1
|
Tripathi S, Sengar M, Gopesh A. Paraneuronal pseudobranchial neurosecretory system in tank goby Glossogobius giuris with special reference to novel neurohaemal contact complex. Respir Physiol Neurobiol 2020; 278:103440. [PMID: 32353416 DOI: 10.1016/j.resp.2020.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/17/2022]
Abstract
Various putative oxygen chemosensory cells are reported to be present throughout the vertebrate body performing pivotal roles in respiration by initiating responses during acute hypoxia. Since air-breathing fishes often are exposed to the oxygen-deficient milieu, in such conditions various chemosensory cells operate in an orchestrated fashion. The Pseudobranchial neurosecretory system (PSNS) a newly discovered system, is one of these. It has been placed in the category of "Diffuse NE systems (DNES)". It is found in all the catfish species and in some other non-catfish group of teleosts. In catfishes, it is present in close association with the carotid labyrinth- a chemosensory structure, known in fish and amphibians. The presence of this system in Glossogobius giuris, in association with the pseudobranch, a structure considered to be precursor of carotid labyrinth, is a significant finding. In an attempt to study the structure and organization of the pseudobranchial neurosecretory system in a non-catfish species of teleost, the present investigation was undertaken on a goby G. giuris. The histological observations, using a neurosecretion-specific stain, revealed the presence of this system in G. giuris. The findings are discussed in the light of the association of PSNS with pseudobranch and the type of "neurohaemal contact complex" formed between this neurosecretory system and the elements of the circulatory system.
Collapse
Affiliation(s)
- Sonal Tripathi
- Department of Zoology, University of Allahabad, Prayagraj, 211002, U.P., India
| | - Manvendra Sengar
- Department of Zoology, Bipin Bihari P.G. College, Jhansi, U.P., India
| | - Anita Gopesh
- Department of Zoology, University of Allahabad, Prayagraj, 211002, U.P., India.
| |
Collapse
|
2
|
Zaccone G, Maina J, Germanà A, Montalbano G, Capillo G, Aragona L, Kuciel MJ, Lauriano ER, Icardo JM. First demonstration of the neuroepithelial cells and their chemical code in the accessory respiratory organ and the gill of the sharptooth catfish,Clarias gariepinus: A preliminary study. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging; Section S.A.S.T.A.S.; University of Messina; Messina Italy
| | - John Maina
- Department of Zoology; University of Johannesburg; Johannesburg South Africa
| | - Antonino Germanà
- Department of Veterinary Sciences; University of Messina; Messina Italy
| | | | - Gioele Capillo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Luisa Aragona
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - Michał J. Kuciel
- Poison Information Centre and Laboratory Analysis; Department of Toxicology and Environmental Disease; Faculty of Medicine; Jagiellonian University; Krakow Poland
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences; University of Messina; Messina Italy
| | - José M. Icardo
- Department of Anatomy and Cell Biology Polıgono de Cazona; Faculty of Medicine; University of Cantabria; Santander Spain
| |
Collapse
|
3
|
Lauriano ER, Icardo JM, Zaccone D, Kuciel M, Satora L, Alesci A, Alfa M, Zaccone G. Expression patterns and quantitative assessment of neurochemical markers in the lung of the gray bichir, Polypterus senegalus (Cuvier, 1829). Acta Histochem 2015; 117:738-46. [PMID: 26362573 DOI: 10.1016/j.acthis.2015.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/20/2022]
Abstract
Anatomical and functional studies of the autonomic innervation and the putative oxygen receptors-the neuroepithelial (NEC)-like cells of the bichirs are lacking. The present paper describes the distribution of both NEC-like cells and the polymorphous granular cells (PGCs) that populate the mucociliated epithelium of the lung in the air breathing fish Polypterus senegalus. By using confocal immunohistochemistry we determined the coexpression of specific neurochemical markers. Colocalization studies showed that 5HT is coexpressed with calbindin and nNOS in the NEC-like cells and PGCs, and choline acetyltransferase (ChAT) is coexpressed with nNOS in both the two types of cells. Distribution of neurotransmitters (5HT, NO) and neurochemical marker ChAT is also investigated in the lung muscle. The role of these transmitters may be the autonomic control of circulation and respiration. However, the importance of these signals for the respiratory responses in the species studied is still not known. The present study also shows for the first time the simultaneous occurrence of piscidin 1 and 5HT in the PGCs. The function of these cells being equivalent to ones found in fish gill subepithelial parenchyma, is still not known. Due to the importance of piscidin 1 in local immune defense, more research is useful to understand a possible interaction of PGCs with immune response in the bichir lung.
