1
|
Lagou MK, Argyris DG, Vodopyanov S, Gunther-Cummins L, Hardas A, Poutahidis T, Panorias C, DesMarais S, Entenberg C, Carpenter RS, Guzik H, Nishku X, Churaman J, Maryanovich M, DesMarais V, Macaluso FP, Karagiannis GS. Morphometric Analysis of the Thymic Epithelial Cell (TEC) Network Using Integrated and Orthogonal Digital Pathology Approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584509. [PMID: 38559037 PMCID: PMC10979902 DOI: 10.1101/2024.03.11.584509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The thymus, a central primary lymphoid organ of the immune system, plays a key role in T cell development. Surprisingly, the thymus is quite neglected with regards to standardized pathology approaches and practices for assessing structure and function. Most studies use multispectral flow cytometry to define the dynamic composition of the thymus at the cell population level, but they are limited by lack of contextual insight. This knowledge gap hinders our understanding of various thymic conditions and pathologies, particularly how they affect thymic architecture, and subsequently, immune competence. Here, we introduce a digital pathology pipeline to address these challenges. Our approach can be coupled to analytical algorithms and utilizes rationalized morphometric assessments of thymic tissue, ranging from tissue-wide down to microanatomical and ultrastructural levels. This pipeline enables the quantitative assessment of putative changes and adaptations of thymic structure to stimuli, offering valuable insights into the pathophysiology of thymic disorders. This versatile pipeline can be applied to a wide range of conditions that may directly or indirectly affect thymic structure, ranging from various cytotoxic stimuli inducing acute thymic involution to autoimmune diseases, such as myasthenia gravis. Here, we demonstrate applicability of the method in a mouse model of age-dependent thymic involution, both by confirming established knowledge, and by providing novel insights on intrathymic remodeling in the aged thymus. Our orthogonal pipeline, with its high versatility and depth of analysis, promises to be a valuable and practical toolset for both basic and translational immunology laboratories investigating thymic function and disease.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Dimitrios G Argyris
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Stepan Vodopyanov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Leslie Gunther-Cummins
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Alexandros Hardas
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, North Mymms, Hatfield, United Kingdom
| | - Theofilos Poutahidis
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Panorias
- Division of Statistics and Operational Research, Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia DesMarais
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Conner Entenberg
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Randall S Carpenter
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hillary Guzik
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Xheni Nishku
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Joseph Churaman
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Maria Maryanovich
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Vera DesMarais
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - Frank P Macaluso
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Tumor Microenvironment and Metastasis Program, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Integrated Imaging Program for Cancer Research, Montefiore-Einstein Comprehensive Cancer Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Montefiore-Einstein Comprehensive Cancer, Center, Bronx, NY, USA
| |
Collapse
|
2
|
Abstract
The generation of a functional T cell repertoire in the thymus is mainly orchestrated by thymic epithelial cells (TECs), which provide developing T cells with cues for their navigation, proliferation, differentiation and survival. The TEC compartment has been segregated historically into two major populations of medullary TECs and cortical TECs, which differ in their anatomical localization, molecular characteristics and functional roles. However, recent studies have shown that TECs are highly heterogeneous and comprise multiple subpopulations with distinct molecular and functional characteristics, including tuft cell-like or corneocyte-like phenotypes. Here, we review the most recent advances in our understanding of TEC heterogeneity from a molecular, functional and developmental perspective. In particular, we highlight the key insights that were recently provided by single-cell genomic technologies and in vivo fate mapping and discuss them in the context of previously published data.
