1
|
De Loof A. The mega-evolution of life with its three memory systems depends on sender-receiver communication and problem-solving. A narrative review. J Physiol 2024; 602:2417-2431. [PMID: 37721172 DOI: 10.1113/jp284412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
It should be the ultimate goal of any theory of evolution to delineate the contours of an integrative system to answer the question: How does life (in all its complexity) evolve (which can be called mega-evolution)? But how to plausibly define 'life'? My answer (1994-2023) is: 'life' sounds like a noun, but denotes an activity, and thus is a verb. Life (L) denotes nothing else than the total sum (∑) of all acts of communication (transfer of information) (C) executed by any type of senders-receivers at all their levels (up to at least 15) of compartmental organization: L = ∑C. The 'communicating compartment' is better suited to serve as the universal unit of structure, function and evolution than the cell, the smallest such unit. By paying as much importance to communication activity as to the Central Dogma of molecular biology, a wealth of new insights unfold. The major ones are as follows. (1) Living compartments have not only a genetic memory (DNA), but also a still enigmatic cognitive and an electrical memory system (and thus a triple memory system). (2) Complex compartments can have up to three types of progeny: genetic descendants/children, pupils/learners and electricians. (3) Of particular importance to adaptation, any act of communication is a problem-solving act because all messages need to be decoded. Hence through problem-solving that precedes selection, life itself is the driving force of its own evolution (a very clever but counterintuitive and unexpected logical deduction). Perhaps, this is the 'vital force' philosopher and Nobel laureate (in 1927) Henri Bergson searched for but did not find.
Collapse
Affiliation(s)
- Arnold De Loof
- Department of Biology of the KU Leuven, Functional Genomics and Proteomics Group, Leuven, Belgium
| |
Collapse
|
2
|
Biquet-Bisquert A, Carrio B, Meyer N, Fernandes TFD, Abkarian M, Seduk F, Magalon A, Nord AL, Pedaci F. Spatiotemporal dynamics of the proton motive force on single bacterial cells. SCIENCE ADVANCES 2024; 10:eadl5849. [PMID: 38781330 PMCID: PMC11114223 DOI: 10.1126/sciadv.adl5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical gradients across biological membranes are vital for cellular bioenergetics. In bacteria, the proton motive force (PMF) drives essential processes like adenosine triphosphate production and motility. Traditionally viewed as temporally and spatially stable, recent research reveals a dynamic PMF behavior at both single-cell and community levels. Moreover, the observed lateral segregation of respiratory complexes could suggest a spatial heterogeneity of the PMF. Using a light-activated proton pump and detecting the activity of the bacterial flagellar motor, we perturb and probe the PMF of single cells. Spatially homogeneous PMF perturbations reveal millisecond-scale temporal dynamics and an asymmetrical capacitive response. Localized perturbations show a rapid lateral PMF homogenization, faster than proton diffusion, akin to the electrotonic potential spread observed in passive neurons, explained by cable theory. These observations imply a global coupling between PMF sources and consumers along the membrane, precluding sustained PMF spatial heterogeneity but allowing for rapid temporal changes.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Baptiste Carrio
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Nathan Meyer
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Thales F. D. Fernandes
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Manouk Abkarian
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| | - Ashley L. Nord
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale, Université de Montpellier, CNRS, INSERM. Montpellier, France
| |
Collapse
|
3
|
De Loof A. Nature, Calcigender, Nurture: Sex-dependent differential Ca 2+ homeostasis as the undervalued third pillar. Commun Integr Biol 2019; 12:65-77. [PMID: 31143365 PMCID: PMC6527185 DOI: 10.1080/19420889.2019.1592419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/23/2022] Open
Abstract
After many years of sometimes heated discussions, the problem regarding the relative importance of two classical dogmas of the Nature (genes and sex-steroid hormones) versus Nurture (education, teaching-learning etc.) debate, is still awaiting a conclusive solution. Males and females differ in only a few (primordial) genes as is well documented by genomic analyses. However, their sex- and gender-specific behavior and physiology is nevertheless profoundly different, even if they grew up in a similar (educational) environment. By extending the “Calcigender-concept”, originally formulated in 2015, to the simplistic binary Nature versus Nurture concept, a novel framework showing that the sex-steroid hormone-dependent intracellular Calcium concentration is an important third factor may emerge. Although the principles of animal physiology and evolution strongly stress the fact that Nature is always dominant, Nurture can, to a limited extent, play a mitigating role.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Only two sex forms but multiple gender variants: How to explain? Commun Integr Biol 2018; 11:e1427399. [PMID: 29497472 PMCID: PMC5824932 DOI: 10.1080/19420889.2018.1427399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Abstract
Are sex and gender interchangeable terms? In classical biology, both are sometimes but not always used on an equal basis for some groups of animals. However, for our own species the Homo sapiens, they are not. A major question is why are there only two types of gametes (sperm- and egg cells), two types of sex steroids, (androgens and estrogens in vertebrates, and two types of ecdysteroids in insects), while the reproduction-related behaviour of the gamete producers displays a much greater variability than just two prominent forms, namely heterosexual males and heterosexual females? It indicates that in addition to a few sex-determining genes ( = the first pillar), other factors play a role. A second possible pillar is the still poorly understood cognitive memory system in which electrical phenomena and its association with the plasma membrane membrane-cytoskeletal complex of cells play a major role (learning, imitation and imprinting). This paper advances a third pillar, that hitherto has been almost completely ignored, namely the cellular Ca2+-homeostasis system, more specifically its sex-specific differences. Differential male-female genetics- and hormone-based Ca2+-homeostasis with effects on gender-related processes has been named Calcigender before. It will be argued that it follows from the principles of Ca2+- physiology and homeostasis that all individuals of a sexually reproducing animal population have a personalized gender behaviour. Thus, subdividing gender-behaviours in hetero-, homo-, bi-, trans- etc. which all result from a differential use of the very same basic physiological principles, is too primitive a system that may yield false sociological interpretations.