Collapse
|
4
|
Yadav L, Sengar M, Zaccone D, Gopesh A. Paraneuronal pseudobranchial neurosecretory cells in scorpion catfishHeteropneustes fossilis: an environment scanning electron microscope and transmission electron microscope study. ACTA ZOOL-STOCKHOLM 2011. [DOI: 10.1111/j.1463-6395.2011.00530.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Gopesh A, Sengar M, Tiwari S. Presence of paraneuronal pseudobranchial neurosecretory system in the gill region of two air-breathing clupeids, Notopterus chitala and Notopterus notopterus. Respir Physiol Neurobiol 2010; 171:135-43. [PMID: 20206306 DOI: 10.1016/j.resp.2010.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/18/2010] [Accepted: 02/24/2010] [Indexed: 11/15/2022]
Abstract
The pseudobranchial neurosecretory system (PNS) is a system of neurosecretion observed in certain groups of teleosts, which are air-breathing or known to tolerate low oxygen tension in the surrounding water. Like other neuroendocrine cells of gill, cells belonging to this system have also been observed to have a role in condition of hypoxia. Uniformly found in all catfish species, the system was reported to be present in few non-catfish groups also, viz.-Atheriniformes, Channiformes (Devi, 1987), Perciformes, and Clupeiformes (Srivastava et al., 1981; Gopesh, 1983). In an attempt to study the structure and organization of the pseudobranchial neurosecretory system in non-catfish species of teleost, present investigation was undertaken in two species of Notopterus, viz. Notopterus chitala and Notopterus notopterus. The histological observations, using neurosecretion specific stains, undertaken on two clupeids are reported and the findings are discussed in the light of association of PNS with Carotid gland-a structure of intermediate stage in the process of transformation of pseudobranch into the carotid labyrinth, in course of evolution and also the air-breathing habit of the fish.
Collapse
Affiliation(s)
- A Gopesh
- Department of Zoology, University of Allahabad, Allahabad 211002, U.P., India.
| | | | | |
Collapse
|
6
|
Burleson ML. Sensory innervation of the Gills: O2-sensitive chemoreceptors and mechanoreceptors. Acta Histochem 2009; 111:196-206. [PMID: 19193399 DOI: 10.1016/j.acthis.2008.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Physical characteristics of water (O(2) solubility and capacitance) dictate that cardiovascular and ventilatory performance be controlled primarily by the need for oxygen uptake rather than carbon dioxide excretion, making O(2) receptors more important in fish than in terrestrial vertebrates. An understanding of the anatomy and physiology of mechanoreception and O(2) chemoreception in fishes is important, because water breathing is the primitive template upon which the forces of evolution have modified into the various cardioventilatory modalities we see in extant terrestrial species. Key to these changes are the O(2)-sensitive chemoreceptors and mechanoreceptors, their mechanisms and central pathways.
Collapse
|
7
|
Fasulo S, Mauceri A, Tagliafierro G, Ricca MB, Cascio PL, Ainis L. Immunoreactivity to calcium‐binding proteins (CaBPs) in the epithelia of skin and gill of the catfish,Heteropneustes fossilis. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250009809386738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Mauceri A, Tigano C, Ferrito V, Barbaro B, Calderaro M, Ainis L, Fasulo S. Effect of natural confinement on the gill cell types and bony elements ofLebias fasciata(Teleostei, Cyprinodontidae): A morphological and immunohistochemical analysis. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250000209356460] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Angela Mauceri
- a Dipartimento di Biologia Animale ed Ecologia Marina , Università di Messina , Contrada Sperone 31, S. Agata, Messina, I‐98166, Italy E-mail:
| | - Concetta Tigano
- b Dipartimento di Biologia Animale , Università di Catania , Via Androne 81, Catania, I‐95124, Italy E-mail:
| | - Venera Ferrito
- c Dipartimento di Biologia Animale , Università di Catania , Via Androne 81, Catania, I‐95124, Italy
| | - Barbara Barbaro
- d Dipartimento di Biologia Animale ed Ecologia Marina , Università di Messina , Contrada Sperone 31, S. Agata, Messina, I‐98166, Italy
| | - Melina Calderaro
- d Dipartimento di Biologia Animale ed Ecologia Marina , Università di Messina , Contrada Sperone 31, S. Agata, Messina, I‐98166, Italy
| | - Luigi Ainis
- d Dipartimento di Biologia Animale ed Ecologia Marina , Università di Messina , Contrada Sperone 31, S. Agata, Messina, I‐98166, Italy
| | - Salvatore Fasulo
- e Dipartimento di Biologia Animale ed Ecologia Marina , Università di Messina , Contrada Sperone 31, S. Agata, Messina, I‐98166, Italy E-mail:
| |
Collapse
|
9
|
