1
|
Sun W, Jin T, Yang H, Li J, Tian Q, Gao J, Peng R, Zhang G, Zhang X. Alterations of serum neuropeptide levels and their relationship to cognitive impairment and psychopathology in male patients with chronic schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:3. [PMID: 38172494 PMCID: PMC10851704 DOI: 10.1038/s41537-023-00425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Serum neuropeptide levels may be linked to schizophrenia (SCZ) pathogenesis. This study aims to examine the relation between five serum neuropeptide levels and the cognition of patients with treatment-resistant schizophrenia (TRS), chronic stable schizophrenia (CSS), and in healthy controls (HC). Three groups were assessed: 29 TRS and 48 CSS patients who were hospitalized in regional psychiatric hospitals, and 53 HC. After the above participants were enrolled, we examined the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the blood serum levels of α-melanocyte stimulating hormone (α-MSH), β-endorphin (BE), neurotensin (NT), oxytocin (OT) and substance.P (S.P). Psychiatric symptoms in patients with SCZ were assessed with the Positive and Negative Syndrome Scale. SCZ patients performed worse than HC in total score and all subscales of the RBANS. The levels of the above five serum neuropeptides were significantly higher in SCZ than in HC. The levels of OT and S.P were significantly higher in CSS than in TRS patients. The α-MSH levels in TRS patients were significantly and negatively correlated with the language scores of RBANS. However, the BE and NT levels in CSS patients were significantly and positively correlated with the visuospatial/constructional scores of RBANS. Moreover, the interaction effect of NT and BE levels was positively associated with the visuospatial/constructional scores of RBANS. Therefore, abnormally increased serum neuropeptide levels may be associated with the physiology of SCZ, and may cause cognitive impairment and psychiatric symptoms, especially in patients with TRS.
Collapse
Affiliation(s)
- Wenxi Sun
- Suzhou Medical College of Soochow University, Suzhou, 215031, Jiangsu, China
- Psychiatry Department of Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Tingting Jin
- Psychiatry Department of Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China
| | - Jin Li
- Psychiatry Department of Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Qing Tian
- Psychiatry Department of Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Ju Gao
- Psychiatry Department of Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Ruijie Peng
- Suzhou Medical College of Soochow University, Suzhou, 215031, Jiangsu, China
| | - Guangya Zhang
- Psychiatry Department of Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China.
| | - Xiaobin Zhang
- Psychiatry Department of Suzhou Guangji Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China.
| |
Collapse
|
2
|
Elhadi K, Daiwile AP, Cadet JL. Modeling methamphetamine use disorder and relapse in animals: short- and long-term epigenetic, transcriptional., and biochemical consequences in the rat brain. Neurosci Biobehav Rev 2023; 155:105440. [PMID: 38707245 PMCID: PMC11068368 DOI: 10.1016/j.neubiorev.2023.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 05/07/2024]
Abstract
Methamphetamine use disorder (MUD) is a neuropsychiatric disorder characterized by binge drug taking episodes, intervals of abstinence, and relapses to drug use even during treatment. MUD has been modeled in rodents and investigators are attempting to identify its molecular bases. Preclinical experiments have shown that different schedules of methamphetamine self-administration can cause diverse transcriptional changes in the dorsal striatum of Sprague-Dawley rats. In the present review, we present data on differentially expressed genes (DEGs) identified in the rat striatum following methamphetamine intake. These include genes involved in transcription regulation, potassium channel function, and neuroinflammation. We then use the striatal data to discuss the potential significance of the molecular changes induced by methamphetamine by reviewing concordant or discordant data from the literature. This review identified potential molecular targets for pharmacological interventions. Nevertheless, there is a need for more research on methamphetamine-induced transcriptional consequences in various brain regions. These data should provide a more detailed neuroanatomical map of methamphetamine-induced changes and should better inform therapeutic interventions against MUD.