Collapse
|
3
|
Wagner DH. Of the multiple mechanisms leading to type 1 diabetes, T cell receptor revision may play a prominent role (is type 1 diabetes more than a single disease?). Clin Exp Immunol 2016; 185:271-80. [PMID: 27271348 DOI: 10.1111/cei.12819] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/20/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022] Open
Abstract
A single determinant factor for autoimmunity does not exist; disease development probably involves contributions from genetics, the environment and immune dysfunction. Type 1 diabetes is no exception. Genomewide-associated studies (GWAS) analysis in T1D has proved disappointing in revealing contributors to disease prediction; the only reliable marker has been human leucocyte antigen (HLA). Specific HLAs include DR3/DR4/DQ2/DQ8, for example. Because HLA molecules present antigen to T cells, it is reasonable that certain HLA molecules have a higher affinity to present self-antigen. Recent studies have shown that additional polymorphisms in HLA that are restricted to autoimmune conditions are further contributory. A caveat is that not all individuals with the appropriate 'pro-autoimmune' HLA develop an autoimmune disease. Another crucial component is autoaggressive T cells. Finding a biomarker to discriminate autoaggressive T cells has been elusive. However, a subset of CD4 helper cells that express the CD40 receptor have been described as becoming pathogenic. An interesting function of CD40 on T cells is to induce the recombination-activating gene (RAG)1/RAG2 T cell receptor recombination machinery. This observation is contrary to immunology paradigms that changes in TCR molecules cannot take place outside the thymic microenvironment. Alteration in TCR, called TCR revision, not only occurs, but may help to account for the development of autoaggressive T cells. Another interesting facet is that type 1 diabetes (T1D) may be more than a single disease; that is, multiple cellular components contribute uniquely, but result ultimately in the same clinical outcome, T1D. This review considers the process of T cell maturation and how that could favor auto-aggressive T cell development in T1D. The potential contribution of TCR revision to autoimmunity is also considered.
Collapse
Affiliation(s)
- D H Wagner
- Department of Medicine, Department of Neurology, Webb-Waring Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Ohigashi I, Kozai M, Takahama Y. Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 2016; 271:10-22. [DOI: 10.1111/imr.12404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Mina Kozai
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Yousuke Takahama
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| |
Collapse
|
5
|
He M, Huang H, Wang M, Chen A, Ning X, Yu K, Li Q, Li W, Ma L, Chen Z, Wang X, Sun Q. Fluorescence-Activated Cell Sorting Analysis of Heterotypic Cell-in-Cell Structures. Sci Rep 2015; 5:9588. [PMID: 25913618 PMCID: PMC5386181 DOI: 10.1038/srep09588] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/12/2015] [Indexed: 12/19/2022] Open
Abstract
Cell-in-cell structures (CICs), characterized by the presence of one or more viable cells inside another one, were recently found important player in development, immune homeostasis and tumorigenesis etc. Incompatible with ever-increasing interests on this unique phenomenon, reliable methods available for high throughput quantification and systemic investigation are lacking. Here, we report a flow cytometry-based method for rapid analysis and sorting of heterotypic CICs formed between lymphocytes and tumor cells. In this method, cells were labeled with fluorescent dyes for fluorescence-activated cell sorting (FACS) by flow cytometry, conditions for reducing cell doublets were optimized such that high purity (>95%) of CICs could be achieved. By taking advantage of this method, we analyzed CICs formation between different cell pairs, and found that factors from both internalized effector cells and engulfing target cells affect heterotypic CICs formation. Thus, flow cytometry-based FACS analysis would serve as a high throughput method to promote systemic researches on CICs.
Collapse
Affiliation(s)
- Meifang He
- 1] Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China [2] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [3] The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Hongyan Huang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing 100038, P. R. China
| | - Manna Wang
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Ang Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiangkai Ning
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Kaitao Yu
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Qihong Li
- Department of Stomatology, Affiliated Hospital of Academy of Military Medical Science, 8 Dongda Street, Beijing 100071, P. R. China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan er Road, Guangzhou, Guangdong 510080, P. R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Biotechnology, Southern Medical University, Guangzhou 510515, P. R. China
| | - Zhaolie Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China
| | - Xiaoning Wang
- The Institute of Life Sciences, the Key Laboratory of Normal Aging &Geriatric, the State Key Laboratory of Kidney, the Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Qiang Sun
- 1] Laboratory of Cell Engineering, Institute of Biotechnology, 20 Dongda Street, Beijing 100071, P. R. China [2] National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, P. R. China
| |
Collapse
|
6
|
Abstract
For a very long time, we studied the metallophilic macrophages of the rodent thymus and in this review our results on morphological, histochemical, enzymehistochemical, immunohistochemical, ultrastructural and functional features of these cells, as well as the molecular regulation of their development, will be presented. Furthermore, the differences between species will also be discussed and the comparisons with similar/related cell types (metallophilic macrophages in the marginal sinus of the spleen, subcapsular sinus of the lymph nodes and germinal centers of secondary lymphoid follicles) will be made. Metallophilic macrophages are strategically positioned in the thymic cortico-medullary zone and are very likely to be involved in: (i) the metabolism, synthesis and production of bioactive lipids, most likely arachidonic acid metabolites, based on their histochemical and enzymehistochemical features, and (ii) the process of negative selection that occurs in the thymus, based on their ultrastructural features and their reactivity after the application of toxic or immunosuppressive/immunomodulatory agents. Taken together, their phenotypic and functional features strongly suggest that metallophilic macrophages play a significant role in the thymic physiology.