Collapse
|
5
|
De Loof A. Calcitox-aging counterbalanced by endogenous farnesol-like sesquiterpenoids: An undervalued evolutionarily ancient key signaling pathway. Commun Integr Biol 2017; 10:e1341024. [PMID: 28919940 PMCID: PMC5595427 DOI: 10.1080/19420889.2017.1341024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Cells are powerful miniature electrophoresis chambers, at least during part of their life cycle. They die at the moment the voltage gradient over their plasma membrane, and their ability to drive a self-generated electric current carried by inorganic ions through themselves irreversibly collapses. Senescence is likely due to the progressive, multifactorial damage to the cell's electrical system. This is the essence of the "Fading electricity theory of aging" (De Loof et al., Aging Res. Rev. 2013;12:58-66). "Biologic electric current" is not carried by electrons, but by inorganic ions. The major ones are H+, Na+, K+, Ca2+, Mg2+, Cl- and HCO3-. Ca2+ and H+ in particular are toxic to cells. At rising concentrations, they can alter the 3D-conformation of chromatin and some (e.g. cytoskeletal) proteins: Calcitox and Protontox. This paper only focuses on Calcitox and endogenous sesquiterpenoids. pH-control and Ca2+-homeostasis have been shaped to near perfection during billions of years of evolution. The role of Ca2+ in some aspects of aging, e.g., as causal to neurodegenerative diseases is still debated. The main anti-Calcitox mechanism is to keep free cytoplasmic Ca2+ as low as possible. This can be achieved by restricting the passive influx of Ca2+ through channels in the plasma membrane, and by maximizing the active extrusion of excess Ca2+ e.g., by means of different types of Ca2+-ATPases. Like there are mechanisms that antagonize the toxic effects of Reactive Oxygen Species (ROS), there must also exist endogenous tools to counteract Calcitox. During a re-evaluation of which mechanism(s) exactly initiates the fast aging that accompanies induction of metamorphosis in insects, a causal relationship between absence of an endogenous sesquiterpenoid, namely the farnesol ester named "juvenile hormone," and disturbed Ca2+-homeostasis was suggested. In this paper, this line of thinking is further explored and extended to vertebrate physiology. A novel concept emerges: horseshoe-shaped sesquiterpenoids seem to act as "inbrome" agonists with the function of a "chemical valve" or "spring" in some types of multi-helix transmembrane proteins (intramolecular prenylation), from bacterial rhodopsins to some types of GPCRs and ion pumps, in particular the SERCA-Ca2+-pump. This further underpins the Fading Electricity Theory of Aging.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
6
|
De Loof A. The evolution of "Life": A Metadarwinian integrative approach. Commun Integr Biol 2017; 10:e1301335. [PMID: 28702123 PMCID: PMC5501214 DOI: 10.1080/19420889.2017.1301335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/12/2022] Open
Abstract
It is undeniably very logical to first formulate an unambiguous definition of “Life” before engaging in defining the parameters instrumental to Life's evolution. Because nearly everybody assumes, erroneously in my opinion, that catching Life's essence in a single sentence is impossible, this way of thinking remained largely unexplored in evolutionary theory. Upon analyzing what exactly happens at the transition from “still alive” to “just dead,” the following definition emerged. What we call “Life” (L) is an activity. It is nothing other than the total sum (∑) of all communication acts (C) executed, at moment t, by entities organized as sender-receiver compartments: L = ∑C Such “living” entities are self-electrifying and talking ( = communicating) aggregates of fossil stardust operating in an environment heavily polluted by toxic calcium. Communication is a multifaceted, complex process that is seldom well explained in introductory textbooks of biology. Communication is instrumental to adaptation because, at the cellular level, any act of communication is in fact a problem-solving act. It can be logically deduced that not Natural Selection itself but communication/problem-solving activity preceding selection is the universal driving force of evolution. This is against what textbooks usually claim, although doubt on the status of Natural Selection as driving force has been around for long. Finally, adopting the sender-receiver with its 2 memory systems (genetic and cognitive, both with their own rules) and 2 types of progeny (”physical children” and “pupils”) as the universal unit of architecture and function of all living entities, also enables the seamless integration of cultural and organic evolution, another long-standing tough problem in evolutionary theory. Paraphrasing Theodosius Dobzhansky, the very essence of biology is: “Nothing in biology and evolutionary theory makes sense except in the light of the ability of living matter to communicate, and by doing so, to solve problems.”
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
7
|
De Loof A. The cell's self-generated "electrome": The biophysical essence of the immaterial dimension of Life? Commun Integr Biol 2016; 9:e1197446. [PMID: 27829975 PMCID: PMC5100658 DOI: 10.1080/19420889.2016.1197446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022] Open
Abstract
In the classical “mind-body” wording, “body” is usually associated with the “mass aspect” of living entities and “mind” with the “immaterial” one. Thoughts, consciousness and soul are classified as immaterial. A most challenging question emerges: Can something that is truly immaterial, thus that in the wording of physics has no mass, exist at all? Many will answer: “No, impossible.” My answer is that it is very well possible, that no esoteric mechanisms need to be invoked, but that this possibility is inherent to 2 well established but undervalued physiological mechanisms. The first one is electrical in nature. In analogy with “genome,” “proteome” etc. “electrome” (a novel term) stands for the totality of all ionic currents of any living entity, from the cellular to the organismal level. Cellular electricity is truly vital. Death of any cell ensues at the very moment that it irreversibly (excluding regeneration) loses its ability to realize its electrical dimension. The second mechanism involves communication activity that is invariably executed by sender-receiver entities that incessantly handle information. Information itself is immaterial (= no mass). Both mechanisms are instrumental to the functioning of all cells, in particular to their still enigmatic cognitive memory system. Ionic/electrical currents associated with the cytoskeleton likely play a key role but have been largely overlooked. This paper aims at initiating a discussion platform from which students with different backgrounds but all interested in the immaterial dimension of life could engage in elaborating an integrating vocabulary and in initiating experimental approaches.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven , Leuven, Belgium
| |
Collapse
|
8
|
De Loof A. How to deduce and teach the logical and unambiguous answer, namely L = ∑C, to "What is Life?" using the principles of communication? Commun Integr Biol 2015; 8:e1059977. [PMID: 27064373 PMCID: PMC4802813 DOI: 10.1080/19420889.2015.1059977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Is it possible to understand the very nature of 'Life' and 'Death' based on contemporary biology? The usual spontaneous reaction is: "No way. Life is far too complicated. It involves both material- and an immaterial dimensions, and this combination exceeds the capacities of the human brain." In this paper, a fully contrarian stand is taken. Indeed it will be shown that without invoking any unknown principle(s) unambiguous definitions can be logically deduced. The key? First ask the right questions. Next, thoroughly imbue contemporary biology with the principles of communication, including both its 'hardware' and its 'software' aspects. An integrative yet simple principle emerges saying that: 1. All living matter is invariably organized as sender-receiver compartments that incessantly handle and transfer information (= communicate); 2. The 'communicating compartment' is better suited to serve as universal unit of structure, function and evolution than 'the (prokaryotic) cell', the smallest such unit; 3. 'Living matter' versus 'non-living' are false opposites while 'still alive' and 'just not alive anymore' are true opposites; 4. 'Death' ensues when a given sender-receiver compartment irreversibly loses its ability to handle information at its highest level of compartmental organization; 5. The verb 'Life' (L) denotes nothing else than the total sum (∑) of all acts of communication (C) executed by a sender-receiver at all its levels of compartmental organization: L = ∑C; 6. Any act of communication is a problem-solving act; 6. Any Extended Evolutionary Synthesis (EES) should have the definition of Life at its core.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group; Department of Biology; KU Leuven; University of Leuven ; Leuven, Flanders, Belgium
| |
Collapse
|
9
|
Funk RHW. Endogenous electric fields as guiding cue for cell migration. Front Physiol 2015; 6:143. [PMID: 26029113 PMCID: PMC4429568 DOI: 10.3389/fphys.2015.00143] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Collapse
|
10
|
De Loof A. The essence of female-male physiological dimorphism: differential Ca2+-homeostasis enabled by the interplay between farnesol-like endogenous sesquiterpenoids and sex-steroids? The Calcigender paradigm. Gen Comp Endocrinol 2015; 211:131-46. [PMID: 25540913 DOI: 10.1016/j.ygcen.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/10/2014] [Accepted: 12/13/2014] [Indexed: 12/14/2022]
Abstract
Ca(2+) is the most omnipresent pollutant on earth, in higher concentrations a real threat to all living cells. When [Ca(2+)]i rises above 100 nM (=resting level), excess Ca(2+) needs to be confined in the SER and mitochondria, or extruded by the different Ca(2+)-ATPases. The evolutionary origin of eggs and sperm cells has a crucial, yet often overlooked link with Ca(2+)-homeostasis. Because there is no goal whatsoever in evolution, gametes did neither originate "with the purpose" of generating a progeny nor of increasing fitness by introducing meiosis. The explanation may simply be that females "invented the trick" to extrude eggs from their body as an escape strategy for getting rid of toxic excess Ca(2+) resulting from a sex-hormone driven increased influx into particular cells and tissues. The production of Ca(2+)-rich milk, seminal fluid in males and all secreted proteins by eukaryotic cells may be similarly explained. This view necessitates an upgrade of the role of the RER-Golgi system in extruding Ca(2+). In the context of insect metamorphosis, it has recently been (re)discovered that (some isoforms of) Ca(2+)-ATPases act as membrane receptors for some types of lipophilic ligands, in particular for endogenous farnesol-like sesquiterpenoids (FLS) and, perhaps, for some steroid hormones as well. A novel paradigm, tentatively named "Calcigender" emerges. Its essence is: gender-specific physiotypes ensue from differential Ca(2+)-homeostasis enabled by genetic differences, farnesol/FLS and sex hormones. Apparently the body of reproducing females gets temporarily more poisoned by Ca(2+) than the male one, a selective benefit rather than a disadvantage.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| |
Collapse
|
11
|
De Loof A, De Haes W, Janssen T, Schoofs L. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis. Gen Comp Endocrinol 2014; 199:70-85. [PMID: 24480635 DOI: 10.1016/j.ygcen.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/22/2023]
Abstract
In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium.