Zaccone G, Mauceri A, Maisano M, Fasulo S. Innervation of lung and heart in the ray-finned fish, bichirs. Acta Histochem 2009; 111:217-29. [PMID: 19121535 DOI: 10.1016/j.acthis.2008.11.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anatomical and functional studies of the autonomic innervation in the lung and the heart of the bichirs are lacking. The present review paper describes the presence of nerve fibers located in the muscle layers of the lung and its submucosa, the collection of unipolar neurons found in the submucosal and muscle layers of the glottis in a bichir species (Polypterus bichir bichir). Putative oxygen chemoreceptive, neuroepithelial cells (NECs) in the lung mucosa are also included. The latter share many immunohistochemical characteristics similar to those observed in the carotid body and neuroepithelial bodies of mammals. A packed collection of paraganglion cells is located within the trunk of the pulmonary vagus nerves. The paper also examines the occurrence of intracardiac neurons and nerve fibers in the heart of the above species. These studies show that various neurotransmitters may indicate different patterns of innervation in the lung and the heart of the bichirs. However, there is still much to be discovered about the lung and cardiovascular nervous control of these primitive fishes.
Collapse
|
10
|
Zaccone G, Mauceri A, Fasulo S. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes. ACTA ACUST UNITED AC 2006; 305:428-39. [PMID: 16506226 DOI: 10.1002/jez.a.267] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Anatomical and histochemical studies have demonstrated that the bulk of autonomic neurotransmission in fish gill is attributed to cholinergic and adrenergic mechanisms (Nilsson. 1984. In: Hoar WS, Randall DJ, editors. Fish physiology, Vol. XA. Orlando: Academic Press. p 185-227; Donald. 1998. In: Evans DH, editor. The physiology of fishes, 2nd edition. Boca Raton: CRC Press. p 407-439). In many tissues, blockade of adrenergic and cholinergic transmission results in residual responses to nerve stimulation, which are termed NonAdrenergic, NonCholinergic (NANC). The discovery of nitric oxide (NO) has provided a basis for explaining many examples of NANC transmissions with accumulated physiological and pharmacological data indicating its function as a primary NANC transmitter. Little is known about the NANC neurotransmission, and studies on neuropeptides and NOS (Nitric Oxide Synthase) are very fragmentary in the gill and the air-breathing organs of fishes. Knowledge of the distribution of nerves and effects of perfusing agonists may help to understand the mechanisms of perfusion regulation in the gill (Olson. 2002. J Exp Zool 293:214-231). Air breathing as a mechanism for acquiring oxygen has evolved independently in several groups of fishes, necessitating modifications of the organs responsible for the exchange of gases. Aquatic hypoxia in freshwaters has been probably the more important selective force in the evolution of air breathing in vertebrates. Fishes respire with gills that are complex structures with many different effectors and potential control systems. Autonomic innervation of the gill has received considerable attention. An excellent review on branchial innervation includes Sundin and Nilsson's (2002. J Exp Zool 293:232-248) with an emphasis on the anatomy and basic functioning of afferent and efferent fibers of the branchial nerves. The chapters by Evans (2002. J Exp Zool 293:336-347) and Olson (2002) provide new challenges about a variety of neurocrine, endocrine, paracrine and autocrine signals that modulate gill perfusion and ionic transport. The development of the immunohistochemical techniques has led to a new phase of experimentation and to information mainly related to gills rather than air-breathing organs of fishes. During the last few years, identification of new molecules as autonomic neurotransmitters, monoamines and NO, and of their multiple roles as cotransmitters, has reshaped our knowledge of the mechanisms of autonomic regulation of various functions in the organs of teleosts (Donald, '98).NO acts as neurotransmitter and is widely distributed in the nerves and the neuroepithelial cells of the gill, the nerves of visceral muscles of the lung of polypterids, the vascular endothelial cells in the air sac of Heteropneustes fossilis and the respiratory epithelium in the swimbladder of the catfish Pangasius hypophthalmus. In addition, 5-HT, enkephalins and some neuropeptides, such as VIP and PACAP, seem to be NANC transmitter candidates in the fish gill and polypterid lung. The origin and function of NANC nerves in the lung of air-breathing fishes await investigation. Several mechanisms have developed in the Vertebrates to control the flow of blood to respiratory organs. These mechanisms include a local production of vasoactive substances, a release of endocrine hormones into the circulation and neuronal mechanisms. Air breathers may be expected to have different control mechanisms compared with fully aquatic fishes. Therefore, we need to know the distribution and function of autonomic nerves in the air-breathing organs of the fishes.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Animal Biology and Marine Ecology, Section of Cell Biology, Comparative Neurobiolgy and Biomonitoring, Faculty of Science, University of Messina, Italy.