Collapse
|
7
|
The importance of the nurse cells and regulatory cells in the control of T lymphocyte responses. BIOMED RESEARCH INTERNATIONAL 2012; 2013:352414. [PMID: 23509712 PMCID: PMC3591132 DOI: 10.1155/2013/352414] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
T lymphocytes from the immune system are bone marrow-derived cells whose development and activities are carefully supervised by two sets of accessory cells. In the thymus, the immature young T lymphocytes are engulfed by epithelial “nurse cells” and retained in vacuoles, where most of them (95%) are negatively selected and removed when they have an incomplete development or express high affinity autoreactive receptors. The mature T lymphocytes that survive to this selection process leave the thymus and are controlled in the periphery by another subpopulation of accessory cells called “regulatory cells,” which reduce any excessive immune response and the risk of collateral injuries to healthy tissues. By different times and procedures, nurse cells and regulatory cells control both the development and the functions of T lymphocyte subpopulations. Disorders in the T lymphocytes development and migration have been observed in some parasitic diseases, which disrupt the thymic microenvironment of nurse cells. In other cases, parasites stimulate rather than depress the functions of regulatory T cells decreasing T-mediated host damages. This paper is a short review regarding some features of these accessory cells and their main interactions with T immature and mature lymphocytes. The modulatory role that neurotransmitters and hormones play in these interactions is also revised.
Collapse
|
8
|
Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes. Proc Natl Acad Sci U S A 2012. [PMID: 23188800 DOI: 10.1073/pnas.1213069109] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Distinct subsets of thymic epithelial cells (TECs) support T-cell development and selection. Isolated TECs contain multicellular complexes that enclose many viable thymocytes. However, the functions of those TECs, termed thymic nurse cells (TNCs), are unclear and the idea that TNCs are present in vivo is questioned. Here, we show that TNCs represent a fraction of cortical (c)TECs that are defined by the expression of thymoproteasomes. Intravital imaging revealed TNCs in the thymic cortex in situ, whereas TNCs were detected neither during embryogenesis nor in the postnatal thymuses of various "positive-selector" T-cell receptor (TCR)-transgenic mice, indicating that TNCs are not essential for T-cell differentiation, including positive selection. Rather, cells within TNCs were enriched for long-lived CD4(+)CD8(+) thymocytes that underwent secondary TCR-Vα rearrangement. Thus, TNC complexes are formed in vivo by persistent cTEC-thymocyte interactions that then provide a microenvironment that optimizes T-cell selection through secondary TCR rearrangement.