| | - Wouter De Haes
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Tom Janssen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| |
Collapse
|
12
|
De Loof A, Marchal E, Rivera-Perez C, Noriega FG, Schoofs L. Farnesol-like endogenous sesquiterpenoids in vertebrates: the probable but overlooked functional "inbrome" anti-aging counterpart of juvenile hormone of insects? Front Endocrinol (Lausanne) 2014; 5:222. [PMID: 25610425 PMCID: PMC4285131 DOI: 10.3389/fendo.2014.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023] Open
Abstract
Literature on the question whether the juvenile stage of vertebrates is hormonally regulated is scarce. It seems to be intuitively assumed that this stage of development is automated, and does not require any specific hormone(s). Such reasoning mimics the state of affairs in insects until it was shown that surgical removal of a tiny pair of glands in the head, the corpora allata, ended larval life and initiated metamorphosis. Decades later, the responsible hormone was found and named "juvenile hormone" (JH) because when present, it makes a larva molt into another larval stage. JH is a simple ester of farnesol, a sesquiterpenoid present in all eukaryotes. Whereas vertebrates do not have an anatomical counterpart of the corpora allata, their tissues do contain farnesol-like sesquiterpenoids (FLS). Some display typical JH activity when tested in appropriate insect bioassays. Some FLS are intermediates in the biosynthetic pathway of cholesterol, a compound that insects and nematodes (=Ecdysozoa) cannot synthesize by themselves. They ingest it as a vitamin. Until a recent (2014) reexamination of the basic principle underlying insect metamorphosis, it had been completely overlooked that the Ca(2+)-pump (SERCA) blocker thapsigargin is a sesquiterpenoid that mimics the absence of JH in inducing apoptosis. In our opinion, being in the juvenile state is primarily controlled by endogenous FLS that participate in controlling the activity of Ca(2+)-ATPases in the sarco(endo)plasmic reticulum (SERCAs), not only in insects but in all eukaryotes. Understanding the control mechanisms of being in the juvenile state may boost research not only in developmental biology in general, but also in diseases that develop after the juvenile stage, e.g., Alzheimer's disease. It may also help to better understand some of the causes of obesity, a syndrome that holometabolous last larval insects severely suffer from, and for which they found a very drastic but efficient solution, namely metamorphosis.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
- *Correspondence: Arnold De Loof, Functional Genomics and Proteomics Group, Department of Biology, KU Leuven–University of Leuven, Naamsestraat 59, Leuven 3000, Belgium e-mail:
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
The Fading Electricity Theory of Ageing: the missing biophysical principle? Ageing Res Rev 2013; 12:58-66. [PMID: 22940501 DOI: 10.1016/j.arr.2012.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/06/2012] [Accepted: 08/16/2012] [Indexed: 11/23/2022]
Abstract
Since a few years convincing data are accumulating showing that some of the premises of the master integrative theory of ageing, namely Harman's Reactive Oxygen Species or free radical theory, are less well founded than originally assumed. In addition, none of the about another dozen documented ageing mechanisms seems to hold the final answer as to the ultimate cause and evolutionary significance of ageing. This review raises the question whether, perhaps, something important has been overlooked, namely a biophysical principle, electrical in nature. The first cell on earth started to be alive when its system for generating its own electricity, carried by inorganic ions, became operational. Any cell dies at the very moment that this system irreversibly collapses. In between birth and death, the system is subject to wear and tear because any cell's overall repair system is not 100 percent waterproof; otherwise adaptation would not be an option. The Fading Electricity Theory of Ageing has all necessary properties for acting as a universal major integrative concept. The advent of novel methods will facilitate the study of bioelectrical phenomena with molecular biological methods in combination with optogenetics, thereby offering challenging possibilities for innovative research in evo-gero.
Collapse
|
14
|
Mohanty BK, Gupta BL. A marked animal-vegetal polarity in the localization of Na(+),K(+) -ATPase activity and its down-regulation following progesterone-induced maturation. Mol Reprod Dev 2011; 79:138-60. [PMID: 22213374 DOI: 10.1002/mrd.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/22/2011] [Indexed: 01/01/2023]
Abstract
The stage-VI Xenopus oocyte has a very distinct animal-vegetal polarity with structural and functional asymmetry. In this study, we show the expression and distribution pattern of Na(+),K(+) -ATPase in stage-VI oocytes, and its changes following progesterone-induced maturation. Using enzyme-specific electron microscopy phosphatase histochemistry, [(3) H]-ouabain autoradiography, and immunofluorescence cytochemistry at light microscopic level, we find that Na(+),K(+) -ATPase activity is mainly confined to the animal hemisphere. Electron microscopy histochemical results also suggest that polarized distribution of Na(+),K(+) -ATPase activity persists following progesterone-induced maturation, and it becomes gradually more polarized towards the animal pole. The time course following progesterone-induced maturation suggests that there is an initial up-regulation and then gradual down-regulation of Na(+),K(+) -ATPase activity leading to germinal vesicle breakdown (GVBD). By GVBD, the Na(+),K(+) -ATPase activity is completely down-regulated due to endocytotic removal of pump molecules from the plasma membrane into the sub-cortical region of the oocyte. This study provides the first direct evidence for a marked asymmetric localization of Na(+),K(+) -ATPase activity in any vertebrate oocyte. Here, we propose that such asymmetry in Na(+),K(+) -ATPase activity in stage-VI oocytes, and their down-regulation following progesterone-induced maturation, is likely to have a role in the active state of the germinal vesicle in stage-VI oocytes and chromosomal condensation after GVBD.
Collapse
|
15
|
De Loof A. Longevity and aging in insects: Is reproduction costly; cheap; beneficial or irrelevant? A critical evaluation of the "trade-off" concept. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1-11. [PMID: 20920508 DOI: 10.1016/j.jinsphys.2010.08.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/16/2010] [Accepted: 08/23/2010] [Indexed: 05/29/2023]
Abstract
The most prevalent hypothesis concerning the relationship between reproduction and longevity predicts that reproduction is costly, particularly in females. Specifically, egg production and sexual harassment of females by males reduce female longevity. This may apply to some short-lived species such as Drosophila, but not to some long-lived species such as the queens of ants and bees. Bee queens lay up to 2000 eggs a day for several years, but they nevertheless live at least 20 times longer than their sisters, the sterile workers. This discrepancy necessitates a critical reevaluation of the validity of both the trade-off concept as such, and of the current theories of aging. The widely accepted oxidative stress theory of aging with its links to metabolism and the insulin/IGF-I system has been disproven in Caenorhabditis elegans and mice, but not in Drosophila, necessitating other approaches. The recent spermidine/mitophagy theory is gaining momentum. Two major mechanisms may have been largely overlooked, namely epigenetic control of longevity by imprinting through DNA methylation as suggested by recent data in the honey bee, and especially, a mechanism of which the principles are outlined here, the progressive weakening of the "electrical dimension" of cells up to the point of total collapse, namely death.
