1
|
Seo M, Hwang S, Lee TH, Nam K. Comparison of Neural Recovery Effects of Botulinum Toxin Based on Administration Timing in Sciatic Nerve-Injured Rats. Toxins (Basel) 2024; 16:387. [PMID: 39330845 PMCID: PMC11435736 DOI: 10.3390/toxins16090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the effects of the timing of administering botulinum neurotoxin A (BoNT/A) on nerve regeneration in rats. Sixty 6-week-old rats with a sciatic nerve injury were randomly divided into four groups: the immediately treated (IT) group (BoNT/A injection administered immediately post-injury), the delay-treated (DT) group (BoNT/A injection administered one week post-injury), the control group (saline administered one week post-injury), and the sham group (only skin and muscle incisions made). Nerve regeneration was assessed 3, 6, and 9 weeks post-injury using various techniques. The levels of glial fibrillary acid protein (GFAP), astroglial calcium-binding protein S100β (S100β), growth-associated protein 43 (GAP43), neurofilament 200 (NF200), and brain-derived neurotrophic factor (BDNF) in the IT and DT groups were higher. ELISA revealed the highest levels of these proteins in the IT group, followed by the DT and control groups. Toluidine blue staining revealed that the average area and myelin thickness were higher in the IT group. Electrophysiological studies revealed that the CMAP in the IT group was significantly higher than that in the control group, with the DT group exhibiting significant differences starting from week 8. The findings of the sciatic functional index analysis mirrored these results. Thus, administering BoNT/A injections immediately after a nerve injury is most effective for neural recovery. However, injections administered one week post-injury also significantly enhanced recovery. BoNT/A should be administered promptly after nerve damage; however, its administration during the non-acute phase is also beneficial.
Collapse
Affiliation(s)
| | | | | | - Kiyeun Nam
- Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang 10326, Republic of Korea; (M.S.); (S.H.); (T.H.L.)
| |
Collapse
|
2
|
Hwang S, Seo M, Lee TH, Lee HJ, Park JW, Kwon BS, Nam K. Comparison of the Effects of Botulinum Toxin Doses on Nerve Regeneration in Rats with Experimentally Induced Sciatic Nerve Injury. Toxins (Basel) 2023; 15:691. [PMID: 38133195 PMCID: PMC10747296 DOI: 10.3390/toxins15120691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
This study was designed to compare the effects of various doses of botulinum neurotoxin A (BoNT/A) on nerve regeneration. Sixty-five six-week-old rats with sciatic nerve injury were randomly allocated to three experimental groups, a control group, and a sham group. The experimental groups received a single session of intraneural BoNT/A (3.5, 7.0, or 14 U/kg) injection immediately after nerve-crushing injury. The control group received normal intraneural saline injections after sciatic nerve injury. At three, six, and nine weeks after nerve damage, immunofluorescence staining, an ELISA, and toluidine blue staining was used to evaluate the regenerated nerves. Serial sciatic functional index analyses and electrophysiological tests were performed every week for nine weeks. A higher expression of GFAP, S100β, GAP43, NF200, BDNF, and NGF was seen in the 3.5 U/kg and 7.0 U/kg BoNT/A groups. The average area and myelin thickness were significantly greater in the 3.5 U/kg and 7.0 U/kg BoNT/A groups. The sciatic functional index and compound muscle action potential amplitudes exhibited similar trends. These findings indicate that the 3.5 U/kg and 7.0 U/kg BoNT/A groups exhibited better nerve regeneration than the 14 U/kg BoNT/A and control group. As the 3.5 U/kg and the 7.0 U/kg BoNT/A groups exhibited no statistical difference, we recommend using 3.5 U/kg BoNT/A for its cost-effectiveness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kiyeun Nam
- Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang 10326, Republic of Korea; (S.H.); (M.S.); (T.H.L.); (H.J.L.); (J.-w.P.); (B.S.K.)
| |
Collapse
|
3
|
Alvites R, Lopes B, Sousa P, Sousa AC, Coelho A, Moreira A, Rêma A, Atayde L, Mendonça C, Luís AL, Maurício AC. Ultrasound Landmarks in the Approach to the Common Peroneal Nerve in a Sheep Model-Application in Peripheral Nerve Regeneration. Life (Basel) 2023; 13:1919. [PMID: 37763322 PMCID: PMC10533066 DOI: 10.3390/life13091919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Peripheral nerve injury (PNI) remains a medical challenge with no easy resolution. Over the last few decades, significant advances have been achieved in promoting peripheral nerve regeneration, and new assessment tools have been developed, both functional and imaging, to quantify the proportion and quality of nerve recovery. The exploration of new animal models, larger, more complex, and with more similarities to humans, has made it possible to reduce the gap between the results obtained in classic animal models, such as rodents, and the application of new therapies in humans and animals of clinical interest. Ultrasonography is an imaging technique recurrently used in clinical practice to assess the peripheral nerves, allowing for its anatomical and topographic characterization, aiding in the administration of anesthesia, and in the performance of nerve blocks. The use of this technique in animal models is scarce, but it could be a useful tool in monitoring the progression of nerve regeneration after the induction of controlled experimental lesions. In this work, sheep, a promising animal model in the area of peripheral nerve regeneration, were subjected to an ultrasonographic study of three peripheral nerves of the hind limb, the common peroneal, and tibial and sciatic nerves. The main aim was to establish values of dimensions and ultrasound appearance in healthy nerves and landmarks for their identification, as well as to perform an ultrasound evaluation of the cranial tibial muscle, an effector muscle of the common peroneal nerve, and to establish normal values for its ultrasound appearance and dimensions. The results obtained will allow the use of these data as control values in future work exploring new therapeutic options for nerve regeneration after induction of common peroneal nerve injuries in sheep.