Collapse
Affiliation(s)
- Khalid Elhadi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Atul P. Daiwile
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, 21224
| |
Collapse
|
3
|
Hidese S, Yoshida F, Ishida I, Matsuo J, Hattori K, Kunugi H. Plasma neuropeptide levels in patients with schizophrenia, bipolar disorder, or major depressive disorder and healthy controls: A multiplex immunoassay study. Neuropsychopharmacol Rep 2023; 43:57-68. [PMID: 36414415 PMCID: PMC10009433 DOI: 10.1002/npr2.12304] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
AIM We aimed to compare neuropeptide levels between patients with major psychiatric disorders and healthy controls and examine their association with symptoms and cognitive function. METHODS The participants were 149 patients with schizophrenia, 115 patients with bipolar disorder (BD), 186 unremitted patients with major depressive disorder (MDD), and 350 healthy controls. Psychiatric (schizophrenic, manic, and depressive) symptoms, sleep state, and cognitive (premorbid intelligence quotient, general cognitive, and memory) functions were evaluated. A multiplex immunoassay kit was used to measure cerebrospinal fluid (CSF) and plasma α-melanocyte-stimulating hormone (MSH), β-endorphin, neurotensin, oxytocin, and substance P levels. RESULTS The verification assay revealed that CSF α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were too low to be reliably measured, while plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels could be successfully measured. Plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were not significantly different between patients with schizophrenia, BD, or MDD and healthy controls. Plasma α-MSH, β-endorphin, neurotensin, oxytocin, and substance P levels were not significantly correlated with psychiatric symptom scores in patients with schizophrenia, BD, or MDD and cognitive function scores in patients or healthy controls. CONCLUSION Our data suggest that plasma neuropeptide levels do not elucidate the involvement of neuropeptides in the pathology of schizophrenia, BD, or MDD.
Collapse
Affiliation(s)
- Shinsuke Hidese
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ikki Ishida
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Junko Matsuo
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kotaro Hattori
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Itabashi-ku, Japan.,Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
4
|
Ramot Y, Rottenberg Y, Domb AJ, Kubek MJ, Williams KD, Nyska A. Preclinical In-Vivo Safety of a Novel Thyrotropin-Releasing Hormone-Loaded Biodegradable Nanoparticles After Intranasal Administration in Rats and Primates. Int J Toxicol 2023:10915818231152613. [PMID: 36634266 DOI: 10.1177/10915818231152613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thyrotropin-releasing hormone (TRH) and TRH-like peptides carry a therapeutic potential for neurological conditions. Nanoparticles (NP) made of the biodegradable polymer, Poly(Sebacic Anhydride) (PSA), have been developed to carry TRH, intended for intranasal administration to patients. There is limited information on the safety of biodegradable polymers when given intranasally, and therefore, we have performed two preclinical safety and toxicity studies in cynomolgus monkeys and rats using TRH-PSA nanoparticles. The rats and monkeys were dosed intranasally for 42 days or 28 days, respectively, and several animals were followed for additional 14 days. Animals received either placebo, vehicle (PSA), or different concentrations of TRH-PSA. No systemic adverse effects were seen. Changes in T3 or T4 concentrations were observed in some TRH-PSA-treated animals, which did not have clinical or microscopic correlates. No effect was seen on TSH or prolactin concentrations. In the monkey study, microscopic changes in the nasal turbinates were observed, which were attributed to incidental mechanical trauma caused during administration. Taken together, the TRH-loaded PSA NPs have proven to be safe, with no local or systemic adverse effects attributed to the drug loaded nanoparticles. These findings provide additional support to the growing evidence of the safety of peptide-loaded NPs for intranasal delivery and pave the way for future clinical trials in humans.