Collapse
Affiliation(s)
- Arnold De Loof
- Zoological Institute, Laboratory for Developmental Physiology, Genomics, Proteomics, Naamsestraat 59, B-3000 Leuven, Belgium.
| |
Collapse
|
16
|
Kaimanovich VA, Krupitski EM, Spirov AV. The Possible Contribution of Intracellular Electric Fields to Oriented Assemblage of Microtubules. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15368378909020961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Capella MA, Menezes S. Synergism between Electrolysis and Methylene Blue Photodynamic Action inEscherichia Coli. Int J Radiat Biol 2009; 62:321-6. [PMID: 1356134 DOI: 10.1080/09553009214552171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There is interest in the use of photodynamic therapy for the treatment of certain diseases, including cancer. However, weak penetration of visible light in tissues has restricted its use. In this study the possibility of enhancing photodynamic effects by the use of energies that penetrate more deeply in tissues was investigated. Weak electric currents (1.0 mA) applied to Escherichia coli cells for short periods, producing little or no lethal damage, was found to act synergistically with the photodynamic action of methylene blue, significantly enhancing the effects of this treatment. This synergism exists also between electrolysis and X-rays but not between electrolysis and UV-254 nm. It is suggested that this synergism might eventually be used to improve the results obtained in therapeutic practice based on the utilization of photodynamic action.
Collapse
Affiliation(s)
- M A Capella
- Instituto de Biofisica Carlos Chagas Filho, Centro de Ciências da Saúde, UFRJ, Rio de Janeiro, Brazil
| | | |
Collapse
|
18
|
Shckorbatov YG, Shakhbazov VG, Rudenko AO. Modification of electrokinetic properties of nuclei in human buccal epithelial cells by electric fields. Bioelectromagnetics 2001; 22:106-11. [PMID: 11180256 DOI: 10.1002/1521-186x(200102)22:2<106::aid-bem1013>3.0.co;2-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influence of an alternating (50 Hz) electric field (5--110 V/cm) on the state of human buccal epithelium cells was studied by the methods of intracellular microelectrophoresis, heterochromatin staining with orcein, and indigo carmine staining for viability and membrane integrity evaluations. Electric field exposure induced an increase in electrophoretic mobility of cell nuclei, decreased numbers of heterochromatin granules near the inner membrane of cell nucleus, and induced cell membrane damage; but cell viability was conserved. Nuclear and cell membrane properties varied with electric field strength and age of the donors. The data obtained are interpreted as evidence of electric field induced activation of the functional state of nuclei.
Collapse
Affiliation(s)
- Y G Shckorbatov
- V.N. Karazin National University of Kharkov, Institute of Biology, Kharkov, Ukraine.
| | | | | |
Collapse
|
19
|
Abstract
Observing the macroscopic complexities of evolved species, the exceptional continuity that occurs among different cells, tissues and organs to respond coherently to the proper set of stimuli as a function of self/species survival is appreciable. Accordingly, it alludes to a central rhythm that resonates throughout the cell; nominated here as primary respiration (PR), which is capable of binding and synchronizing a diversity of physiological processes into a functional biological unity. Phylogenetically, it was conserved as an indispensable element in the makeup of the subkingdom Metazoa, since these species require a high degree of coordination among the different cells that form their body. However, it does not preclude the possibility of a basal rhythm to orchestrate the intricacies of cellular dynamics of both prokaryotic and eukaryotic cells. In all probability, PR emerges within the crucial organelles, with special emphasis on the DNA (5), and propagated and transduced within the infrastructure of the cytoskeleton as wave harmonics (49). Collectively, this equivalent vibration for the subphylum Vertebrata emanates as craniosacral respiration (CSR), though its expression is more elaborate depending on the development of the CNS. Furthermore, the author suggests that the phenomenon of PR or CSR be intimately associated to the basic rest/activity cycle (BRAC), generated by concentrically localized neurons that possess auto-oscillatory properties and assembled into a vital network (39). Historically, during Protochordate-Vertebrate transition, this area circumscribes an archaic region of the brain in which many vital biological rhythms have their source, called hindbrain rhombomeres. Bass and Baker (2) propose that pattern-generating circuits of more recent innovations, such as vocal, electromotor, extensor muscle tonicity, locomotion and the extraocular system, have their origin from the same Hox gene-specified compartments of the embryonic hindbrain (rhombomeres 7 and 8) that produce rhythmically active cardiac and thoracic respiratory circuits. Here, it implies that PR could have been the first essential biological cadence that arose with the earliest form of life, and has undergone a phylogenetic ascent to produce an integrated multirhythmic organism of today. Finally, in its full manifestation, the breathing DNA (1) of the zygote could project itself throughout the cytoskeleton and modify the electromechanical properties of the plasma lamella (26), establishing the primordial axial-voltage gradients for the physiological control of development (53).
Collapse
|
20
|
Dittmann F, Münz A. The proton/sodium antiporter (exchanger) in the oocyte membrane of Dysdercus intermedius is electrogenic (2H(+)/Na(+)) and causes perioocytic proton accumulation. JOURNAL OF INSECT PHYSIOLOGY 1999; 45:727-734. [PMID: 12770303 DOI: 10.1016/s0022-1910(99)00044-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Vitellogenic follicles of Dysdercus intermedius (Heteroptera: Pyrrhocoridae) were treated with sodium azide (NaN(3)) or 2,4 dinitrophenol (DNP) in order to load the ooplasm with protons along their electrochemical gradient. Ooplasmic pH (pH(OOC)) was recorded using proton-specific microelectrodes. Treatment for six min with 0.5 mM of DNP (dissolved in physiological saline solution; PSS) resulted in acidification of the ooplasm from 7.41+/-0.05 in PSS to pH(OOC(DNP))=7.09+/-0.04. Immersing follicles in PSS after DNP treatment resulted in reactivation of a proton/sodium antiporter and recovery of the initial pH(OOC). Additionally, the proton-specific microelectrodes were placed at a distance of approximately 10 &mgr;m from the surface of the vitellogenic follicle. The extracellular pH (pH(EX)) was measured before (pH(EX(PSS))), during (pH(EX(DNP))) and after (pH(EX(PSS))) DNP treatment. Along the lateral surface of the follicle, the recorded pH(EX(PSS)) was initially 6.79+/-0.02, similar to the pH of the medium (pH(MED)=6.80; recorded at a distance of 300 &mgr;m from the surface of the follicle) and higher than the pH(EX(PSS)) of 6.52+/-0.03 measured in the interfollicular constriction between individual vitellogenic follicles (interfollicular region). During DNP treatment, values changed to 6.80+/-0.03 in the constriction and 6.80+/-0.01 along the lateral surface. After removal of DNP the initial control pH values were reestablished. These extrafollicular H(+) distributions fit into a model of extrafollicular currents reported earlier for D. intermedius.Proton distribution between the ooplasm and the medium was also affected in the presence of 5 mM NaN(3), resulting in a drop in ooplasmic pH from 7.40+/-0.05 down to pH(OOC(NaN3))=7.07+/-0.03. Changes in cytosolic proton activities after DNP or NaN(3) treatment were evidenced by monitoring both the increase in ooplasmic pH (DeltapH) and, simultaneously, the change in the resting potential (DeltaEm). Recovery of the ooplasmic pH depended on the transfer of approximately 6x10(9) H(+)/oocyte (after DNP treatment) or approximately 3x10(9) H(+)/oocyte (after NaN(3) treatment), whereas recovery of Em by charging the capacitance of the oocyte membrane could be attributed to a net efflux of approximately 3x10(9) H(+)/oocyte (after DNP treatment) or approximately 1.7x10(9) H(+)/oocyte (after NaN(3) treatment). In the light of previous reports on the monensin-sensitive proton/sodium antiporter (external Na(+) for ooplasmic H(+)), the operating efficiency of this antiporter is 2H(+)/Na(+).VITELLOGENESIS DURING AND AFTER DNP TREATMENT WAS DEMONSTRATED BY THE ACCUMULATION OF FLUORESCENCE LABELLED HEMOLYMPH PROTEINS IN YOLK SPHERES IN THE CORTEX OF THE OOCYTE: vitellogenesis came to a halt in PSS containing DNP when the ooplasm was acidified and no H(+) accumulation around the follicle was detectable. Vitellogenesis stopped under the condition of DNP(MED)=0.5 mM, but resumed again by exchanging the medium for PSS without DNP. Simultaneously with the appearance of the regular pH(OOC(PSS))=7.40+/-0.03 (efflux of H(+) out of the ooplasm), extrafollicular proton accumulation by H(+) influx into the constriction reappeared within 10 minutes. The results obtained with proton-specific microelectrodes and the in vitro assay to detect vitellogenesis indicate that electrogenic H(+) extrusion out of the ooplasm plays an important role in both maintaining the ooplasmic pH 0.6 units above pH(MED)=6.8 and in the generation of the external current pattern. A model is discussed explaining the acidification of endosomes as a prerequisite for endosomal processing leading to yolk spheres.