Collapse
Affiliation(s)
- Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Carla Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Lúcia Luís
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (R.A.); (B.L.); (P.S.); (A.C.S.); (A.C.); (A.M.); (A.R.); (L.A.); (C.M.); (A.L.L.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
4
|
Chen SH, Wu CC, Tseng WL, Lu FI, Liu YH, Lin SP, Lin SC, Hsueh YY. Adipose-derived stem cells modulate neuroinflammation and improve functional recovery in chronic constriction injury of the rat sciatic nerve. Front Neurosci 2023; 17:1172740. [PMID: 37457010 PMCID: PMC10339833 DOI: 10.3389/fnins.2023.1172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Compressive neuropathy, a common chronic traumatic injury of peripheral nerves, leads to variable impairment in sensory and motor function. Clinical symptoms persist in a significant portion of patients despite decompression, with muscle atrophy and persistent neuropathic pain affecting 10%-25% of cases. Excessive inflammation and immune cell infiltration in the injured nerve hinder axon regeneration and functional recovery. Although adipose-derived stem cells (ASCs) have demonstrated neural regeneration and immunomodulatory potential, their specific effects on compressive neuropathy are still unclear. Methods We conducted modified CCI models on adult male Sprague-Dawley rats to induce irreversible neuropathic pain and muscle atrophy in the sciatic nerve. Intraneural ASC injection and nerve decompression were performed. Behavioral analysis, muscle examination, electrophysiological evaluation, and immunofluorescent examination of the injured nerve and associated DRG were conducted to explore axon regeneration, neuroinflammation, and the modulation of inflammatory gene expression. Transplanted ASCs were tracked to investigate potential beneficial mechanisms on the local nerve and DRG. Results Persistent neuropathic pain was induced by chronic constriction of the rat sciatic nerve. Local ASC treatment has demonstrated robust beneficial outcomes, including the alleviation of mechanical allodynia, improvement of gait, regeneration of muscle fibers, and electrophysiological recovery. In addition, locally transplanted ASCs facilitated axon remyelination, alleviated neuroinflammation, and reduced inflammatory cell infiltration of the injured nerve and associated dorsal root ganglion (DRG). Trafficking of the transplanted ASC preserved viability and phenotype less than 7 days but contributed to robust immunomodulatory regulation of inflammatory gene expression in both the injured nerve and DRG. Discussion Locally transplanted ASC on compressed nerve improve sensory and motor recoveries from irreversible chronic constriction injury of rat sciatic nerve via alleviation of both local and remote neuroinflammation, suggesting the promising role of adjuvant ASC therapies for clinical compressive neuropathy.
Collapse
Affiliation(s)
- Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Science, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- The integrative Evolutionary Galliform Genomics (iEGG) and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Pourshahidi S, Shamshiri AR, Derakhshan S, Mohammadi S, Ghorbani M. The Effect of Acetyl-L-Carnitine (ALCAR) on Peripheral Nerve Regeneration in Animal Models: A Systematic Review. Neurochem Res 2023:10.1007/s11064-023-03911-1. [PMID: 37037995 DOI: 10.1007/s11064-023-03911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 04/12/2023]
Abstract
Peripheral neuropathies caused by the peripheral nervous system (PNS) damage can occur due to trauma and other disorders. They present as altered sensation, weakness, autonomic symptoms, and debilitating pain syndrome with a wide range of clinical signs. Acetyl-L-Carnitine (ALCAR) is a biological compound with essential roles in mitochondrial oxidative metabolism and anti-oxidant effects that protects mitochondria from oxidative damage and inhibits apoptosis caused by mitochondrial damage. This study is a systematic review and meta-analysis of the effects of ALCAR on peripheral nerve injuries. This review examines studies on treating traumatic peripheral neuropathies in which ALCAR is administered to rats with sciatic nerve injury with an appropriate control group. The articles were divided based on the mode of ALCAR administration. If one method was used in more than one article, their results were entered in the "Revman5.4" software and were meta-analyzed. Studies were selected from 1994 to 2018 on rats with varying physical injuries to their sciatic nerves. In one study, ALCAR was provided to rats in their drinking water, while in other studies, ALCAR was injected intra-peritoneally. Different mechanisms of ALCAR actions have been suggested in this study, but the underpinnings of the neuroprotective effects of ALCAR are still unclear. Further studies are mandatory to clarify the actual mechanisms of the neuroprotective activity of ALCAR. Based on the results of existing studies, ALCAR effectively increases the tolerance threshold of thermal and mechanical stimuli, reduces latency, and reduces apoptosis; finally, adjusting the dose and duration of administration may increase the dose and duration axon diameter.
Collapse
Affiliation(s)
- Sara Pourshahidi
- Oral and Maxillofacial Diseases Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shamshiri
- Research Center for Caries Prevention, Dentistry Research Institute, Department of Community Oral Health, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Derakhshan
- Oral and Maxillofacial Pathology Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Preclinical Imaging Group, Preclinical Core Facility, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Mohammadi
- School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Ghorbani
- Faculty of Veterinary Medicine, Islamic Azad University, Urmia Branch, Urmia, Iran.
| |
Collapse
|
6
|
Liu X, Guan J, Wu Z, Xu L, Sun C. The TGR5 Agonist INT-777 Promotes Peripheral Nerve Regeneration by Activating cAMP-dependent Protein Kinase A in Schwann Cells. Mol Neurobiol 2023; 60:1901-1913. [PMID: 36593434 DOI: 10.1007/s12035-022-03182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
Schwann cell (SC) myelination is a pivotal event in the normal physiological functioning of the peripheral nervous system (PNS), where myelination is finely controlled by a series of factors within SCs to ensure timely onset and correct myelin thickness for saltatory conduction. Among these, cyclic AMP (cAMP) is a promising factor for driving myelin gene expression in SCs. It has been shown that TGR5 activation is often associated with increased production of cAMP. Therefore, we speculated that the G-protein-coupled receptor (TGR5) might be involved in the PNS myelination. To test this hypothesis, sciatic nerve crush-injured mice were treated with INT-777, a specific agonist of TGR5, which significantly improved remyelination and functional recovery. Furthermore, rats that underwent sciatic nerve transection were treated with INT-777, which also promoted nerve regeneration and functional recovery. In primary SCs, the stimulatory effect of INT-777 on myelin gene expression was largely counteracted by H89, a potent inhibitor of cAMP-dependent protein kinase A (PKA). Additionally, INT-777 stimulated cell migration was blunted in the presence of H89. Overall, these data indicate that INT-777 is capable of promoting peripheral nerve regeneration and functional recovery after injury, and these benefits are likely due to the activation of the TGR5/cAMP/PKA axis. As such, INT-777, together with other TGR5 agonists, may hold great therapeutic potential for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Jindong Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Zhiguan Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neurogeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China.