| | | | | |
Collapse
|
11
|
Burleson ML, Mercer SE, Wilk-Blaszczak MA. Isolation and characterization of putative O2 chemoreceptor cells from the gills of channel catfish (Ictalurus punctatus). Brain Res 2006; 1092:100-7. [PMID: 16690040 DOI: 10.1016/j.brainres.2006.03.085] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Little is known about the cells or mechanisms of O2 chemoreception in vertebrates other than mammals. The purpose of this study, therefore, was to identify O2-sensitive chemoreceptors in a fish. Putative O2-sensitive chemoreceptors were dissociated from the gills of channel catfish, Ictalurus punctatus, and cultured. A population of cells was identified with morphology and a histochemical profile similar to mammalian carotid body Type I (glomus) cells and pulmonary neuroepithelial cells. These cells stain with neutral red and appear to be the branchial neuroepithelial cells. Immunocytochemical staining showed that these cells contain neuron-specific enolase (NSE), tyrosine hydroxylase (TH) and 5-hydroxytryptamine (5HT). Patch-clamp experiments showed that these cells have a O2-sensitive, voltage-dependent outward K+ current like mammalian O2 sensors. Two kinds of electrophysiological responses to hypoxia (P(O2) < 10 Torr) were observed. Some cells showed inhibition of outward current in response to hypoxia, whereas other cells showed potentiation. Neurochemical content and electrophysiological responses to hypoxia indicate that these cells are piscine O2-sensitive chemoreceptors.
Collapse
Affiliation(s)
- Mark L Burleson
- Department of Biological Sciences, University of North Texas, Box 305220, Denton, TX, USA.
| | | | | |
Collapse
|
12
|
Gilmour KM, Perry SF. Branchial Chemoreceptor Regulation of Cardiorespiratory Function. FISH PHYSIOLOGY 2006. [DOI: 10.1016/s1546-5098(06)25003-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Abstract
Inspection of the dorsal end of fish gills reveals an impressive set of nerve trunks, connecting the gills to the brain. These trunks are branches of cranial nerves VII (the facial) and especially IX (the glossopharyngeal) and X (the vagus). The nerve trunks carry a variety of nervous pathways to and from the gills. A substantial fraction of the nerves running in the branchial trunks carry afferent (sensory) information from receptors within the gills. There are also efferent (motor) pathways, which control muscles within the gills, blood flow patterns and possibly secretory functions. Undertaking a more careful survey of the gills, it becomes evident that the arrangement of the microanatomy (particularly the blood vessels) and its innervation are strikingly complex. The complexity not only reflects the many functions of the gills but also illustrates that the control of blood flow patterns in the gills is of crucial importance in modifying the efficiency of its chief functions: gas transfer and salt balance. The "respiratory-osmoregulatory compromise" is maintained by minimizing the blood/water exchange (functional surface area of the gills) to a level where excessive water loss (marine teleosts) or gain (freshwater teleosts) is kept low while ensuring sufficient gas exchange. This review describes the arrangement and mechanisms of known nervous pathways, both afferent and efferent, of fish (notably teleosts) gills. Emphasis is placed primarily on the autonomic nervous system and mechanisms of blood flow control, together with an outline of the afferent (sensory) pathways of the gill arches.