Collapse
Affiliation(s)
- F Dittmann
- Department of Developmental Physiology, Zoological Institute, University of Tübingen, Auf der Morgenstelle 28, D-72076, Tübingen, Germany
| | | |
Collapse
|
21
|
Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK. Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J Cell Biol 1999; 144:483-96. [PMID: 9971743 PMCID: PMC2132912 DOI: 10.1083/jcb.144.3.483] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Revised: 12/21/1998] [Indexed: 12/01/2022] Open
Abstract
Using both the proton selective vibrating electrode to probe the extracellular currents and ratiometric wide-field fluorescence microscopy with the indicator 2', 7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran to image the intracellular pH, we have examined the distribution and activity of protons (H+) associated with pollen tube growth. The intracellular images reveal that lily pollen tubes possess a constitutive alkaline band at the base of the clear zone and an acidic domain at the extreme apex. The extracellular observations, in close agreement, show a proton influx at the extreme apex of the pollen tube and an efflux in the region that corresponds to the position of the alkaline band. The ability to detect the intracellular pH gradient is strongly dependent on the concentration of exogenous buffers in the cytoplasm. Thus, even the indicator dye, if introduced at levels estimated to be of 1.0 microM or greater, will dissipate the gradient, possibly through shuttle buffering. The apical acidic domain correlates closely with the process of growth, and thus may play a direct role, possibly in facilitating vesicle movement and exocytosis. The alkaline band correlates with the position of the reverse fountain streaming at the base of the clear zone, and may participate in the regulation of actin filament formation through the modulation of pH-sensitive actin binding proteins. These studies not only demonstrate that proton gradients exist, but that they may be intimately associated with polarized pollen tube growth.
Collapse
Affiliation(s)
- J A Feijó
- Department Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
22
|
De Loof A, Vanden J, Janssen I. Hormones and the cytoskeleton of animals and plants. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 166:1-58. [PMID: 8881772 DOI: 10.1016/s0074-7696(08)62505-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is often overlooked that a cell can exert its specific functions only after it has acquired a specific morphology: function follows form. The cytoskeleton plays an important role in establishing this form, and a variety of hormones can influence it. The cytoskeletal framework has also been shown to function in a variety of cellular processes, such as cell motility (important for behavior), migration (important for the interrelationship between the endocrine and immune systems, e.g., chemotaxis), intracellular transport of particles, mitosis and meiosis, maintenance of cellular morphology, spatial distribution of cell organelles (e.g., nucleus and Golgi system), cellular responses to membrane events (e.g., endocytosis and exocytosis), intracellular communication including conductance of electrical signals, localization of mRNA, protein synthesis, and--more specifically in plants--ordered cell wall deposition, cytoplasmic streaming, and spindle function followed by phragmoplast function. All classes of hormones seem to make use of the cytoskeleton, either during their synthesis, transport, secretion, degradation, or when influencing their target cells. In this review special attention is paid to cytoskeleton-mediated effects of selected hormones related to growth, transepithelial transport, steroidogenesis, thyroid and parathyroid functioning, motility, oocyte maturation, and cell elongation in plants.
Collapse
Affiliation(s)
- A De Loof
- Zoological Institute of the K.U. Leuven, Belgium
| | | | | |
Collapse
|
23
|
Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronnello M, Mini E, Olivotto M, Wanke E. A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. J Physiol 1995; 489 ( Pt 2):455-71. [PMID: 8847640 PMCID: PMC1156772 DOI: 10.1113/jphysiol.1995.sp021065] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Human and murine neuroblastoma cell lines were used to investigate, by the whole-cell patch-clamp technique, the properties of a novel inward-rectifying K+ current (IIR) in the adjustment of cell resting potential (Vrest), which was in the range -40 to -20 mV. 2. When elicited from a holding potential of 0 mV, IIR was completely inactivated with time constants ranging from 13 ms at -140 mV to 4.5 s at -50 mV. The steady-state inactivation curve (h(V)) was found to be independent of [Na+]o and [K+]o (2-80 mM) and could be fitted to a Boltzmann curve with a steep slope factor of 5-6, and a V1/2 around Vrest. Divalent ion-free extracellular solutions shifted h(V) to the left by about 28 mV. 3. Peak chord conductance, whose maximal value was approximately proportional to the square root of [K+]o, could be fitted to a Boltzmann curve independently of [K+]o, with a V1/2 value around -48 mV and a slope factor of 18. Extracellular Cs+ and Ba2+ blocked the IIR in a concentration- and voltage-dependent manner, but Ba2+ was less effective than it is on classical inward-rectifier channels. 4. Under control culture conditions the values of Vrest and V1/2 of h(V) varied widely among cells. The knowledge of V1/2 proved crucial or the theoretical prediction of Vrest. After cell synchronization in the G0-G1 phase of the cell cycle, or at the G1-S boundaries, the cells reduced their variability of h(V). The same occurred after cell synchronization in G1 by treatment with retinoic acid. 5. The experimental data could be fitted to a classical model of an inward rectifier, after removing the dependence of conductance activation on (V-EK), and incorporating an inactivation with an intrinsic voltage dependence. Moreover, the model predicts, for this novel inward rectifier and in contrast with the classical inward rectifier, the incapacity of maintaining, in physiological media, a Vrest more negative than -35 to -40 mV, which is an important feature of cancer cells.
Collapse
Affiliation(s)
- A Arcangeli
- Department of General Physiology and Biochemistry, University of Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Results obtained by examining hypothalamic neurons producing precursors to neurohormones, and pituitary cells synthesizing peptide and glycoprotein families of hormones, and recent advances in comparative endocrinology, have been summarized and considered from the following viewpoints: species specificity in the organization and communication of the hypothalamic neurons with different brain areas lying inside the BBB and with CVOs; sensitivity of hypothalamic neurons and pituitary cells to the environmental stimuli; gonadal steroids as modulators of gene expression needed for neuronal differentiation and synaptogenesis; dose(s)-dependent pituitary cell proliferation and differentiation; an inverse relationship between PRL and GH synthesis and release and also between degree of hyperplasia and hypertrophy of PRL cells and retardation of GTH cell differentiation; and responsiveness of neurons producing CRH, and of neurons and pituitary cells synthesizing POMC hormones, to stress and glucocorticosteroids. These data show that growth of the animals may be stimulated, retarded, or inhibited; reproductive properties and behavior may be under hormonal control; and character of responsiveness in reaction to stress, and ability for adaptation and other related functions, may be controlled.