| |
Collapse
|
7
|
Ronchi G, Fregnan F, Muratori L, Gambarotta G, Raimondo S. Morphological Methods to Evaluate Peripheral Nerve Fiber Regeneration: A Comprehensive Review. Int J Mol Sci 2023; 24:1818. [PMID: 36768142 PMCID: PMC9915436 DOI: 10.3390/ijms24031818] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Regeneration of damaged peripheral nerves remains one of the main challenges of neurosurgery and regenerative medicine, a nerve functionality is rarely restored, especially after severe injuries. Researchers are constantly looking for innovative strategies for tackling this problem, with the development of advanced tissue-engineered nerve conduits and new pharmacological and physical interventions, with the aim of improving patients' life quality. Different evaluation methods can be used to study the effectiveness of a new treatment, including functional tests, morphological assessment of regenerated nerve fibers and biomolecular analyses of key factors necessary for good regeneration. The number and diversity of protocols and methods, as well as the availability of innovative technologies which are used to assess nerve regeneration after experimental interventions, often makes it difficult to compare results obtained in different labs. The purpose of the current review is to describe the main morphological approaches used to evaluate the degree of nerve fiber regeneration in terms of their usefulness and limitations.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, 10043 Torino, TO, Italy
| |
Collapse
|
8
|
Hamad MN, Boroda N, Echenique DB, Dieter RA, Amirouche FML, Gonzalez MH, Kerns JM. Compound Motor Action Potentials During a Modest Nerve Crush. Front Cell Neurosci 2022; 16:798203. [PMID: 35431816 PMCID: PMC9005805 DOI: 10.3389/fncel.2022.798203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Nerve crush injury results in axonotmesis, characterized by disruption of axons and their myelin sheaths with relative sparing of the nerve’s connective tissue. Despite the widespread use of crush injury models, no standardized method for producing these lesions has been established. We characterize a crush model in which a narrow forceps is used to induce a modest and controlled compressive injury. The instantaneous compound motor action potential (CMAP) is monitored in situ and in real-time, allowing the characterization of neuromuscular response during and after injury. The tibial nerves of 11 anesthetized rats were surgically isolated. After the placement of electrodes, CMAPs were elicited and registered using a modular-data-acquisition system. Dumont-#5 micro-forceps were instrumented with a force transducer allowing force measurement via a digital sensor. Baseline CMAPs were recorded prior to crush and continued for the duration of the experiment. Nerve crushing commenced by gradually increasing the force applied to the forceps. At a target decrease in CMAP amplitude of 70%–90%, crushing was halted. CMAPs were continually recorded for 5–20 min after the termination of the crushing event. Nerves were then fixed for histological assessment. The following post-crush mean values from 19 trials were reported: peak CMAP amplitude decreased by 81.6% from baseline, duration of crush was 17 sec, rate of applied force was 0.03 N/sec, and maximal applied force was 0.5 N. A variety of agonal phenomena were evident post-lesion. Following the initial decrease in CMAP, 8 of 19 trials demonstrated a partial and transient recovery, followed by a further decline. Thirteen trials exhibited a CMAP amplitude near zero at the end of the recording. Twelve trials demonstrated a superimposed EMG background response during and after the crush event, with disappearance occurring within 4–8 min. Qualitative histology assessment at the lesion site demonstrated a correspondence between CMAP response and partial sparing of nerve fibers. By using a targeted decline in CMAP amplitude as the endpoint, researchers may be able to produce controlled, brief, and reproducible crush injuries. This model can also be used to test interventions aimed at enhancing subsequent regeneration and behavioral recovery.
Collapse
Affiliation(s)
- Mohammed Nazmy Hamad
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Nickolas Boroda
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | | | - Raymond A. Dieter
- Hines Veterans Affairs Hospital Research Service, Hines, IL, United States
| | - Farid M. L. Amirouche
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - Mark H. Gonzalez
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
| | - James M. Kerns
- Department of Orthopedic Surgery, University of Illinois Chicago, Chicago, IL, United States
- *Correspondence: James M. Kerns
| |
Collapse
|
9
|
Seo M, Lim D, Kim S, Kim T, Kwon BS, Nam K. Effect of Botulinum Toxin Injection and Extracorporeal Shock Wave Therapy on Nerve Regeneration in Rats with Experimentally Induced Sciatic Nerve Injury. Toxins (Basel) 2021; 13:879. [PMID: 34941716 PMCID: PMC8706895 DOI: 10.3390/toxins13120879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
This study was designed to compare the roles of botulinum neurotoxin A (BoNT/A) and extracorporeal shock wave therapy (ESWT) in promoting the functional recovery and regeneration of injured peripheral nerves. A total of 45 six-week-old rats with sciatic nerve injury were randomly divided into two experimental groups and one control group. The experimental groups received a single session of intranerve BoNT/A or ESWT immediately after a nerve-crushing injury. The control group was not exposed to any treatment. Differentiation of Schwann cells and axonal sprouting were observed through immunofluorescence staining, ELISA, real-time PCR, and Western blot at 3, 6, and 10 weeks post-nerve injury. For clinical assessment, serial sciatic functional index analysis and electrophysiological studies were performed. A higher expression of GFAP and S100β was detected in injured nerves treated with BoNT/A or ESWT. The levels of GAP43, ATF3, and NF200 associated with axonal regeneration in the experimental groups were also significantly higher than in the control group. The motor functional improvement occurred after 7 weeks of clinical observation following BoNT/A and ESWT. Compared with the control group, the amplitude of the compound muscle action potential in the experimental groups was significantly higher from 6 to 10 weeks. Collectively, these findings indicate that BoNT/A and ESWT similarly induced the activation of Schwann cells with the axonal regeneration of and functional improvement in the injured nerve.
Collapse
Affiliation(s)
| | | | | | | | | | - Kiyeun Nam
- Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine, Goyang 10326, Korea; (M.S.); (D.L.); (S.K.); (T.K.); (B.S.K.)
| |
Collapse
|
10
|
Hassan NA, Elsawy NA, Kotb HH, El-Hamid MMA, El Emairy WS, Kholosy HM. Evaluation of outcome after primary median and/or ulnar nerve(s) repair at wrist: clinical, functional, electrophysiologic, and ultrasound study. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2021. [DOI: 10.1186/s43166-021-00095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
A major problem in surgery of peripheral nerve injuries of the upper extremities is the unpredictable final outcome. More insight and understanding of the proper methods of outcome assessment and the prognostic factors is necessary to improve functional outcome after repair of peripheral nerves. The objective of this study is to assess the outcome and identify possible prognostic factors for functional recovery of median and/or ulnar nerves repairs at wrist. Forty patients with median, ulnar or combined median-ulnar nerve injuries were included. Smoking, age, sex, repaired nerve, associated artery and/ or tendon repairs, joint stiffness and scar tissue were analyzed as prognostic factors for functional outcome after repair. Outcome parameters were medical research counsel (MRC) scoring for sensory and motor recovery, grip and pinch strength, disability of arm, shoulder and hand (DASH) questionnaire, electrophysiology and ultrasonographic evaluation.
Results
The mean age of the studied patients was 29.1 ± 8.3 and it was statistically correlated with grip strength (p = 0.045), DASH score (p = 0.046) and hyperesthesia score (p = 0.040). EMG results showed signs of regeneration in all patients in the form of small nascent MUAPs and polyphasic MUAPs. CMAP amplitudes of median and ulnar nerves positively correlated with the MRC scale for muscle strength (p = 0.001)
There were statistically significant negative correlations between DASH score and MRC score for sensory evaluation (p = 0.016), grip (p = 0.001), and pinch strength (p = 0.001). There were statistically significant positive correlations between patient's opinion of recovery and MRC score for sensory evaluation (p = 0.029), grip (p = 0.001), and pinch strength (p = 0.001). The MRC score for muscle strength has statistical significant positive correlations with the MRC score for sensory evaluation, grip (p = 0.003), and pinch strength (p = 0.040)
Conclusions
It was concluded that; MRC scale for muscle power, MRC scale for sensory evaluation, functional scores, grip and pinch strength are valuable tools for evaluation of functional outcome. Age, smoking, associated tendon repair, damaged nerve, compliance to rehabilitation protocol, return to work, clinically visible wound adhesions, residual hand joint stiffness, and scar tissue detected by ultrasound were found to be prognostic factors for outcome after nerve repair.