Collapse
Affiliation(s)
- Yuval Ramot
- Faculty of Medicine, 54621Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Dermatology, 58884Hadassah Medical Center, Jerusalem, Israel
| | - Yakir Rottenberg
- Faculty of Medicine, 54621Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Oncology, Hadassah Medical Organization, Jerusalem, Israel
| | - Abraham J Domb
- School of Pharmacy-Faculty of Medicine, 54621The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael J Kubek
- 12250Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin D Williams
- Consultant in Toxicology, WKM Consulting, LLC, Waunakee, WI, USA
| | - Abraham Nyska
- Consultant in Toxicologic Pathology, 26745Tel Aviv and Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Ballaz SJ, Bourin M. Cholecystokinin-Mediated Neuromodulation of Anxiety and Schizophrenia: A "Dimmer-Switch" Hypothesis. Curr Neuropharmacol 2021; 19:925-938. [PMID: 33185164 PMCID: PMC8686311 DOI: 10.2174/1570159x18666201113145143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK), the most abundant brain neuropeptide, is involved in relevant behavioral functions like memory, cognition, and reward through its interactions with the opioid and dopaminergic systems in the limbic system. CCK excites neurons by binding two receptors, CCK1 and CCK2, expressed at low and high levels in the brain, respectively. Historically, CCK2 receptors have been related to the induction of panic attacks in humans. Disturbances in brain CCK expression also underlie the physiopathology of schizophrenia, which is attributed to the modulation by CCK1 receptors of the dopamine flux in the basal striatum. Despite this evidence, neither CCK2 receptor antagonists ameliorate human anxiety nor CCK agonists have consistently shown neuroleptic effects in clinical trials. A neglected aspect of the function of brain CCK is its neuromodulatory role in mental disorders. Interestingly, CCK is expressed in pivotal inhibitory interneurons that sculpt cortical dynamics and the flux of nerve impulses across corticolimbic areas and the excitatory projections to mesolimbic pathways. At the basal striatum, CCK modulates the excitability of glutamate, the release of inhibitory GABA, and the discharge of dopamine. Here we focus on how CCK may reduce rather than trigger anxiety by regulating its cognitive component. Adequate levels of CCK release in the basal striatum may control the interplay between cognition and reward circuitry, which is critical in schizophrenia. Hence, it is proposed that disturbances in the excitatory/ inhibitory interplay modulated by CCK may contribute to the imbalanced interaction between corticolimbic and mesolimbic neural activity found in anxiety and schizophrenia.
Collapse
Affiliation(s)
- Santiago J. Ballaz
- Address correspondence to this author at the School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador; Tel: 593 (06) 299 9100, ext. 2626; E-mail:
| | | |
Collapse
|
6
|
Garcia-Rizo C. Antipsychotic-Induced Weight Gain and Clinical Improvement: A Psychiatric Paradox. Front Psychiatry 2020; 11:560006. [PMID: 33240120 PMCID: PMC7669745 DOI: 10.3389/fpsyt.2020.560006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Clemente Garcia-Rizo
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic de Barcelona, Institute of Neuroscience, University of Barcelona, Centre for Biomedical Research in Mental Health, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| |
Collapse
|
7
|
Nani JV, Yonamine CM, Castro Musial D, Dal Mas C, Mari JJ, Hayashi MAF. ACE activity in blood and brain axis in an animal model for schizophrenia: Effects of dopaminergic manipulation with antipsychotics and psychostimulants. World J Biol Psychiatry 2020; 21:53-63. [PMID: 30806143 DOI: 10.1080/15622975.2019.1583372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objectives: Angiotensin I-converting enzyme (ACE) was initially correlated with schizophrenia (SCZ) in studies showing a correlation of ACE increased enzyme activity with memory impairments. Possible role for ACE in SCZ was also suggested by ACE activity interaction with dopaminergic mechanisms to modulate abnormalities of sensorimotor gating. In addition, we have demonstrated higher ACE activity in blood of SCZ subjects, its implication in cognitive performance in SCZ and its power as a predictor for SCZ diagnosis.Methods: ACE activity was determined in the serum and in selected brain regions of an animal model presenting SCZ-like behaviour, before and after the treatment with typical and atypical antipsychotics, and also in the serum of animals receiving the psychostimulants amphetamine/lisdexamphetamine.Results: Dopaminergic manipulations with antipsychotics and psychostimulants influenced the ACE activity, but with no correlation with the animal blood pressure.Conclusions: The validity of measuring ACE activity in animal blood to predict activity in the CNS, as well as the lack of correlation between the activity and blood pressure, before and after the treatment with antipsychotics, were confirmed here. Correlations of the present findings with data from clinical studies also strengthen the value of this animal model for studying several aspects of SCZ.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,Department of Psychiatry, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Camila M Yonamine
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Diego Castro Musial
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Caroline Dal Mas