Collapse
Affiliation(s)
- V R Pantić
- Serbian Academy of Sciences and Arts, Belgrade, Yugoslavia
| |
Collapse
|
25
|
Schoofs L, Vanden Broeck J, De Loof A. The myotropic peptides of Locusta migratoria: structures, distribution, functions and receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1993; 23:859-881. [PMID: 8220386 DOI: 10.1016/0965-1748(93)90104-z] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The search for myotropic peptide molecules in the brain, corpora cardiaca, corpora allata suboesophageal ganglion complex of Locusta migratoria using a heterologous bioassay (the isolated hindgut of the cockroach, Leucophaea maderae) has been very rewarding. It has lead to the discovery of 21 novel biologically active neuropeptides. Six of the identified Locusta peptides show sequence homologies to vertebrate neuropeptides, such as gastrin/cholecystokinin and tachykinins. Some peptides, especially the ones belonging to the FXPRL amide family display pleiotropic effects. Many more myotropic peptides remain to be isolated and sequenced. Locusta migratoria has G-protein coupled receptors, which show homology to known mammalian receptors for amine and peptide neurotransmitters and/or hormones. Myotropic peptides are a diverse and widely distributed group of regulatory molecules in the animal kingdom. They are found in neuroendocrine systems of all animal groups investigated and can be recognized as important neurotransmitters and neuromodulators in the animal nervous system. Insects seem to make use of a large variety of peptides as neurotransmitters/neuromodulators in the central nervous system, in addition to the aminergic neurotransmitters. Furthermore quite a few of the myotropic peptides seem to have a function in peripheral neuromuscular synapses. The era in which insects were considered to be "lower animals" with a simple neuroendocrine system is definitely over. Neural tissues of insects contain a large number of biologically active peptides and these peptides may provide the specificity and complexity of intercellular communications in the nervous system.
Collapse
Affiliation(s)
- L Schoofs
- Zoological Institute, K.U. Leuven, Belgium
| | | | | |
Collapse
|
26
|
Abstract
Selective control of cell function by applying specifically configured, weak, time-varying magnetic fields has added a new, exciting dimension to biology and medicine. Field parameters for therapeutic, pulsed electromagnetic field (PEMFs) were designed to induce voltages similar to those produced, normally, during dynamic mechanical deformation of connective tissues. As a result, a wide variety of challenging musculoskeletal disorders have been treated successfully over the past two decades. More than a quarter million patients with chronically ununited fractures have benefitted, worldwide, from this surgically non-invasive method, without risk, discomfort, or the high costs of operative repair. Many of the athermal bioresponses, at the cellular and subcellular levels, have been identified and found appropriate to correct or modify the pathologic processes for which PEMFs have been used. Not only is efficacy supported by these basic studies but by a number of double-blind trials. As understanding of mechanisms expands, specific requirements for field energetics are being defined and the range of treatable ills broadened. These include nerve regeneration, wound healing, graft behavior, diabetes, and myocardial and cerebral ischemia (heart attack and stroke), among other conditions. Preliminary data even suggest possible benefits in controlling malignancy.
Collapse
Affiliation(s)
- C A Bassett
- Bioelectric Research Center, Columbia University, Riverdale, New York 10463
| |
Collapse
|
27
|
Vanden Broeck J, De Loof A, Callaerts P. Electrical-ionic control of gene expression. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:1907-16. [PMID: 1473603 DOI: 10.1016/0020-711x(92)90286-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Changes in turgor, in cell volume, in membrane potential, in intracellular ionic activities and, more recently, in spontaneous electrical activity have been reported to be causally linked to the expression of specific genes. 2. As a result, it has become clear that changes in membrane properties and/or in the intracellular "ionic environment" can play an important role in generating cell type specific physiological responses which indirectly--or maybe directly--affect gene expression. 3. Possible targets of the ionic "environment" are: the selective transport across biological membranes; the activity of certain (regulatory) enzymes; the conformation of some (regulatory) proteins; of chromatin; of the cytoskeleton; of the nuclear matrix; the association of the cytoskeleton with plasmamembrane proteins or RNA; the association chromatin-nuclear matrix; protein-DNA and protein-protein interactions etc. All these sites may be instrumental to "fine or coarse" tuning of gene expression. 4. The exact mechanisms by which changes in intracellular ionic environment are transduced, directly or indirectly, into alterations of the activity of trans-acting factors have not yet been fully uncovered. Changes in the degree of phosphorylation of regulatory proteins and/or of trans-acting factors may provoke fine tuning effects on cell type specific gene expression activity. 5. The intranuclear ionic environment is difficult to measure in an exact way. It can be influenced in a number of ways. The location of a gene, as determined by the position of the nucleus in the cytoplasm and by the association of chromatin to the nuclear matrix may be especially important in cells which can generate some type of intracellular gradient or in excitable cells. 6. In some somatic cell types--germinal vesicles may behave differently--the intranuclear inorganic ionic "environment" has been reported to be distinct from the cytoplasmic one. This challenges the widespread assumption that the nuclear envelope is always freely permeable to small molecules and inorganic ions. 7. It can be expected that the fast progress in the cloning of "electrically" controlled genes, in the identification of trans-acting factors, in their mode of interaction with genes and in the precise localization of genes within the nucleus may soon lead to substantial progress in this domain.
Collapse
Affiliation(s)
- J Vanden Broeck
- Zoological Institute of the Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
28
|
Bobanović F, Simcic S, Kotnik V, Vodovnik L. Pulsed electric current enhances the phorbol ester induced oxidative burst in human neutrophils. FEBS Lett 1992; 311:95-8. [PMID: 1397311 DOI: 10.1016/0014-5793(92)81375-v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative burst (OB) response in human neutrophils, measured with chemiluminescence (CL), has been used to determine whether pulsed electric current (PEC) might induce a functional response in these electrically nonexcitable cells, and also whether it might modify cellular response to tumor-promoting phorbol ester (PMA). Five minutes of PEC treatment caused no significant changes in neutrophil CL levels in HBSS (1.2 mM Ca2+ concentration) as well as in HBSS-EGTA, where the extracellular Ca2+ concentration was reduced to less than 30 nM. The CL level of PMA-activated neutrophils in HBSS was 52% higher than in HBSS-EGTA. In HBSS the CL level, after the combined PMA and PEC treatment, was 53% higher than in PMA-alone-treated neutrophils. Activation of the OB in HBSS-EGTA with PMA and PEC was 13% higher than in solely PMA treated neutrophils. The results suggest that in neutrophil OB response, the PEC effect is closely related with cellular calcium mobilization, since depletion of extracellular Ca2+ decreased the PEC effect.
Collapse
Affiliation(s)
- F Bobanović
- Faculty of Electrical and Computer Engineering, University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
29
|
De Loof A. Problems and paradigms. All animals develop from a blastula: Consequences of an undervalued definition for thinking on development. Bioessays 1992; 14:573-5. [PMID: 1365912 DOI: 10.1002/bies.950140815] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An early embryo becomes a blastula at the moment that its constituent cells become organised into a simple epithelium. Epithelial folding and compartmentation are essential elements of animal development. All the different cell types--epithelial and other ones--of which a differentiated organism consists differ in their plasmamembrane-cytoskeletal complex but they are assumed to have an identical genome. The hypothesis is put forward that, perhaps, the basic mechanism underlying differentiation can be defined as the generation of cells which have an identical genome but which differ in their plasmamembrane-cytoskeletal complex and which, because of these differences, can engage in differential protein synthesis-physiology.