Collapse
|
11
|
Liu YJ, Chen XF, Zhou LP, Rao F, Zhang DY, Wang YH. A nerve conduit filled with Wnt5a-loaded fibrin hydrogels promotes peripheral nerve regeneration. CNS Neurosci Ther 2021; 28:145-157. [PMID: 34729936 PMCID: PMC8673702 DOI: 10.1111/cns.13752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Aims Peripheral nerve injury is a significant clinical problem with a substantial impact on quality of life, for which no optimal treatment has been found. This study aimed to analyze the effect and mechanism of Wnt5a‐loaded fibrin hydrogel on a 10‐mm rat sciatic nerve defect. Methods The Wnt5a‐loaded fibrin hydrogel was synthesized by mixing a Wnt5a solution with thrombin and fibrinogen solutions. The loading capacity and release profile of Wnt5a‐loaded fibrin hydrogel and the effect of Wnt5a on Schwann cells were evaluated in vitro. We also assessed the in vivo repair status via histological analysis of the regenerative nerve and gastrocnemius muscle, electrophysiological examination, gait analysis, and muscle wet weight. Results We developed a nerve conduit filled with Wnt5a‐loaded fibrin hydrogel (Fn) as a sustained‐release system to repair a 10‐mm rat sciatic nerve defect. In vitro, Wnt5a could promote SC proliferation and the gene expression of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), and cholinergic neurotrophic factor (CNTF), as well as the protein secretion of VEGF and NGF. In vivo, the Wnt5a/Fn group was superior to the hollow, fibrin hydrogel, and Wnt5a groups in terms of axonal growth, myelination, electrophysiological recovery, target organ innervation, and motor function recovery 12 weeks after the operation. Conclusion The Wnt5a/Fn nerve conduit can promote peripheral nerve defect regeneration, with potential clinical applications. The mechanism for this may be the facilitation of multiple neurotrophin secretion, combining vascularization and neurotrophic growth cues.
Collapse
Affiliation(s)
- Yi-Jun Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China.,Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiao-Feng Chen
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China.,Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/ Peking University), Beijing, China
| | - Li-Ping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, China
| | - Feng Rao
- Trauma Medicine Center, Peking University People's Hospital, Beijing, China
| | - Dian-Ying Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China.,Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/ Peking University), Beijing, China
| | - Yan-Hua Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, China.,Department of Orthopedics and Trauma, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education/ Peking University), Beijing, China
| |
Collapse
|
12
|
Mu X, Sun X, Yang S, Pan S, Sun J, Niu Y, He L, Wang X. Chitosan Tubes Prefilled with Aligned Fibrin Nanofiber Hydrogel Enhance Facial Nerve Regeneration in Rabbits. ACS OMEGA 2021; 6:26293-26301. [PMID: 34660988 PMCID: PMC8515574 DOI: 10.1021/acsomega.1c03245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 05/08/2023]
Abstract
Facial nerves are fragile and easily injured, for example, by traffic accidents or operations. Facial nerve injury drastically reduces the quality of life in affected patients, and its treatment presents clinical challenges. A promising therapeutic strategy includes nerve conduits with appropriate fillers capable of guiding nerve regeneration. In this study, a three-dimensional hierarchically aligned fibrin nanofiber hydrogel (AFG) assembled via electrospinning and molecular self-assembly was first used to mimic the architecture of the native fibrin cable, which is similar to the nerve extracellular matrix (ECM). AFG as a substrate in chitosan tubes (CST) was used to bridge a 7 mm-long gap in a rabbit buccal branch facial nerve defect model. The results showed that AFG and CST showed good compatibility to support the adhesion, activity, and proliferation of Schwann cells (SCs). Further morphological, histological, and functional analyses demonstrated that the regenerative outcome of AFG-prefilled CST was close to that of autologous nerve grafts and superior to that of CST alone or CSTs prefilled with random fibrin nanofiber hydrogel (RFG), which indicated that AFG-prefilled CST markedly improved axonal regeneration with enhanced remyelination and functional recovery, thus showing great potential for clinical application for facial nerve regeneration treatments.
Collapse
Affiliation(s)
- Xiaodan Mu
- The
First Affiliated Hospital and School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiangyu Sun
- The
First Affiliated Hospital and School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Shuhui Yang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Shuang Pan
- The
First Affiliated Hospital and School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jingxuan Sun
- The
First Affiliated Hospital and School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yumei Niu
- The
First Affiliated Hospital and School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Lina He
- The
First Affiliated Hospital and School of Stomatology, Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiumei Wang
- Department
of Materials Science and Engineering, State Key Laboratory of New
Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Peripheral Nerve Regeneration Using a Nerve Conduit with Olfactory Ensheathing Cells in a Rat Model. Tissue Eng Regen Med 2021; 18:453-465. [PMID: 33515167 DOI: 10.1007/s13770-020-00326-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Autologous nerve grafts are the gold standard treatment for peripheral nerve injury treatment. However, this procedure cannot avoid sacrificing other nerves as a major limitation. The aim of the present study was to evaluate the potential of olfactory ensheathing cells (OECs) embedded in a nerve conduit. METHODS A 10-mm segment of the sciatic nerve was resected in 21 rats, and the nerve injury was repaired with one of the following (n = 7 per group): autologous nerve graft, poly (ε-caprolactone) (PCL) conduit and OECs, and PCL conduit only. The consequent effect on nerve regeneration was measured based on the nerve conduction velocity (NCV), amplitude of the compound muscle action potential (ACMAP), wet muscle weight, histomorphometric analysis, and nerve density quantification. RESULTS Histomorphometric analysis revealed nerve regeneration and angiogenesis in all groups. However, there were significant differences (p < 0.05) in the ACMAP nerve regeneration rate of the gastrocnemius and tibialis anterior muscles between the autologous graft (37.9 ± 14.3% and 39.1% ± 20.4%) and PCL only (17.8 ± 8.6% and 13.6 ± 5.8%) groups, and between the PCL only and PCL + OECs (46.3 ± 20.0% and 34.5 ± 14.6%) groups, with no differences between the autologous nerve and PCL + OEC groups (p > 0.05). No significant results in NCV, wet muscle weight, and nerve density quantification were observed among the 3 groups. CONCLUSION A PCL conduit with OECs enhances the regeneration of injured peripheral nerves, offering a good alternative to autologous nerve grafts.