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| | - Jair J Mari
- Department of Psychiatry, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.,National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Monte GG, Nani JV, de Almeida Campos MR, Dal Mas C, Marins LAN, Martins LG, Tasic L, Mori MA, Hayashi MAF. Impact of nuclear distribution element genes in the typical and atypical antipsychotics effects on nematode Caenorhabditis elegans: Putative animal model for studying the pathways correlated to schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:19-30. [PMID: 30578843 DOI: 10.1016/j.pnpbp.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Abstract
The nuclear distribution element genes are conserved from fungus to humans. The nematode Caenorhabditis elegans expresses two isoforms of nuclear distribution element genes, namely nud-1 and nud-2. While nud-1 was functionally demonstrated to be the worm nudC ortholog, bioinformatic analysis revealed that the nud-2 gene encodes the worm ortholog of the mammalian NDE1 (Nuclear Distribution Element 1 or NudE) and NDEL1 (NDE-Like 1 or NudEL) genes, which share overlapping roles in brain development in mammals and also mediate the axon guidance in mammalian and C. elegans neurons. A significantly higher NDEL1 enzyme activity was shown in treatment non-resistant compared to treatment resistant SCZ patients, who essentially present response to the therapy with atypical clozapine but not with typical antipsychotics. Using C. elegans as a model, we tested the consequence of nud genes suppression in the effects of typical and atypical antipsychotics. To assess the role of nud genes and antipsychotic drugs over C. elegans behavior, we measured body bend frequency, egg laying and pharyngeal pumping, which traits are controlled by specific neurons and neurotransmitters known to be involved in SCZ, as dopamine and serotonin. Evaluation of metabolic and behavioral response to the pharmacotherapy with these antipsychotics demonstrates an important unbalance in serotonin pathway in both nud-1 and nud-2 knockout worms, with more significant effects for nud-2 knockout. The present data also show an interesting trend of mutant knockout worm strains to present a metabolic profile closer to that observed for the wild-type animals after the treatment with the typical antipsychotic haloperidol, but which was not observed for the treatment with the atypical antipsychotic clozapine. Paradoxically, behavioral assays showed more evident effects for clozapine than for haloperidol, which is in line with previous studies with rodent animal models and clinical evaluations with SCZ patients. In addition, the validity and reliability of using this experimental animal model to further explore the convergence between the dopamine/serotonin pathways and neurodevelopmental processes was demonstrated here, and the potential usefulness of this model for evaluating the metabolic consequences of treatments with antipsychotics is also suggested.
Collapse
Affiliation(s)
- Gabriela Guilherme Monte
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | - João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | | | - Caroline Dal Mas
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | - Lucas Augusto Negri Marins
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil
| | - Lucas Gelain Martins
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ljubica Tasic
- Chemical Biology Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo A Mori
- Departament of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP) São Paulo, Brazil.
| |
Collapse
|
9
|
Kimoto S, Makinodan M, Kishimoto T. Neurobiology and treatment of social cognition in schizophrenia: Bridging the bed-bench gap. Neurobiol Dis 2018; 131:104315. [PMID: 30391541 DOI: 10.1016/j.nbd.2018.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/01/2018] [Accepted: 10/31/2018] [Indexed: 01/15/2023] Open
Abstract
Social cognition refers to the psychological processes involved in the perception, encoding, storage, retrieval, and regulation of information about others and ourselves. This process is essential for survival and reproduction in complex social environments. Recent evidence suggests that impairments in social cognition frequently occur in schizophrenia, mainly contributing to poor functional outcomes, including the inability to engage in meaningful work and maintain satisfying interpersonal relationships. With the ambiguous definition of social cognition, the neurobiology underlying impaired social cognition remains unknown, and the effectiveness of currently available intervention strategies in schizophrenia remain limited. Considering the advances and challenges of translational research for schizophrenia, social cognition has been considered a high-priority domain for treatment development. Here, we describe the current state of the framework, clinical concerns, and intervention approaches for social cognition in schizophrenia. Next, we introduce translatable rodent models associated with schizophrenia that allow the evaluation of different components of social behaviors, providing deeper insights into the neural substrates of social cognition in schizophrenia. Our review presents a valuable perspective that indicates the necessity of building bridges between basic and clinical science researchers for the development of novel therapeutic approaches in impaired social cognition in schizophrenia.
Collapse
Affiliation(s)
- Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan.