Collapse
|
9
|
Adachi Y, Hiramatsu S, Tokuda N, Sharifi K, Ebrahimi M, Islam A, Kagawa Y, Koshy Vaidyan L, Sawada T, Hamano K, Owada Y. Fatty acid-binding protein 4 (FABP4) and FABP5 modulate cytokine production in the mouse thymic epithelial cells. Histochem Cell Biol 2012; 138:397-406. [PMID: 22585040 DOI: 10.1007/s00418-012-0963-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 12/11/2022]
Abstract
Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Organ Anatomy, Graduate School of Medicine, Yamaguchi University, 1-1-1, Minami-kogushi, Ube, Yamaguchi 755-8505, Japan,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dorko F, Kluchová D, Boleková A, Spakovská T, Borošová T, Lovasová K. Influence of surgical and chemical orchidectomy on weight and distribution of AChE-nerve fibres in thymuses of adult rats. Eur J Histochem 2011; 55:e22. [PMID: 22073369 PMCID: PMC3203471 DOI: 10.4081/ejh.2011.e22] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 05/15/2011] [Indexed: 11/23/2022] Open
Abstract
The thymus is a crossroad between the immune and neuroendocrine systems. As such, it is innervated by acetylcholinesterase (AChE)-positive fibres of the vagus, the recurrent laryngeal and the phrenic nerves. It is well know, that the innervations density of the thymus increases with age. In our study, adult rats were orchidectomized (surgically and chemically by the application of a luteinizing hormone-releasing hormone). The density of AChE-positive nerve fibres in thymuses, as well as the weight of thymuses was examined. The authors found that both surgical and chemical orchidectomy result in macroscopic and microscopic regeneration of the atrophied thymuses. In regenerated rat’s thymuses after orchidectomy the density of AChE-positive nerve fibres was markedly higher in comparison with the control animals. The distribution, as well as the density of AChE-positive nerve fibres in regenerated thymuses after orchidectomy evokes the images of its innervations like in young animals before age-related involution. The authors also found a markedly higher weight of thymuses of orchidectomized rats in comparison with the control groups. In recent study the authors proved that after 8 weeks surgical orchidectomy leads to the regeneration of thymic AChE-positive innervation and chemical orchidectomy by administration of luteinizing hormone-releasing hormone after 4 weeks of adult rats.
Collapse
Affiliation(s)
- F Dorko
- Department of Anatomy, Faculty of Medicine, P.J. Šafárik University in Košice, Slovakia.
| | | | | | | | | | | |
Collapse
|
11
|
Assessment of the thymic morphometry using ultrasound in full-term newborns. Surg Radiol Anat 2011; 33:689-95. [PMID: 21442251 DOI: 10.1007/s00276-011-0806-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The size of thymus is variable and depends on age of the individual. Thymus undergoes its maximum development at the time of birth, when it also has the greatest relative weight. The aim of our study was to compare the two ways of expressing the size of the newborns' thymus, the Thymus index and estimated volume of thymus. METHODS The examined group consisted of 212 full-term newborns from Slovakia, Europe. We estimated the length, width and thickness of the left and right lobes. We used these data to calculate the approximate volume of the thymus. We also expressed size of the thymus as a multiple of the transverse diameter of the cranial part of the thymus and the sagittal area of the larger lobe of the thymus, the so-called Thymus index. Bilateral differences in thymus lobes' sizes, as well as the thymus' sizes between sexes and among the newborns of different types of birth were also analysed. RESULTS Our results show that (1) the left thymus lobe is longer and thicker than the right lobe; (2) the Thymus index and the estimated volume of the thymus have a strong significant and positive correlation; (3) boys reach significantly higher values of the Thymus index than girls; and (4) when comparing the differences in the thymus size between the newborns born in two different ways (spontaneous and operatively), no significant difference was discovered. CONCLUSION Ultrasound examination is safe, effective and suitable for simple assessment of the thymus size, which has a great variability in children. In other hand, the use of the Thymus index in everyday clinical practice is limited due to different mean values in a number of studies.