Collapse
Affiliation(s)
- Lena Sundin
- Department of Zoophysiology, Göteborg University, SE-405 30 Göteborg, Sweden.
| | | |
Collapse
|
14
|
Mauceri A, Fasulo S, Ainis L, Licata A, Lauriano ER, Martínez A, Mayer B, Zaccone G. Neuronal nitric oxide synthase (nNOS) expression in the epithelial neuroendocrine cell system and nerve fibers in the gill of the catfish, Heteropneustes fossilis. Acta Histochem 1999; 101:437-48. [PMID: 10611932 DOI: 10.1016/s0065-1281(99)80044-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied immunohistochemically the localization of neuronal nitric oxide synthase (nNOS) in gills of an Indian catfish species, Heteropneustes fossilis. It is shown that most of the epithelial neuroendocrine cells that are present in gill filaments and lamellae stained positively. Co-localization of nNOS and endothelin was also shown in neuroendocrine cells. A dense plexus of nNOS-containing nerve fibers was present beneath the gill epithelium, associated with efferent filament arteries and the basal side of neuroendocrine cells. nNOS immunopositive neurons were not found in gill areas. nNOS immunopositive neuroendocrine cells appeared to differ from neuroepithelial cells in gills of various teleost species, which are considered as oxygen-sensitive receptors and are present in the distal halves of gill filaments. Other types of neuroendocrine cells have been identified previously in other areas of gills using antibodies to serotonin and endothelin peptides. These cell types are likely to be involved in chemical regulation of the physiology of gill cells. In relation to the function of the other cell types, our data on nNOS localization suggest that NO is a wide-spread transmitter in the gill of the Indian catfish. It may play a role both in the local regulation of vascular tone and in inhibitory innervation of the gill.
Collapse
Affiliation(s)
- A Mauceri
- Department of Animal Biology and Marine Ecology, Faculty of Science, University of Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
The arrangement of the fish gill vasculature is quite complex, and varies between the different fish groups. The use of vascular casting techniques has greatly enhanced our knowledge of the anatomy of the branchial microcirculation, not least through the contributions of Pierre Laurent and co-workers at Strasbourg. At different physiological situations, the contact surface between water and blood (functional surface area) varies to balance oxygen uptake against osmotic water flow ("respiratory-osmoregulatory compromise"). This is controlled by nerves and by blood-borne or locally released substances that affect blood flow patterns in the gill. Histochemical techniques have been used to demonstrate neurotransmitter substances in the branchial innervation. In combination with physioly-osmoregulatory compromise" at different physiological situations.
Collapse
Affiliation(s)
- S Nilsson
- Department of Zoophysiology, University of Göteborg, Sweden.
| | | |
Collapse
|
17
|
Abstract
This chapter describes the distributional patterns of the neuroendocrine cells in the respiratory surfaces of fishes and their bioactive secretions which are compared with similar elements in higher vertebrates. The neuroendocrine cells in the airways of fishes differentiate as solitary and clustered cells, but the clusters are not converted into neuroepithelial bodies which are reported in terrestrial vertebrates. The dipnoan fish Protopterus has innervated neuroendocrine cells in the pneumatic duct region. In Polypterus and Amia the lungs have neuroendocrine cells that are apparently not innervated. Two types of neuroendocrine cells are found in the gill of teleost fishes. These cells are very different by their location, structure and immunohistochemistry. Advanced studies on functional morphology of neuroendocrine cells in fish airways are still necessary to increase our understanding of their multifunctional role in the gill area.
Collapse
Affiliation(s)
- G Zaccone
- Department of Animal Biology and Marine Ecology, University of Messina, Faculty of Science, Italy
| | | | | | | |
Collapse
|
18
|
Zaccone G, Mauceri A, Fasulo S, Ainis L, Lo Cascio P, Ricca MB. Localization of immunoreactive endothelin in the neuroendocrine cells of fish gill. Neuropeptides 1996; 30:53-7. [PMID: 8868300 DOI: 10.1016/s0143-4179(96)90055-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunohistochemical tests have demonstrated for the first time the presence of endothelins in the neuroendocrine cells of fish gill. We have sought co-localization of endothelins with serotonin and neuropeptides which are regarded as neuroendocrine markers of pulmonary diffuse neuroendocrine systems in higher vertebrates. Regarding their endocrine and paracrine activities in mammals, endothelins are considered as peptide hormones and growth factors regulating respiratory function. The roles of endothelins in the gill await investigation based on the multifunctional organization of this organ.
Collapse
Affiliation(s)
- G Zaccone
- Department of Animal Biology and Marine Ecology, University of Messina, Italy
| | | | | | | | | | | |
Collapse
|