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
10
|
Evers SS, Boersma GJ, Tamashiro KL, Scheurink AJ, van Dijk G. Roman high and low avoidance rats differ in their response to chronic olanzapine treatment at the level of body weight regulation, glucose homeostasis, and cortico-mesolimbic gene expression. J Psychopharmacol 2017; 31:1437-1452. [PMID: 28892416 DOI: 10.1177/0269881117724749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Olanzapine, an antipsychotic agent mainly used for treating schizophrenia, is frequently associated with body weight gain and diabetes mellitus. Nonetheless, studies have shown that not every individual is equally susceptible to olanzapine's weight-gaining effect. Therefore, Roman high and low avoidance rat strains were examined on their responsiveness to olanzapine treatment. The Roman high avoidance rat shares many behavioral and physiological characteristics with human schizophrenia, such as increased central dopaminergic sensitivity, whereas the Roman low avoidance rat has been shown to be prone to diet-induced obesity and insulin resistance. The data revealed that only the Roman high avoidance rats are susceptible to olanzapine-induced weight gain and attenuated glucose tolerance. Here it is suggested that the specific olanzapine-induced weight gain in Roman high avoidance rats could be related to augmented dopaminergic sensitivity at baseline through increased expression of prefrontal cortex dopamine receptor D1 mRNA and nucleus accumbens dopamine receptor D2 mRNA expression. Regression analyses revealed that olanzapine-induced weight gain in the Roman high avoidance rat is above all related to increased prolactin levels, whereas changes in glucose homeostasis is best explained by differences in central dopaminergic receptor expressions between strains and treatment. Our data indicates that individual differences in dopaminergic receptor expression in the cortico-mesolimbic system are related to susceptibility to olanzapine-induced weight gain.
Collapse
Affiliation(s)
- Simon S Evers
- 1 Department of Behavioral Neurosciences, University of Groningen, Nijenborgh, the Netherlands.,2 Department of Surgery, University of Michigan, Michigan, USA
| | - Gretha J Boersma
- 3 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA.,4 Department of Medical Sciences, Clinical Diabetology and Metabolism, University of Uppsala, Uppsala, Sweden
| | - Kellie Lk Tamashiro
- 3 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, USA
| | - Anton Jw Scheurink
- 1 Department of Behavioral Neurosciences, University of Groningen, Nijenborgh, the Netherlands
| | - Gertjan van Dijk
- 1 Department of Behavioral Neurosciences, University of Groningen, Nijenborgh, the Netherlands
| |
Collapse
|
11
|
Hartwig C, Monis WJ, Chen X, Dickman DK, Pazour GJ, Faundez V. Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOC-1 and BORC complexes. Dev Neurobiol 2017; 78:311-330. [PMID: 28986965 DOI: 10.1002/dneu.22542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The biogenesis of lysosome-related organelles complex-1 (BLOC-1) and the bloc-one-related complex (BORC) are the cytosolic protein complexes required for specialized membrane protein traffic along the endocytic route and the spatial distribution of endosome-derived compartments, respectively. BLOC-1 and BORC complex subunits and components of their interactomes have been associated with the risk and/or pathomechanisms of neurodevelopmental disorders. Thus, cellular processes requiring BLOC-1 and BORC interactomes have the potential to offer novel insight into mechanisms underlying behavioral defects. We focus on interactions between BLOC-1 or BORC subunits with the actin and microtubule cytoskeleton, membrane tethers, and SNAREs. These interactions highlight requirements for BLOC-1 and BORC in membrane movement by motors, control of actin polymerization, and targeting of membrane proteins to specialized cellular domains such as the nerve terminal and the primary cilium. We propose that the endosome-primary cilia pathway is an underappreciated hub in the genesis and mechanisms of neurodevelopmental disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 311-330, 2018.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| | - William J Monis
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Xun Chen
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Dion K Dickman
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| |
Collapse
|
12
|
Ballaz S. The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning. Rev Neurosci 2017; 28:573-585. [DOI: 10.1515/revneuro-2016-0088] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/05/2017] [Indexed: 12/13/2022]
Abstract
AbstractThe CCK(1) receptor is a G-protein-coupled receptor activated by the sulfated forms of cholecystokinin (CCK), a gastrin-like peptide released in the gastrointestinal tract and mammal brain. A substantial body of research supports the hypothesis that CCK(1)r stimulates gallbladder contraction and pancreatic secretion in the gut, as well as satiety in brain. However, this receptor may also fulfill relevant roles in behavior, thanks to its widespread distribution in the brain. The strategic location of CCK(1)r in mesolimbic structures and specific hypothalamic and brainstem nuclei lead to complex interactions with neurotransmitters like dopamine, serotonin, and glutamate, as well as hypothalamic hormones and neuropeptides. The activity of CCK(1)r maintains adequate levels of dopamine and regulates the activity of serotonin neurons of raphe nuclei, which makes CCK(1)r an interesting therapeutic target for the development of adjuvant treatments for schizophrenia, drug addiction, and mood disorders. Unexplored functions of CCK(1)r, like the transmission of interoceptive sensitivity in addition to the regulation of hypothalamic hormones and neurotransmitters affecting emotional states, well-being, and attachment behaviors, may open exciting roads of research. The absence of specific ligands for the CCK(1) receptor has complicated the study of its distribution in brain so that research about its impact on behavior has been published sporadically over the last 30 years. The present review reunites all this body of evidence in a comprehensive way to summarize our knowledge about the actual role of CCK in the neurobiology of mental illness.