Collapse
Affiliation(s)
- A De Loof
- Zoological Institute, Katholieke Universiteit Leuven, Belgium
| |
Collapse
|
30
|
Vodovnik L, Miklavcic D, Sersa G. Modified cell proliferation due to electrical currents. Med Biol Eng Comput 1992; 30:CE21-8. [PMID: 1487931 DOI: 10.1007/bf02446174] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In view of the evidence that electrical currents may enhance healing of chronic wounds and retard tumour growth it is suggested that these currents normalise cell proliferation. Additional support to this contention is given by two reports: one on healing of pressure sores in man and one on tumour growth retardation in mice. The effect of an ionic environment on the cell cycle is analysed. Finally a hypothesis attempting to explain the normalising effect of electrical currents on cell proliferation is proposed. It is known that non-dividing cells, e.g. mature neurons, have high transmembrane potential (TMP) whereas fast-dividing cells, e.g. cancerous cells, have low TMP. When a cell is exposed to an electrical field, one side of the cell becomes hyperpolarised while the opposite side is depolarised. Assuming a nonlinear relationship between TMP and the transmembrane ionic currents, it can be shown that in non-dividing cells their high TMP is lowered; whereas in cells with a high division rate, their low TMP is raised due to cell exposure to the external electrical field. These alterations in transmembrane potential could contribute to the normalisation of abnormal cell proliferation.
Collapse
Affiliation(s)
- L Vodovnik
- Faculty of Electrical & Computer Engineering, University of Ljubljana, Slovenia
| | | | | |
Collapse
|
31
|
De Loof A, Callaerts P, vanden Broeck JV. The pivotal role of the plasma membrane-cytoskeletal complex and of epithelium formation in differentiation in animals. ACTA ACUST UNITED AC 1992; 101:639-51. [PMID: 1351436 DOI: 10.1016/0300-9629(92)90338-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. If a few exceptions are disregarded, the several somatic cell types of a differentiated organism all have an identical genome. They all differ in their plasma membrane-cytoskeletal complex. 2. Differences in plasma membrane properties usually result in differences in ionic concentrations/activities in the cytoplasm and nucleoplasm. A basic question therefore is whether there exists a causal relationship between the ionic environment of the nucleus and differential gene expression/protein synthesis. 3. Development is switched on by a "Ca2+ explosion", often accompanied by pH changes and plasma membrane depolarisation. The penetration of the spermatozoon in the plasma membrane acts as a trigger. 4. All animal species develop from a blastula. At this stage they organise themselves as an epithelium enclosing an inner (fluid) compartment. This suggests that epithelium formation is absolutely essential in animal development. 5. As development proceeds, more and more compartments, lined by different epithelia, are formed. Differentiated organisms largely consist of folded epithelia. Some cells leave their original epithelial environment and become free floating (e.g. blood cells) or engage in other types of organisation. 6. Epithelial cells have the ability to segregate some membrane proteins, e.g. receptors, ion pumps, ion channels etc., so as to make selective transcellular transport possible. The cytoskeleton plays an important role in this segregation and in the interconnection of epithelial cells. 7. Transembryonic electric currents which have been measured by the vibrating probe technique, are due to electrogenic ion transport by epithelia. 8. Segregation of membrane proteins is not an exclusive property of epithelial cells but it is probably a property of all animal cell types, single cells inclusive; asymmetry is the rule, symmetry--if it exists at all--the exception. 9. Differences in several plasma membrane proteins (receptors, ion transporting molecules, cell adhesion molecules and signal transducing systems) are not only causally related to differential transcellular transport but also indirectly to differential protein synthesis and hence to differentiation. There are already a few well documented examples of "electrical" control of gene expression. 10. The major "strategy" which applies in differentiation seems to be to keep the genome constant but to change over and over its ionic and macromolecular environment, both acting in a complementary way. The first one may be considered as the coarse tuning mechanism of gene expression-protein synthesis, the second as the fine one. In our opinion this might be a principle universal to differentiation processes in all animal species.
Collapse
Affiliation(s)
- A De Loof
- Catholic University of Leuven, Department of Zoology, Belgium
| | | | | |
Collapse
|
32
|
Malh� R, Feij� JA, Pais MSS. Effect of electrical fields and external ionic currents on pollen-tube orientation. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf00714558] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Cho CW, Harold FM, Schreurs WJ. Electric and ionic dimensions of apical growth inAchlya hyphae. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0147-5975(91)90005-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Allaerts W. On the role of gravity and positional information in embryological axis formation and tissue compartmentalization. Acta Biotheor 1991; 39:47-62. [PMID: 1858478 DOI: 10.1007/bf00046407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The idea that gravity affects dorso-ventral polarization in anouran development contrasts with the theories of self-organization through reaction-diffusion processes. As a result of a literature study we discuss the role of gravity in embryological axis formation and speculate on an influence of gravity on tissue compartmentalization. The involvement of compartmentalization in tissue homeostasis is discussed in the light of the recent progress in mammalian cell culture studies.
Collapse
Affiliation(s)
- W Allaerts
- Laboratory of Cell Pharmacology, School of Medicine, University of Leuven, Belgium
| |
Collapse
|
35
|
Woldringh CL, Mulder E, Valkenburg JA, Wientjes FB, Zaritsky A, Nanninga N. Role of the nucleoid in the toporegulation of division. Res Microbiol 1990; 141:39-49. [PMID: 2194248 DOI: 10.1016/0923-2508(90)90096-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- C L Woldringh
- Department of Molecular Cell Biology, Section of Molecular Cytology, Amsterdam
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
A model of intracellular electrical sorting of enzymes and organelles in the cytosol, based on isoelectric focusing, is proposed. The focusing is suggested to take place over a centrally symmetric pH gradient which in the cytosol of the yeast Saccharomyces cerevisiae is known to be 7.2-6.4. From published data on the energetic capacity and from the computed electric resistance of the S. cerevisiae cell, the maximum value of the electric field that can be maintained in the cytosol was estimated. The results showed that the strength of a centrally symmetric intracytosolic electric field could be as high as 90 mV/cm, which is sufficient to account for sorting of cytosolic proteins according to their isoelectric points. Although direct experimental evidence for intracellular isoelectric focusing is still missing, several phenomena of physiological importance can be understood on the assumption of its real existence.
Collapse
Affiliation(s)
- J Flegr
- Institute of Molecular Genetics, Czechoslovak Academy of Sciences, Prague
| |
Collapse
|
37
|
Comparative developmental physiology and molecular cytology of the polytrophic ovarian follicles of the blowfly Sarcophaga bullata and the fruitfly Drosophila melanogaster. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1990; 96:309-21. [PMID: 1976473 DOI: 10.1016/0300-9629(90)90698-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. The ovarian follicles of Sarcophaga and Drosophila consist of one oocyte and 15 nurse cells, the whole being surrounded by follicle cells. Although oocyte and nurse cells are genetically identical sibling cells, and although they are interconnected by cytoplasmic bridges, their physiology is very different. 2. The DNA content of the oocyte nucleus (germinal vesicle) never exceeds 4C, while values of polyploidisation up to 1024C have been measured in the nurse cells, this being dependent on their position within a follicle. 3. The nurse cell nuclei very actively synthesize RNA, while the germinal vesicle is almost completely inactive in this respect. 4. It has been possible to visualise the major cytoskeletal elements in the different ovarian cell types. Cellular markers of polarity and dorsoventral asymmetry have been described. 5. Electrophysiological measurements have been performed to find out whether or not the self-electrophoresis principle may be involved in polarised transport between nurse cells and oocyte. 6. Most of the vitellogenin is synthesized by the fat body but some follicle cells also synthesize small amounts. 7. The role of 20-OH ecdysone in the induction of vitellogenin synthesis in the fat body, as well as the presence of met-enkephalin like immunoreactivity in the gonads is well established in both species. Not so clear is the exact role of juvenile hormones and the nature of brain factors controlling ovarian development. 8. Drosophila has the advantage of its well documented genetics while the larger species Sarcophaga is preferable for the study of (electro-) physiological and cell biological mechanisms.