Collapse
|
14
|
Whitehead TJ, Mays EA, Prasad M, Mora A, Chen C, Mazhari A, Peduzzi J, Sundararaghavan HG. Mechanical, topographical and chemical cues combined with physical therapy for peripheral nerve injuries. Regen Med 2020; 15:2193-2207. [PMID: 33284662 DOI: 10.2217/rme-2020-0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The aim of this paper is to evaluate biomaterial cues combined with physical therapy (PT) on functional recovery in a rat sciatic nerve injury model. Materials & methods: Nerve growth conduits were filled with longitudinally aligned hyaluronic acid fibers and microspheres containing neurotrophic factor (growth factor [GF]). All animals received behavior and functional testing throughout the study, which concluded with measurement of compound muscle action potentials and contractile force of the gastrocnemius muscle. Results & conclusion: Including GF improved recovery of gross motor function and increased sensory pain sensation. During the 4 weeks that animals participated in PT, these groups showed higher static sciatic index scores. Including GF and PT has the potential to improve clinical outcomes following peripheral nerve injury.
Collapse
Affiliation(s)
- Tonya J Whitehead
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St, Detroit, MI 48201, USA
| | - Elizabeth A Mays
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St, Detroit, MI 48201, USA
| | - Monica Prasad
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St, Detroit, MI 48201, USA
| | - Anthony Mora
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St, Detroit, MI 48201, USA
| | - Chaoyang Chen
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St, Detroit, MI 48201, USA
| | - Assadollah Mazhari
- Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St, Detroit, MI 48201, USA
| | - Jean Peduzzi
- Department of Neurosurgery, Wayne State University School of Medicine, 4160 John R St, Detroit, MI 48201, USA.,Department of Ophthalmology, Visual & Anatomical Sciences, 540 E Canfield Ave, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Harini G Sundararaghavan
- Department of Biomedical Engineering, Wayne State University, 818 W Hancock St, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Blasco A, Gras S, Mòdol-Caballero G, Tarabal O, Casanovas A, Piedrafita L, Barranco A, Das T, Pereira SL, Navarro X, Rueda R, Esquerda JE, Calderó J. Motoneuron deafferentation and gliosis occur in association with neuromuscular regressive changes during ageing in mice. J Cachexia Sarcopenia Muscle 2020; 11:1628-1660. [PMID: 32691534 PMCID: PMC7749545 DOI: 10.1002/jcsm.12599] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The cellular mechanisms underlying the age-associated loss of muscle mass and function (sarcopenia) are poorly understood, hampering the development of effective treatment strategies. Here, we performed a detailed characterization of age-related pathophysiological changes in the mouse neuromuscular system. METHODS Young, adult, middle-aged, and old (1, 4, 14, and 24-30 months old, respectively) C57BL/6J mice were used. Motor behavioural and electrophysiological tests and histological and immunocytochemical procedures were carried out to simultaneously analyse structural, molecular, and functional age-related changes in distinct cellular components of the neuromuscular system. RESULTS Ageing was not accompanied by a significant loss of spinal motoneurons (MNs), although a proportion (~15%) of them in old mice exhibited an abnormally dark appearance. Dark MNs were also observed in adult (~9%) and young (~4%) animals, suggesting that during ageing, some MNs undergo early deleterious changes, which may not lead to MN death. Old MNs were depleted of cholinergic and glutamatergic inputs (~40% and ~45%, respectively, P < 0.01), suggestive of age-associated alterations in MN excitability. Prominent microgliosis and astrogliosis [~93% (P < 0.001) and ~100% (P < 0.0001) increase vs. adults, respectively] were found in old spinal cords, with increased density of pro-inflammatory M1 microglia and A1 astroglia (25-fold and 4-fold increase, respectively, P < 0.0001). Ageing resulted in significant reductions in the nerve conduction velocity and the compound muscle action potential amplitude (~30%, P < 0.05, vs. adults) in old distal plantar muscles. Compared with adult muscles, old muscles exhibited significantly higher numbers of both denervated and polyinnervated neuromuscular junctions, changes in fibre type composition, higher proportion of fibres showing central nuclei and lipofuscin aggregates, depletion of satellite cells, and augmented expression of different molecules related to development, plasticity, and maintenance of neuromuscular junctions, including calcitonin gene-related peptide, growth associated protein 43, agrin, fibroblast growth factor binding protein 1, and transforming growth factor-β1. Overall, these alterations occurred at varying degrees in all the muscles analysed, with no correlation between the age-related changes observed and myofiber type composition or muscle topography. CONCLUSIONS Our data provide a global view of age-associated neuromuscular changes in a mouse model of ageing and help to advance understanding of contributing pathways leading to development of sarcopenia.
Collapse
Affiliation(s)
- Alba Blasco
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Sílvia Gras
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Guillem Mòdol-Caballero
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, CIBERNED, Bellaterra, Spain
| | - Olga Tarabal
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Anna Casanovas
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lídia Piedrafita
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | - Tapas Das
- Abbott Nutrition Research and Development, Columbus, OH, USA
| | | | - Xavier Navarro
- Grup de Neuroplasticitat i Regeneració, Institut de Neurociències, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, CIBERNED, Bellaterra, Spain
| | - Ricardo Rueda
- Abbott Nutrition Research and Development, Granada, Spain
| | - Josep E Esquerda
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Jordi Calderó
- Unitat de Neurobiologia Cel·lular, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| |
Collapse
|
16
|
Weynandt CL, Kowski A, Perka C, Rakow A. [Nerve Injuries in Hip and Knee Arthroplasty - Risk Factors, Diagnostic and Therapeutic Approaches]. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2020; 158:535-555. [PMID: 32645744 DOI: 10.1055/a-0915-9272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Iatrogenic nerve injuries are rare complications of total hip and knee arthroplasty, which may cause chronic pain and loss of function, severely affecting the patient's daily activities and quality of life. Nerves "at risk" include the sciatic nerve, the femoral nerve, the lateral femoral cutaneous nerve and the superior gluteal nerve during total hip arthroplasty, and the infrapatellar branch of the saphenous nerve as well as the peroneal nerve during total knee arthroplasty. Multiple procedure-related and patient-related factors have been identified to modify the risk of nerve injury in the course of lower limb joint replacement surgery. These include the surgeon's skills, the surgical approach, the type of implant fixation, the intraoperative positioning of the patient, as well as pre-existing scars, the patient's sex, age and comorbidities. Diagnostic and therapeutic approaches should be based on the aetiology of the lesion: iatrogenic nerve lesions can result from direct (compression or transection) and/or indirect (traction, ischemia) trauma. The majority of nerve injuries encountered in hip or knee arthroplasty has been referred to as "minor" nerve lesions, which generally respond very well to non-operative treatment. "Major" nerve lesions, such as complete motor nerve transection, may result in lifelong impairment. Any perioperatively encountered neurological deficit requires a meticulous diagnostic work-up and an individually tailored treatment strategy, respecting aetiology and anatomic site of the nerve lesion as well as the individual patient's needs and comorbidities.