Collapse
Affiliation(s)
- Santiago Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San Jose y Proyecto Yachay s/n, San Miguel de Urcuquí 100119, Ecuador
| |
Collapse
|
13
|
Hosseini SMR, Farokhnia M, Rezaei F, Gougol A, Yekehtaz H, Iranpour N, Salehi B, Tabrizi M, Tajdini M, Ghaleiha A, Akhondzadeh S. Intranasal desmopressin as an adjunct to risperidone for negative symptoms of schizophrenia: a randomized, double-blind, placebo-controlled, clinical trial. Eur Neuropsychopharmacol 2014; 24:846-55. [PMID: 24636461 DOI: 10.1016/j.euroneuro.2014.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 12/11/2022]
Abstract
Considering the role of neurohypophyseal peptides in normal development and function of higher cortical processes along with their proven abnormalities in schizophrenic patients, these pathways have recently attracted greater attention as treatment targets for schizophrenia. Desmopressin (DDAVP) is a synthetic analog of vasopressin. This study aimed to evaluate the efficacy and safety of DDAVP nasal spray as an adjunct to risperidone in improving negative symptoms of schizophrenia. In this randomized double-blind placebo-controlled clinical trial, forty patients aged 18-50 years with a DSM IV-TR diagnosis of chronic schizophrenia and a minimum score of 60 on positive and negative syndrome scale (PANSS) were equally randomized to receive DDAVP nasal spray (20mcg/day) or placebo in addition to risperidone for 8 weeks. Patients were partially stabilized and treated with a stable dose of risperidone (5 or 6mg/day) for at least four weeks prior to entry. Participants were rated by PANSS every two weeks and decrease in the PANSS negative subscale score was considered as our primary outcome. By the study endpoint, DDAVP-treated patients showed significantly greater improvement in the negative symptoms (P=0.001) as well as the PANSS total and general psychopathology subscale scores (P=0.005 and P=0.003; respectively) compared to the placebo group. Treatment group was the strongest predictor of changes in negative symptoms (β=-0.48, t=-3.67, P=001). No serious adverse event or fluid/electrolyte imbalance was reported in this trial. In conclusion, DDAVP nasal spray showed to be an effective and safe medication for improving negative symptoms in patients with chronic schizophrenia.
Collapse
Affiliation(s)
- Seyed Mohammad Reza Hosseini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Mehdi Farokhnia
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Farzin Rezaei
- Department of Psychiatry, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amirhossein Gougol
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Habibeh Yekehtaz
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Negar Iranpour
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Bahman Salehi
- Department of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | - Mina Tabrizi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masih Tajdini
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran
| | - Ali Ghaleiha
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran 13337, Iran.