Collapse
|
12
|
Dervović D, Zúñiga-Pflücker JC. Positive selection of T cells, an in vitro view. Semin Immunol 2010; 22:276-86. [DOI: 10.1016/j.smim.2010.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 04/23/2010] [Indexed: 12/16/2022]
|
13
|
Gameiro J, Nagib P, Verinaud L. The thymus microenvironment in regulating thymocyte differentiation. Cell Adh Migr 2010; 4:382-90. [PMID: 20418658 DOI: 10.4161/cam.4.3.11789] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The thymus plays a crucial role in the development of T lymphocytes by providing an inductive microenvironment in which committed progenitors undergo proliferation, T-cell receptor gene rearrangements and thymocyte differentiate into mature T cells. The thymus microenvironment forms a complex network of interaction that comprises non lymphoid cells (e.g., thymic epithelial cells, TEC), cytokines, chemokines, extracellular matrix elements (ECM), matrix metalloproteinases and other soluble proteins. The thymic epithelial meshwork is the major component of the thymic microenvironment, both morphologically and phenotypically limiting heterogeneous regions in thymic lobules and fulfilling an important role during specific stages of T-cell maturation. The process starts when bone marrow-derived lymphocyte precursors arrive at the outer cortical region of the thymic gland and begin to mature into functional T lymphocytes that will finally exit the thymus and populate the peripheral lymphoid organs. During their journey inside the thymus, thymocytes must interact with stromal cells (and their soluble products) and extracellular matrix proteins to receive appropriate signals for survival, proliferation and differentiation. The crucial components of the thymus microenvironment, and their complex interactions during the T-cell maturation process are summarized here with the objective of contributing to a better understanding of the function of the thymus, as well as assisting in the search for new therapeutic approaches to improve the immune response in various pathological conditions.
Collapse
Affiliation(s)
- Jacy Gameiro
- Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | |
Collapse
|
14
|
Varga I, Jablonska V, Cingel V, Kubikova E, Dorko F, Polak S. The first histological and immunohistochemical examination of thymus in a case of fetus in fetu. Ann Anat 2010; 192:232-6. [PMID: 20634048 DOI: 10.1016/j.aanat.2010.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/22/2010] [Accepted: 05/24/2010] [Indexed: 02/03/2023]
Abstract
Fetus in fetu (FIF) is a rare condition with less than 150 cases reported in the world to the best of our knowledge. It is a malformed monozygotic twin ("non-dominant twin"), which is found inside the body of a living child or sometimes in an adult ("dominant twin"). Different organs can be seen in these fetuses; vertebral column limbs, central nervous system, gastrointestinal tract, vessels, and genitourinary tract. In the literature, we found only two cases of fetus in fetu with the present thymic tissue. In this paper, the thymus of non-dominant twin exteriorized from the mediastini of dominant twin, was analyzed by histological and imunohistochemical methods. Even though the majority of organs did not develop normally in the mentioned case, thymic tissue was proved to be present in many body parts of the non-dominant twin. In spite of the fact that the cortex and the medulla were not so distinguishable as in the normal thymuses, presence of many basic cell populations was demonstrated: thymic epithelial cells (AE1/AE3 positive cells), T (CD45RO positive) and B (CD20 positive) cells, macrophages (CD68 positive cells), dendritic cells (S100 positive cells) and myoid cells (desmin positive). The Hassall's bodies were localized mostly in the medulla, however in sporadic cases they occurred in the area close to the connective tissue septa. The superficial epithelial cells of the Hassall's corpuscules as well as their internal contents, were markedly stained by alcian blue, and the cystic formations, found inside the Hassall's bodies, contained PAS-positive substance, similar to Hassall's bodies of normal thymuses. This fact indicates that although development of the parasitic twin is incomplete, all three germ layers participate on its development.