Collapse
|
17
|
Mòdol-Caballero G, García-Lareu B, Verdés S, Ariza L, Sánchez-Brualla I, Brocard F, Bosch A, Navarro X, Herrando-Grabulosa M. Therapeutic Role of Neuregulin 1 Type III in SOD1-Linked Amyotrophic Lateral Sclerosis. Neurotherapeutics 2020; 17:1048-1060. [PMID: 31965551 PMCID: PMC7609630 DOI: 10.1007/s13311-019-00811-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron (Mn) disease without effective cure currently available. Death of MNs in ALS is preceded by failure of neuromuscular junctions and axonal retraction. Neuregulin 1 (NRG1) is a neurotrophic factor highly expressed in MNs and neuromuscular junctions that support axonal and neuromuscular development and maintenance. NRG1 and its ErbB receptors are involved in ALS. Reduced NRG1 expression has been found in ALS patients and in the ALS SOD1G93A mouse model; however, the expression of the isoforms of NRG1 and its receptors is still controversial. Due to the reduced levels of NRG1 type III (NRG1-III) in the spinal cord of ALS patients, we used gene therapy based on intrathecal administration of adeno-associated virus to overexpress NRG1-III in SOD1G93A mice. The mice were evaluated from 9 to 16 weeks of age by electrophysiology and rotarod tests. At 16 weeks, samples were harvested for histological and molecular analyses. Our results indicate that overexpression of NRG1-III is able to preserve neuromuscular function of the hindlimbs, improve locomotor performance, increase the number of surviving MNs, and reduce glial reactivity in the treated female SOD1G93A mice. Furthermore, the NRG1-III/ErbB4 axis appears to regulate MN excitability by modulating the chloride transporter KCC2 and reduces the expression of the MN vulnerability marker MMP-9. However, NRG1-III did not have a significant effect on male mice, indicating relevant sex differences. These findings indicate that increasing NRG1-III at the spinal cord is a promising approach for promoting MN protection and functional improvement in ALS.
Collapse
Affiliation(s)
- Guillem Mòdol-Caballero
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
| | - Belén García-Lareu
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sergi Verdés
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lorena Ariza
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Irene Sánchez-Brualla
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), 13005, Marseille, France
| | - Frédéric Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), 13005, Marseille, France
| | - Assumpció Bosch
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain.
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain.
| |
Collapse
|
18
|
Recovery and Regrowth After Nerve Repair: A Systematic Analysis of Four Repair Techniques. J Surg Res 2020; 251:311-320. [DOI: 10.1016/j.jss.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/30/2019] [Accepted: 01/26/2020] [Indexed: 02/05/2023]
|
19
|
Bruna J, Alberti P, Calls-Cobos A, Caillaud M, Damaj MI, Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp Neurol 2020; 325:113154. [PMID: 31837318 PMCID: PMC7105293 DOI: 10.1016/j.expneurol.2019.113154] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Peripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution. Therefore, objective and reliable methods should be applied for the assessment of function and innervation in adequately designed in vivo studies of CIPN, taking into account the impact of age, sex and species/strains features. This review gives an overview of the most useful methods to assess sensory, motor and autonomic functions, electrophysiological and morphological tests in rodent models of peripheral neuropathy, focused on CIPN. We include as well a proposal of protocols that may improve the quality and comparability of studies undertaken in different laboratories. It is recommended to apply more than one functional method for each type of function, and to perform parallel morphological studies in the same targets and models.
Collapse
Affiliation(s)
- Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge, Institut Català d'Oncologia L'Hospitalet, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University Milano Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Aina Calls-Cobos
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
20
|
Oliveira MA, Heimfarth L, Passos FRS, Miguel-Dos-Santos R, Mingori MR, Moreira JCF, Lauton SS, Barreto RSS, Araújo AAS, Oliveira AP, Oliveira JT, Baptista AF, Martinez AMB, Quintans-Júnior LJ, Quintans JSS. Naringenin complexed with hydroxypropyl-β-cyclodextrin improves the sciatic nerve regeneration through inhibition of p75 NTR and JNK pathway. Life Sci 2020; 241:117102. [PMID: 31790691 DOI: 10.1016/j.lfs.2019.117102] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
Peripheral nerve injuries are common conditions that often lead to dysfunctions. Although much knowledge exists on the several factors that mediate the complex biological process involved in peripheral nerve regeneration, there is a lack of effective treatments that ensure full functional recovery. Naringenin (NA) is the most abundant flavanone found in citrus fruits and it has promising neuroprotective, anti-inflammatory and antioxidant effects. This study aimed to enhance peripheral nerve regeneration using an inclusion complex containing NA and hydroxypropyl-β-cyclodextrin (HPβCD), named NA/HPβCD. A mouse sciatic nerve crush model was used to evaluate the effects of NA/HPβCD on nerve regeneration. Sensory and motor parameters, hyperalgesic behavior and the sciatic functional index (SFI), respectively, improved with NA treatment. Western blot analysis revealed that the levels of p75NTR ICD and p75NTR full length as well phospho-JNK/total JNK ratios were preserved by NA treatment. In addition, NA treatment was able to decrease levels of caspase 3. The concentrations of TNF-α and IL-1β were decreased in the lumbar spine, on the other hand there was an increase in IL-10. NA/HPβCD presented a better overall morphological profile but it was not able to increase the number of myelinated fibers. Thus, NA was able to enhance nerve regeneration, and NA/HPβCD decreased effective drug doses while maintaining the effect of the pure drug, demonstrating the advantage of using the complex over the pure compound.
Collapse
Affiliation(s)
- Marlange A Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rodrigo Miguel-Dos-Santos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Moara R Mingori
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sandra S Lauton
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Aldeidia P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI 64.049-550, Brazil
| | - Júlia T Oliveira
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Maria B Martinez
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| |
Collapse
|
21
|
Clark AR, Hsu CG, Talukder MAH, Noble M, Elfar JC. Transdermal delivery of 4-aminopyridine accelerates motor functional recovery and improves nerve morphology following sciatic nerve crush injury in mice. Neural Regen Res 2020; 15:136-144. [PMID: 31535662 PMCID: PMC6862422 DOI: 10.4103/1673-5374.264471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oral 4-aminopyridine (4-AP) is clinically used for symptomatic relief in multiple sclerosis and we recently demonstrated that systemic 4-AP had previously unknown clinically-relevant effects after traumatic peripheral nerve injury including the promotion of re-myelination, improvement of nerve conductivity, and acceleration of functional recovery. We hypothesized that, instead of oral or injection administration, transdermal 4-AP (TD-4-AP) could also improve functional recovery after traumatic peripheral nerve injury. Mice with surgical traumatic peripheral nerve injury received TD-4AP or vehicle alone and were examined for skin permeability, pharmacokinetics, functional, electrophysiological, and nerve morphological properties. 4-AP showed linear pharmacokinetics and the maximum plasma 4-AP concentrations were proportional to TD-4-AP dose. While a single dose of TD-4-AP administration demonstrated rapid transient improvement in motor function, chronic TD-4-AP treatment significantly improved motor function and nerve conduction and these effects were associated with fewer degenerating axons and thicker myelin sheaths than those from vehicle controls. These findings provide direct evidence for the potential transdermal applicability of 4-AP and demonstrate that 4-AP delivered through the skin can enhance in-vivo functional recovery and nerve conduction while decreasing axonal degeneration. The animal experiments were approved by the University Committee on Animal Research (UCAR) at the University of Rochester (UCAR-2009-019) on March 31, 2017.