| |
Collapse
|
14
|
Jaglin XH, Hjerling-Leffler J, Fishell G, Batista-Brito R. The origin of neocortical nitric oxide synthase-expressing inhibitory neurons. Front Neural Circuits 2012; 6:44. [PMID: 22787442 PMCID: PMC3391688 DOI: 10.3389/fncir.2012.00044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
Inhibitory neurons are critical for regulating effective transfer of sensory information and network stability. The precision of inhibitory function likely derives from the existence of a variety of interneuron subtypes. Their specification is largely dependent on the locale of origin of interneuron progenitors. Neocortical and hippocampal inhibitory neurons originate the subpallium, namely in the medial and caudal ganglionic eminences (MGE and CGE), and in the preoptic area (POA). In the hippocampus, neuronal nitric oxide synthase (nNOS)-expressing cells constitute a numerically large GABAergic interneuron population. On the contrary, nNOS-expressing inhibitory neurons constitute the smallest of the known neocortical GABAergic neuronal subtypes. The origins of most neocortical GABAergic neuron subtypes have been thoroughly investigated, however, very little is known about the origin of, or the genetic programs underlying the development of nNOS neurons. Here, we show that the vast majority of neocortical nNOS-expressing neurons arise from the MGE rather than the CGE. Regarding their molecular signature, virtually all neocortical nNOS neurons co-express the neuropeptides somatostatin (SST) and neuropeptide Y (NPY), and about half of them express the calcium-binding protein calretinin (CR). nNOS neurons thus constitute a small cohort of the MGE-derived SST-expressing population of cortical inhibitory neurons. Finally, we show that conditional removal of the transcription factor Sox6 in MGE-derived GABAergic cortical neurons results in an absence of SST and CR expression, as well as reduced expression of nNOS in neocortical nNOS neurons. Based on their respective abundance, origin and molecular signature, our results suggest that neocortical and hippocampal nNOS GABAergic neurons likely subserve different functions and have very different physiological relevance in these two cortical structures.
Collapse
Affiliation(s)
- Xavier H Jaglin
- NYU Neuroscience Institute, New York University Langone Medical Center New York, NY, USA
| | | | | | | |
Collapse
|
15
|
Ahnaou A, Drinkenburg WHIM. Neuropeptide-S evoked arousal with electroencephalogram slow-wave compensatory drive in rats. Neuropsychobiology 2012; 65:195-205. [PMID: 22538299 DOI: 10.1159/000336998] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Neuropeptide S (NPS) exerts a dual arousal and anxiolytic effect in rodents, which may indicate the potential of a novel class of therapeutic agents in psychiatry. The purpose of this study is to fully describe the nature of electroencephalogram (EEG)-defined waking that mediates these arousal effects. METHODS Effects of the intracerebroventricular infusion of NPS at 2 different doses were characterized over 20 h on sleep-wake architecture and EEG spectral components in rats that were chronically implanted with epidural electrodes for continuous measurement of sleep polygraphic and EEG variables. RESULTS NPS (1 and 10 nmol) increased active waking (+88 and +87%, respectively), decreased light slow-wave sleep (lSWS) (-84 and -68%, respectively), deep slow-wave sleep (dSWS) (-47 and -33%, respectively) and rapid-eye-movement sleep (-71 and -70%, respectively) during the first 2 h after infusion. The wake-promoting effect of NPS is consistent with a marked lengthening in latency to sleep onset, a decrease in the number of state transitions from wakefulness to lSWS, and a delayed lSWS compensatory response. Interestingly, NPS significantly enhanced waking EEG theta oscillations and slow wave activity during dSWS. CONCLUSION The findings suggest that NPS enhanced a consolidated waking associated with a subsequent compensatory EEG slow-wave homeostatic drive rather than rebound sleep duration. The characteristics of NPS-induced waking coupled with enhanced EEG theta oscillations without rebound in sleep are desirable therapeutic features in wake-promoting agents.
Collapse
Affiliation(s)
- A Ahnaou
- Janssen Research and Development, Department of Neurosciences, Johnson and Johnson Pharmaceutical Companies, Beerse, Belgium.