Collapse
Affiliation(s)
- Ivan Varga
- Department of Histology and Embryology, Comenius University in Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
15
|
Nihei OK, Fonseca PC, Rubim NM, Bonavita AG, Lyra JSPO, Neves-dos-Santos S, de Carvalho ACC, Spray DC, Savino W, Alves LA. Modulatory effects of cAMP and PKC activation on gap junctional intercellular communication among thymic epithelial cells. BMC Cell Biol 2010; 11:3. [PMID: 20078861 PMCID: PMC2823718 DOI: 10.1186/1471-2121-11-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/15/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We investigated the effects of the signaling molecules, cyclic AMP (cAMP) and protein-kinase C (PKC), on gap junctional intercellular communication (GJIC) between thymic epithelial cells (TEC). RESULTS Treatment with 8-Br-cAMP, a cAMP analog; or forskolin, which stimulates cAMP production, resulted in an increase in dye transfer between adjacent TEC, inducing a three-fold enhancement in the mean fluorescence of coupled cells, ascertained by flow cytometry after calcein transfer. These treatments also increased Cx43 mRNA expression, and stimulated Cx43 protein accumulation in regions of intercellular contacts. VIP, adenosine, and epinephrine which may also signal through cyclic nucleotides were tested. The first two molecules did not mimic the effects of 8-Br-cAMP, however epinephrine was able to increase GJIC suggesting that this molecule functions as an endogenous inter-TEC GJIC modulators. Stimulation of PKC by phorbol-myristate-acetate inhibited inter-TEC GJIC. Importantly, both the enhancing and the decreasing effects, respectively induced by cAMP and PKC, were observed in both mouse and human TEC preparations. Lastly, experiments using mouse thymocyte/TEC heterocellular co-cultures suggested that the presence of thymocytes does not affect the degree of inter-TEC GJIC. CONCLUSIONS Overall, our data indicate that cAMP and PKC intracellular pathways are involved in the homeostatic control of the gap junction-mediated communication in the thymic epithelium, exerting respectively a positive and negative role upon cell coupling. This control is phylogenetically conserved in the thymus, since it was seen in both mouse and human TEC preparations. Lastly, our work provides new clues for a better understanding of how the thymic epithelial network can work as a physiological syncytium.
Collapse
Affiliation(s)
- Oscar K Nihei
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Paula C Fonseca
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Nara M Rubim
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Andre G Bonavita
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jurandy SPO Lyra
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Pathology, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil
| | - Sandra Neves-dos-Santos
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Clinical Analysis, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - David C Spray
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
| | - Wilson Savino
- Laboratory of Thymus Research, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Luiz A Alves
- Laboratory of Cellular Communication, Oswaldo Cruz Institute, The Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Association among size of thymus, anthropometric dimensions and number of lymphocytes in peripheral blood in newborns from Slovakia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153:229-34. [PMID: 19851439 DOI: 10.5507/bp.2009.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIMS Thymus is the central lymphatic organ in humans with important endocrine function that is involved in maturation of immunocompetent T-lymphocytes. In our study we investigated the relationship among thymus size and the anthropometric dimensions as well as between thymus size and the number of lymphocytes in peripheral blood in full-term newborns. METHODS The examined group consisted of 212 full-term newborns from the region of Southern Slovakia. We examined birth weight, birth body length, head circumference and chest circumference. Thymus size was estimated by ultrasonography and it was expressed as Thymic Index. The number of lymphocytes in peripheral blood was determined from the number of total leukocytes and from the leukogram. RESULTS We have found a statistically significant positive correlation among thymus size and the body dimensions of newborns. The highest correlation with thymus size was found for birth weight (r = 0.409; P < 0.001) followed by birth body length (r = 0.368; P < 0.001), head circumference (r = 0.365; P < 0.001) and chest circumference (r = 0.340; P < 0.001). We have proven also a statistically significant positive correlation between the number of lymphocytes in peripheral blood and thymus size (r = 0.208; P = 0.039). CONCLUSION Our results confirmed the findings of other authors about a close relationship of Thymic Index and basic body parameters in newborns.
Collapse
|
17
|
Yasuzumi F. Need based structural changes in the ductulus efferentis during sperm movements in the human epididymis. Okajimas Folia Anat Jpn 2007; 84:25-34. [PMID: 17654841 DOI: 10.2535/ofaj.84.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dynamic structures of the human ductuli efferentes, which connect between the rete testis and the ductulus epididymidis, are described in the present paper. Maturation of sperm takes place in the tubule and after this process the group of sperm is transferred to the ductus. All ductuli do not show the same histological contents. Each ductulus shows variety of different configuration depending on the functional phase (the state of sperm maturation) of the tubule. The basic pattern of all the tubuli is the same, however, they differ in the thickness, cytoplasmic components of epithelial cells and luminal contents. Larger tubule has big lumen whereas small is almost without a lumen. During the process, spherical and luminal macrophages act as nurse macrophage by using G1 granules obtained from the epithelial cell, and irregular shaped macrophage in the small tubule acts as scavenger macrophage. It has been shown that the epithelial cell of the large tubule show intense excretory activity and the secretory substance is different from other granules and lysosomes by periodic acid methenamine silver staining.