Collapse
Affiliation(s)
- Andrew R Clark
- Department of Orthopaedics, The University of Rochester Medical Center, Rochester, NY, USA
| | - Chia George Hsu
- Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M A Hassan Talukder
- Center for Orthopaedic Research and Translational Science, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Mark Noble
- Department of Biomedical Genetics, The University of Rochester Medical Center, Rochester, NY, USA
| | - John C Elfar
- Center for Orthopaedic Research and Translational Science, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
22
|
Pawitan JA, Margiana R, Aman RA, Jusuf AA, Ibrahim N, Wibowo H. The effect of human umbilical cord-derived mesenchymal stem cell conditioned medium on the peripheral nerve regeneration of injured rats. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/115468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Dietzmeyer N, Förthmann M, Leonhard J, Helmecke O, Brandenberger C, Freier T, Haastert-Talini K. Two-Chambered Chitosan Nerve Guides With Increased Bendability Support Recovery of Skilled Forelimb Reaching Similar to Autologous Nerve Grafts in the Rat 10 mm Median Nerve Injury and Repair Model. Front Cell Neurosci 2019; 13:149. [PMID: 31133803 PMCID: PMC6523043 DOI: 10.3389/fncel.2019.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Tension-free surgical reconstruction of transected digital nerves in humans is regularly performed using autologous nerve grafts (ANGs) or bioartificial nerve grafts. Nerve grafts with increased bendability are needed to protect regenerating nerves in highly mobile extremity parts. We have recently demonstrated increased bendability and regeneration supporting properties of chitosan nerve guides with a corrugated outer wall (corrCNGs) in the common rat sciatic nerve model (model of low mobility). Here, we further modified the hollow corrCNGs into two-chambered nerve guides by inserting a perforated longitudinal chitosan-film (corrCNG[F]s) and comprehensively monitored functional recovery in the advanced rat median nerve model. In 16 adult female Lewis rats, we bilaterally reconstructed 10 mm median nerve gaps with either ANGs, standard chitosan nerve guides (CNGs), CNGs (CNG[F]s), or corrCNG[F]s (n = 8, per group). Over 16 weeks, functional recovery of each forelimb was separately surveyed using the grasping test (reflex-based motor task), the staircase test (skilled forelimb reaching task), and non-invasive electrophysiological recordings from the thenar muscles. Finally, regenerated tissue harvested from the distal part of the nerve grafts was paraffin-embedded and cross-sections were analyzed regarding the number of Neurofilament 200-immunopositive axons and the area of newly formed blood vessels. Nerve tissue harvested distal to the grafts was epon-embedded and semi-thin cross-sections underwent morphometrical analyses (e.g., number of myelinated axons, axon and fiber diameters, and myelin thicknesses). Functional recovery was fastest and most complete in the ANG group (100% recovery rate regarding all parameters), but corrCNG[F]s accelerated the recovery of all functions evaluated in comparison to the other nerve guides investigated. Furthermore, corrCNG[F]s supported recovery of reflex-based grasping (87.5%) and skilled forelimb reaching (100%) to eventually significantly higher rates than the other nerve guides (grasping test: CNGs: 75%, CNG[F]s: 62.5%; staircase test: CNGs: 66.7%, CNG[F]s: 83.3%). Histological and nerve morphometrical evaluations, in accordance to the functional results, demonstrated best outcome in the ANG group and highest myelin thicknesses in the corrCNG[F] group compared to the CNG and CNG[F] groups. We thus clearly demonstrate that corrCNG[F]s represent promising innovative nerve grafts for nerve repair in mobile body parts such as digits.
Collapse
Affiliation(s)
- Nina Dietzmeyer
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Maria Förthmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| | - Julia Leonhard
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany
| | | | | | | | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hanover, Germany.,Center for Systems Neuroscience (ZSN) Hannover, Hanover, Germany
| |
Collapse
|
24
|
Somensi DN, Teixeira RKC, Feijó DH, Loureiro KD, Valente AL, Carvalho LTFD, Calvo FC, Santos DRD, Barros RSMD. Does the type of electrode affect the electromyoneurographic parameters in rats?1. Acta Cir Bras 2019; 34:e201900304. [PMID: 30892390 PMCID: PMC6585890 DOI: 10.1590/s0102-865020190030000004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/12/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose To evaluate if the type of electrode (needle vs. surface) affects the
electromyoneurography parameters in rats. Methods Twenty male rats were anesthetized, then compound muscle action potential
were recorded using a Neuropack S1 MEB- 9400©. All animals were
submitted to two electroneuromyography analysis: first with surface
electrode and then by needle electrode. We evaluated the latency, amplitude,
duration and area of the negative peak of the gastrocnemius and cranial
tibial muscles. Results There were no significant differences between the groups in the mean of
duration, latency, amplitude or area of the negative peak in gastrocnemius
and cranial tibial muscles. Conclusion The type of electrode does not affect the electroneuromyography
parameters.
Collapse
Affiliation(s)
- Danusa Neves Somensi
- MD, MS, Department of Neurology, School of Medicine, Universidade do Estado do Pará (UEPA), Belem-PA, Brazil. Conception, design, intellectual and scientific content of the study; interpretation of data; manuscript writing; critical revision
| | - Renan Kleber Costa Teixeira
- MD, MS, Department of Experimental Surgery, School of Medicine, UEPA, Belem-PA, Brazil. Interpretation of data, manuscript writing, critical revision
| | - Daniel Haber Feijó
- Fellow Master degree, Postgraduate Program in Surgery and Experimental Research, School of Medicine, UEPA, Belem-PA, Brazil. Acquisition and interpretation of data, manuscript writing
| | - Karine Drumond Loureiro
- MD, Department of Neurology, School of Medicine, UEPA, Belem-PA, Brazil. Acquisition and interpretation of data
| | - André Lopes Valente
- Graduate student, School of Medicine, UEPA, Belem-PA, Brazil. Acquisition and interpretation of data
| | | | - Faustino Chaves Calvo
- Graduate student, School of Medicine, UEPA, Belem-PA, Brazil. Acquisition and interpretation of data
| | - Deivid Ramos Dos Santos
- Graduate student, School of Medicine, UEPA, Belem-PA, Brazil. Acquisition and interpretation of data
| | - Rui Sergio Monteiro de Barros
- PhD, Associate Professor, Department of Experimental Surgery, School of Medicine, UEPA, Belem-PA, Brazil. Scientific content of the study, critical revision
| |
Collapse
|
25
|
Pei YC, Chen TY, Hsu PC, Lin CH, Huang JJ. An electroneurography-based assay for identifying injured nerve segment during surgery: design and in vivo application in the rat. J Neural Eng 2019; 16:026027. [PMID: 30654345 DOI: 10.1088/1741-2552/aaff90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Nerve injury is the main reason for nerve reconstruction surgery, during which the surgeon must determine the location of the injured nerve segment, resect it, and reconnect the remaining healthy nerve stump ends within a limited time. Given this importance, an assay needed to determine the exact location of the injured nerve segment, but no tool has yet fulfilled this need so that a visual inspection of the nerve is still the primary method of identifying the injured segment. APPROACH We designed a flexible multi-electrode array sensor that records the electroneurographic signal (ENG) as the action potential elicited by electrical stimulation that propagates along the nerve upon both orthodromic and antidromic stimulation. Its utility was validated by in vivo experiments in injured sciatic nerves of rats. MAIN RESULTS The results showed that the first post stimulus negative electroneurographic component (N1) is the most valid neural correlate, as its amplitude decreased, and latency increased as the action potential propagated across the injured segment. Gradual recovery of nerve conduction was observed when measured immediately, 7, and 30 d after injury. The locations of the identified injured segments were validated by histological findings. SIGNIFICANCE The sensor and the algorithm developed in this study are breakthroughs in surgical nerve assessment accomplished by determining the specific nerve segment that should be resected, enabling the optimal surgical outcome.