| | | |
Collapse
|
16
|
Harvey PD. Cognitive impairment in schizophrenia: profile, course, and neurobiological determinants. HANDBOOK OF CLINICAL NEUROLOGY 2012; 106:433-45. [PMID: 22608636 DOI: 10.1016/b978-0-444-52002-9.00025-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Philip D Harvey
- Department of Psychiatry and Behavioural Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
17
|
Schmitt A, Leonardi-Essmann F, Durrenberger PF, Wichert SP, Spanagel R, Arzberger T, Kretzschmar H, Zink M, Herrera-Marschitz M, Reynolds R, Rossner MJ, Falkai P, Gebicke-Haerter PJ. Structural synaptic elements are differentially regulated in superior temporal cortex of schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2012; 262:565-77. [PMID: 22441714 PMCID: PMC3464383 DOI: 10.1007/s00406-012-0306-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/01/2012] [Indexed: 11/26/2022]
Abstract
Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extra-cellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia. The glial origin of collagen or laminin highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University of Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hattori K, Tanaka H, Wakabayashi C, Yamamoto N, Uchiyama H, Teraishi T, Hori H, Arima K, Kunugi H. Expression of Ca²⁺-dependent activator protein for secretion 2 is increased in the brains of schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1738-43. [PMID: 21601610 DOI: 10.1016/j.pnpbp.2011.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 05/06/2011] [Accepted: 05/08/2011] [Indexed: 12/12/2022]
Abstract
Ca(2+)-dependent activator protein for secretion 2 (CADPS2), a secretory granule associate protein, mediates monoamine transmission and the release of neurotrophins including brain-derived neurotrophic factor (BDNF) which have been implicated in psychiatric disorders. Furthermore, the expression of CADPS2deltaExon3, a defective splice variant of CADPS2, has been reported to be associated with autism. Based on these observations, we examined whether expression levels of CADPS2 and CADPS2deltaExon3 are altered in psychiatric disorders. Quantitative polymerase chain reaction analysis was performed for postmortem frontal cortex tissues (BA6) from 15 individuals with schizophrenia, 15 with bipolar disorder, 15 with major depression, and 15 controls (Stanley neuropathology consortium). The mean CADPS2 expression levels normalized to human glyceraldehyde-3phosphate dehydrogenase (GAPDH) or TATA-box binding protein levels was found to be significantly increased in the brains of the schizophrenia group, compared to the control group. On the other hand, the ratio of CADPS2deltaExon3 to total CADPS2 was similar in the 4 diagnostic groups. We then analyzed CADPS2 expression in blood samples from 121 patients with schizophrenia and 318 healthy controls; however, there was no significant difference between the two groups. Chronic risperidone treatment did not alter the expression of CADPS2 in frontal cortex of mice. The observed increase in the expression of CADPS2 may be related to the impaired synaptic function in schizophrenia.
Collapse
Affiliation(s)
- Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-cho, Kodaira, Tokyo, 187-8502 Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ferraro L, Beggiato S, Tomasini MC, Fuxe K, Tanganelli S, Antonelli T. Neurotensin regulates cortical glutamate transmission by modulating N-methyl-D-aspartate receptor functional activity: an in vivo microdialysis study. J Neurosci Res 2011; 89:1618-26. [PMID: 21656844 DOI: 10.1002/jnr.22686] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/05/2011] [Accepted: 04/11/2011] [Indexed: 12/30/2022]
Abstract
The aim of the present in vivo microdialysis study was to investigate whether the tridecapeptide neurotensin (NT) influences the N-methyl-D-aspartate (NMDA) receptor-mediated increase of cortical glutamate transmission in freely moving rats. Intracortical perfusion with NT influenced local extracellular glutamate levels in a bell-shaped, concentration-dependent manner. One hundred and three hundred nanomolar NT concentrations increased glutamate levels (151% ± 7% and 124% ± 3% of basal values, respectively). Higher (1,000 nM) and lower (10 nM) NT concentrations did not alter extracellular glutamate levels. The NT receptor antagonist SR48692 (100 nM) prevented the NT (100 nM)-induced increase in glutamate levels. NMDA (100 and 500 μM) perfusion induced a concentration-dependent increase in extracellular glutamate levels, the lower 10 μM NMDA concentration being ineffective. When NT (10 nM, a concentration by itself ineffective) was added in combination with NMDA (100 μM) to the perfusion medium, a significant greater increase in extracellular glutamate levels (169% ± 7%) was observed with respect to the increase induced by NMDA (100 μM) alone (139% ± 4%). SR48692 (100 nM) counteracted the increase in glutamate levels induced by the treatment with NT (10 nM) plus NMDA (100 μM). The enhancement of cortical glutamate levels induced by NMDA (100 and 500 μM) was partially antagonized by the presence of SR48692, at a concentration (100 nM) that by itself was ineffective in modulating glutamate release. These findings indicate that NT plays a relevant role in the regulation of cortical glutamatergic transmission, especially by modulating the functional activity of cortical NMDA receptors. A possible role in glutamate-mediated neurotoxicity is suggested.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Clinical and Experimental Medicine, Pharmacology Section and LTTA Centre, Universityof Ferrara, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|