Collapse
|
38
|
|
39
|
Cooper MS, Miller JP, Fraser SE. Electrophoretic repatterning of charged cytoplasmic molecules within tissues coupled by gap junctions by externally applied electric fields. Dev Biol 1989; 132:179-88. [PMID: 2917693 DOI: 10.1016/0012-1606(89)90216-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ionic currents and cytoplasmic voltage gradients have been observed in a variety of polarizing cells and developing tissues. In certain cases, it has been determined that these endogenous electric fields can segregate intracellular charged molecules by electrophoresis; in other cases, the endogenous fields are suspected to have such an influence. Separate theoretical suggestions have been made that extracellular electric currents, whether from a biological or a nonbiological source, should be able to electrophorese intracellular molecules after being conducted through cell membranes into the interior of long single cells [L.F. Jaffe and R. Nuccitelli (1977) Annu. Rev. Biophys. Bioeng. 6, 445-476] or extended ensembles of cells coupled electrotonically by gap junctions [M.S. Cooper (1984) J. Theor. Biol. 111, 123-130]. To test whether external electric fields could redistribute intracellular molecules within a tissue coupled by gap junctions, and to quantitatively measure in situ the electrophoretic mobility of a charged intracellular molecule, we injected 6-carboxyfluorescein into the electrotonically coupled lateral giant neurons of the crayfish abdominal nerve cord. When a dc electric field (0.2-3.4 V/cm) was subsequently applied along the length of the cord, the negatively charged fluorescent dye was observed to migrate through both the cytoplasms and the gap junctions of the lateral giant neurons, toward the anode, at a rate directly proportional to the applied electric field strength (electrophoretic mobility = -0.92 +/- 0.27 micron/sec per V/cm). These results suggest that electric fields of a sufficient magnitude, whether of an exogenous or an endogenous origin, can repattern the distribution of charged molecules within the cytoplasm of an extended ensemble of coupled cells. In addition, these results suggest that externally applied electric fields might be used in studies of pattern formation to repattern the intercellular distribution of charged molecules that are permeant to gap junctions within electrically coupled tissues.
Collapse
Affiliation(s)
- M S Cooper
- Department of Zoology, University of California, Berkeley 94720
| | | | | |
Collapse
|
40
|
Abstract
Ascidian eggs and zygotes were whole-cell voltage-clamped and inward membrane currents, generated by stepping the membrane potential, studied from fertilization up to cytokinesis. Currents, induced by changing the voltage in steps from -80 to -30 mV, or to 0 mV, had maximum amplitudes which ranged from 400 to 1200 pA in the unfertilized egg and 100 to 1300 pA in the zygote. At 5 to 10 min after fertilization it was not possible to generate inward currents owing to the activity of nonspecific fertilization channels. Preceding cytokinesis, we observed a reduction in amplitude of the inward currents. By cutting eggs and zygotes into fragments, we have shown that the ion channels generating these inward currents are symmetrically distributed over the egg plasma membrane, but regionalized in the zygote with a maximum density at the animal pole.
Collapse
Affiliation(s)
- B Dale
- Stazione Zoologica, Napoli, Italy
| | | |
Collapse
|
41
|
Fromherz P. Self-organization of the fluid mosaic of charged channel proteins in membranes. Proc Natl Acad Sci U S A 1988; 85:6353-7. [PMID: 2457911 PMCID: PMC281969 DOI: 10.1073/pnas.85.17.6353] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Electrically charged ion channels in a fluid membrane may form dissipative structures driven by a concentration gradient of salt. On a molecular level the effect is due to dissipative attractive forces; the channel currents induce local gradients of the membrane potential that interact with the protein charge. Self-organization by "charged channel condensation" is treated on a phenomenological level: Smoluchowski's equation describing diffusion and drift of the membrane proteins and Kelvin's equation describing the dynamics of the membrane potential are considered as a coupled system of equations. The patterns of the two morphogens, the membrane protein and the membrane potential, are controlled by global parameters--the average density of charged channels, the level of their reversal potential, and the size of the membrane.
Collapse
Affiliation(s)
- P Fromherz
- Abteilung Biophysik der Universität Ulm, Eselsberg, Federal Republic of Germany
| |
Collapse
|
42
|
Abstract
Morphogenetic fields must be generated by mechanisms based on known physical forces which include gravitational forces, mechanical forces, electrical forces, or some combination of these. While it is unrealistic to expect a single force, such as a voltage gradient, to be the sole cause of a morphogenetic event, spatial and temporal information about the electrical fields and ion concentration gradients in and around a cell or embryo undergoing morphogenesis can take us one step further toward understanding the entire morphogenetic mechanism. This is especially true because one of the handful of identified morphogens is Ca2+, an ion that will not only generate a current as it moves, but which is known to directly influence the plasma membrane's permeability to other ions, leading to other transcellular currents. It would be expected that movements of this morphogen across the plasma membrane might generate ionic currents and gradients of both electrical potential and intracellular concentration. Such ionic currents have been found to be integral components of the morphogenetic mechanism in some cases and only secondary components in other cases. My goal in this review is to discuss examples of both of these levels of involvement that have resulted from investigations conducted during the past several years, and to point to areas that are ripe for future investigation. This will include the history and theory of ionic current measurements, and a discussion of examples in both plant and animal systems in which ionic currents and intracellular concentration gradients are integral components of morphogenesis as well as cases in which they play only a secondary role. By far the strongest cases for a direct role of ionic currents in morphogenesis is the polarizing fucoid egg where the current is carried in part by Ca2+ and generates an intracellular concentration gradient of this ion that orients the outgrowth, and the insect follicle in which an intracellular voltage gradient is responsible for the polarized transport from nurse cell to oocyte. However, in most of the systems studied, the experiments to determine if the observed ionic currents are directly involved in the morphogenetic mechanism are yet to be done. Our experience with the fucoid egg and the fungal hypha of Achlya suggest that it is the change in the intracellular ion concentration resulting from the ionic current that is critical for morphogenesis.
Collapse
Affiliation(s)
- R Nuccitelli
- Zoology Department, University of California, Davis 95616
| |
Collapse
|
43
|
Dittmann F, Weiss DG, M�nz A. Movement of mitochondria in the ovarian trophic cord of Dysdercus intermedius (Heteroptera) resembles nerve axonal transport. ACTA ACUST UNITED AC 1987; 196:407-413. [DOI: 10.1007/bf00399140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1987] [Accepted: 06/04/1987] [Indexed: 10/26/2022]
|
44
|
Voltage gradients and microtubules both involved in intercellular protein and mitochondria transport in the telotrophic ovariole of Dysdercus intermedius. ACTA ACUST UNITED AC 1987; 196:391-396. [DOI: 10.1007/bf00375779] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1987] [Accepted: 06/03/1987] [Indexed: 10/26/2022]
|