Collapse
Affiliation(s)
- Fumioki Yasuzumi
- Department of Physiological Science Anatomy 2, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215 Japan.
| |
Collapse
|
18
|
Lepelletier Y, Smaniotto S, Hadj-Slimane R, Villa-Verde DMS, Nogueira AC, Dardenne M, Hermine O, Savino W. Control of human thymocyte migration by Neuropilin-1/Semaphorin-3A-mediated interactions. Proc Natl Acad Sci U S A 2007; 104:5545-50. [PMID: 17369353 PMCID: PMC1838472 DOI: 10.1073/pnas.0700705104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is largely established that molecules first discovered in the nervous system are also found in the immune system. Neuropilin-1 (NP-1) was initially identified to mediate semaphorin-induced chemorepulsion during brain development and is also involved in peripheral T cell/dendritic cell interactions. Herein, we studied NP-1 during T cell development in the human thymus. NP-1 is expressed in both cortex and medulla of thymic lobules, being found in distinct CD4/CD8-defined thymocyte subsets. NP-1 is also found in thymic epithelial cells (TEC) in situ and in vitro, and is recruited at the site of TEC-thymocyte contact. Moreover, NP-1 was rapidly up-regulated during thymocyte stimulation by T cell receptor (TCR) and IL-7 or after adhesion to TEC. Semaphorin-3A (Sema-3A), a natural ligand of NP-1, is also present in human thymus, both in TEC and thymocytes, being up-regulated in thymocytes after TCR engagement. Functionally, Sema-3A decreases the adhesion capacity of NP-1(+) thymocytes and induces their migration by a repulsive effect. In conclusion, we show here that NP-1/Sema-3A-mediated interactions participate in the control of human thymocyte development.
Collapse
Affiliation(s)
- Yves Lepelletier
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université René Descartes Paris V, Hôpital Necker, 75743 Paris, France
| | - Salete Smaniotto
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21045-900, Rio de Janeiro, Brazil
- Department of Morphology, Federal University of Alagoas, Maceió, 57072-970, Maceió, Brazil
| | - Réda Hadj-Slimane
- Institut National de la Santé et de la Recherche Médicale Unité 648, Université Paris V René Descartes, 45 Rue des Saints Pères, 75006 Paris, France; and
- TRAGEX Pharma, Tour Reflets, 75015 Paris, France
| | - Déa Maria Serra Villa-Verde
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21045-900, Rio de Janeiro, Brazil
| | - Ana Cristina Nogueira
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21045-900, Rio de Janeiro, Brazil
| | - Mireille Dardenne
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université René Descartes Paris V, Hôpital Necker, 75743 Paris, France
| | - Olivier Hermine
- *Centre National de la Recherche Scientifique Unité Mixte de Recherche 8147, Université René Descartes Paris V, Hôpital Necker, 75743 Paris, France
| | - Wilson Savino
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, 21045-900, Rio de Janeiro, Brazil
- To whom correspondence should be addressed at:
Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro, RJ, Brazil. E-mail:
| |
Collapse
|
19
|
Rosen D, Lee JH, Cuttitta F, Rafiqi F, Degan S, Sunday ME. Accelerated thymic maturation and autoreactive T cells in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2006; 174:75-83. [PMID: 16574933 PMCID: PMC2662921 DOI: 10.1164/rccm.200511-1784oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Bronchopulmonary dysplasia (BPD), a chronic lung disease of newborns triggered by oxygen and barotrauma, is characterized by arrested alveolarization. Increased levels of bombesin-like peptides shortly after birth mediate lung injury: anti-bombesin antibody 2A11 protects against BPD in two baboon models. The role of adaptive immunity in BPD has not been explored previously. OBJECTIVES Our goal was to test the hypothesis that thymic architecture and/or T-cell function is altered with BPD, leading to autoimmunity and immunodeficiency. METHODS Thymic structure was analyzed by histopathology of thymic architecture and immunohistochemistry for thymic maturation markers (terminal deoxynucleotidyl transferase, proliferating cell nuclear antigen, CD4, and CD8). Thymic cortical epithelial cells (nurse cells) were studied using HLA-DR and protein gene product 9.5 as markers. Functional analysis was performed with "mixed lymphocyte reaction" of thymocyte or splenocyte responder cells with autologous lung cells as the stimulators. MEASUREMENTS AND MAIN RESULTS 2A11 treatment attenuates thymic cortical involution in BPD animals, sustaining terminal deoxynucleotidyl transferase-positive prothymocytes and thymocyte proliferation. BPD animals have increased CD4(+) cells in thymic cortex and lung interstitium, which are reduced by 2A11. Conversely, cortical protein gene product 9.5/HLA-DR-positive thymic nurse cells are depleted in BPD animals, but are preserved by 2A11-treatment. Whereas fetal thymocytes and splenocytes respond to phythemagglutinin/ionomycin and to a lesser extent, to autologous lung, BPD thymocytes and splenocytes are phythemagglutinin/ionomycin-unresponsive, and yet react strongly to autologous lung. The 2A11 normalizes these responses. CONCLUSIONS These observations suggest that bombesin-like peptides mediate premature thymic maturation and thymic nurse-cell depletion, leading to autoreactive T cells that could contribute to lung injury.
