saskatoon S7N 5E4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sawabe M, Hamamatsu A, Ito T, Arai T, Ishikawa K, Chida K, Izumiyama N, Honma N, Takubo K, Nakazato M. Early pathogenesis of cardiac amyloid deposition in senile systemic amyloidosis: close relationship between amyloid deposits and the basement membranes of myocardial cells. Virchows Arch 2003; 442:252-7. [PMID: 12647215 DOI: 10.1007/s00428-003-0759-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/07/2003] [Indexed: 10/25/2022]
Abstract
Despite a number of in vitro studies of transthyretin (TTR) amyloidogenesis the early stage of in vivo amyloidogenesis in the human heart is largely unknown. A heart with a mild degree of cardiac amyloidosis removed from a 90-year old woman at autopsy was selected for analysis. The genotype of the TTR was the wild type. An immunohistochemical study with anti-TTR antibody was performed on serial paraffin sections, and 17 TTR-positive lesions less than 50 micro m in diameter consisting of 13 interstitial and 4 vascular lesions were identified. The early interstitial lesions start as thick membranous deposits between interfacing myocardial cells. They are Congophilic with green birefringence and positive for apolipoprotein E but negative for amyloid P component. The TTR-positive amyloid extends along intercellular spaces and becomes larger, involving several myocardial fibers. The media is the initial site of arteriolar involvement. According to the in vitro studies of amyloid fibrillogenesis, the most critical step is formation of the nucleus under supersaturated conditions. The supersaturated conditions are speculated to be achieved by binding to proteoglycans or lipid membranes. Our results indicate that the basement membrane of myocardial cells is the initial site of amyloid deposition, providing a suitable place for concentration of TTR.
Collapse
Affiliation(s)
- Motoji Sawabe
- Departments of Pathology and Cardiology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakae-cho, Itabashi, 173-0015, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|