Collapse
Affiliation(s)
- Dennis Rosen
- Division of Pulmonary Medicine, Department of Medicine, Children's and Brigham and Women's Hospitals, and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
20
|
Vucević D, Colić M, Gasić S, Vasilijić S. [Thymic nurse cells--a specialized thymic microenvironment]. VOJNOSANIT PREGL 2005; 62:133-45. [PMID: 15787167 DOI: 10.2298/vsp0502133v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
<zakljucak> Vise od dve decenije nakon prvog opisa, TNC su i dalje velika nepoznanica i potrebno je jos mnogo istrazivanja pre nego sto budemo bili u mogucnosti da definisemo preciznu ulogu ovih celija u razvoju T-limfocita. Mnoga od dosadasnjih saznanja ukazuju da se timociti u kontaktu sa TNC nalaze na prekretnici u svom razvojnom putu: ili ce biti uklonjeni indukcijom apoptoze ili ce nastaviti svoj razvoj i dalje sazrevanje. Brojna pitanja su za sada bez odgovora, a medju njima su dva posebno intrigantna. Koja je razlika izmedju timocita koji se vezuju za TNC i onih koji to ne cine? Koja je razlika izmedju populacije adherentnih timocita koji su selektivno internalizovani i onih koji su iskljuceni iz procesa internalizacije? Buduca istrazivanja kretanja timocita ka, unutar i van TNC ce verujemo pruziti dragocene informacije o ovoj fazi u razvoju T-limfocita. Nezavisno od toga sta ce buducnost pokazati o pravoj ulozi TNC, jedinstven kompleks koji ove celije formiraju sa timocitima je vrlo neobican, uzbudljiv i zagonetan bioloski fenomen.
Collapse
Affiliation(s)
- Dragana Vucević
- Vojnomedicinska akademija, Institut za medicinska istrazivanja, Beograd.
| | | | | | | |
Collapse
|
21
|
Abstract
The recent advances in molecular biology and genetics, as well as the progress of in vitro techniques, have provided a more coherent image of the thymic function on the molecular level. But they have shifted the attention away from studies on the cellular level, which are necessary to clarify the biological roles of different cell types of the thymic microenvironment. The structure and function of the normal thymus depend on mutual interactions between thymocytes and nonlymphocyte cells. In this review a detailed description of morphological and phenotypic features of both maturing thymocytes and nonlymphocyte cells is given. The recent genetic and biochemical data are presented in conjunction with cytological results to enlighten the thymus cell-cell interactions during thymopoiesis and organization of thymic microstructure. Special emphasis is put on the experimental approaches, which may be used to study the interactions between thymocytes and nonlymphocyte cells in vivo.
Collapse
Affiliation(s)
- Novica M Milićević
- Institute of Histology and Embryology, Faculty of Medicine, University of Beograd, YU-11000 Beograd, Serbia and Montenegro
| | | |
Collapse
|