Collapse
Affiliation(s)
- Yu-Cheng Pei
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. Center of Vascularized Tissue Allograft, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. School of Medicine, Chang Gung University, Taoyuan, Taiwan. Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Yang JT, Fang JT, Li L, Chen G, Qin BG, Gu LQ. Contralateral C7 transfer combined with acellular nerve allografts seeded with differentiated adipose stem cells for repairing upper brachial plexus injury in rats. Neural Regen Res 2019; 14:1932-1940. [PMID: 31290451 PMCID: PMC6676869 DOI: 10.4103/1673-5374.259626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nerve grafting has always been necessary when the contralateral C7 nerve root is transferred to treat brachial plexus injury. Acellular nerve allograft is a promising alternative for the treatment of nerve defects, and results were improved by grafts laden with differentiated adipose stem cells. However, use of these tissue-engineered nerve grafts has not been reported for the treatment of brachial plexus injury. The aim of the present study was to evaluate the outcome of acellular nerve allografts seeded with differentiated adipose stem cells to improve nerve regeneration in a rat model in which the contralateral C7 nerve was transferred to repair an upper brachial plexus injury. Differentiated adipose stem cells were obtained from Sprague-Dawley rats and transdifferentiated into a Schwann cell-like phenotype. Acellular nerve allografts were prepared from 15-mm bilateral sections of rat sciatic nerves. Rats were randomly divided into three groups: acellular nerve allograft, acellular nerve allograft + differentiated adipose stem cells, and autograft. The upper brachial plexus injury model was established by traction applied away from the intervertebral foramen with micro-hemostat forceps. Acellular nerve allografts with or without seeded cells were used to bridge the gap between the contralateral C7 nerve root and C5–6 nerve. Histological staining, electrophysiology, and neurological function tests were used to evaluate the effect of nerve repair 16 weeks after surgery. Results showed that the onset of discernible functional recovery occurred earlier in the autograft group first, followed by the acellular nerve allograft + differentiated adipose stem cells group, and then the acellular nerve allograft group; moreover, there was a significant difference between autograft and acellular nerve allograft groups. Compared with the acellular nerve allograft group, compound muscle action potential, motor conduction velocity, positivity for neurofilament and S100, diameter of regenerating axons, myelin sheath thickness, and density of myelinated fibers were remarkably increased in autograft and acellular nerve allograft + differentiated adipose stem cells groups. These findings confirm that acellular nerve allografts seeded with differentiated adipose stem cells effectively promoted nerve repair after brachial plexus injuries, and the effect was better than that of acellular nerve repair alone. This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Sun Yat-sen University of China (approval No. 2016-150) in June 2016.
Collapse
Affiliation(s)
- Jian-Tao Yang
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin-Tao Fang
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liang Li
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Gang Chen
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ben-Gang Qin
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Qiang Gu
- Department of Microsurgery & Orthopedic Trauma, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
27
|
Mohammad-Bagher G, Arash A, Morteza BR, Naser MS, Ali M. Synergistic Effects of Acetyl-l-Carnitine and Adipose-Derived Stromal Cells on Improving Regenerative Capacity of Acellular Nerve Allograft in Sciatic Nerve Defect. J Pharmacol Exp Ther 2018; 368:490-502. [PMID: 30591528 DOI: 10.1124/jpet.118.254540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
The combination of decellularized nerve allograft and adipose-derived stromal cells (ASCs) represents a good alternative to nerve autograft for bridging peripheral nerve defects by providing physical guidance and biologic cues. However, the regeneration outcome of acellular nerve allograft (ANA) is often inferior to autograft. Therefore, we hypothesized that acetyl-l-carnitine (ALCAR) treatment and implantation of ASC-embedded ANA would work synergistically to promote nerve regeneration. Seventy rats were randomly allocated into seven experimental groups (n = 10), including the healthy control group, sham surgery group, autograft group, ANA group, ANA + ASCs group, ANA + ALCAR group (50 mg/kg for 2 weeks), and ANA + ASCs + ALCAR (50 mg/kg for 2 weeks) group. All grafts were implanted to bridge long-gap (10-mm) sciatic nerve defects. Functional, electrophysiological, and morphologic analysis was conducted during the experimental period. We found that ALCAR potentiated the survival and retention of transplanted ASCs and upregulated the expression of neurotrophic factor mRNAs in transplanted grafts. Sixteen weeks following implantation in the rat, the ANA supplemented by ASCs was capable of supporting reinnervation across a 10-mm sciatic nerve gap, with results close to that of the autografts in terms of functional, electrophysiological, and histologic assessments. Results demonstrated that ALCAR treatment improved regenerative effects of ANA combined with ASCs on reconstruction of a 10-mm sciatic nerve defect in rat comparable to those of autograft.
Collapse
Affiliation(s)
- Ghayour Mohammad-Bagher
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran (G.M.-B., B.-R.M., M.-S.N., M.A.); Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran (A.A.); and Bio Science and Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran (A.A.)
| | - Abdolmaleki Arash
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran (G.M.-B., B.-R.M., M.-S.N., M.A.); Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran (A.A.); and Bio Science and Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran (A.A.)
| | - Behnam-Rassouli Morteza
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran (G.M.-B., B.-R.M., M.-S.N., M.A.); Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran (A.A.); and Bio Science and Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran (A.A.)
| | - Mahdavi-Shahri Naser
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran (G.M.-B., B.-R.M., M.-S.N., M.A.); Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran (A.A.); and Bio Science and Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran (A.A.)
| | - Moghimi Ali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran (G.M.-B., B.-R.M., M.-S.N., M.A.); Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran (A.A.); and Bio Science and Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies (SUAT), Namin, Iran (A.A.)
| |
Collapse
|
28
|
Shapira Y, Sammons V, Forden J, Guo GF, Kipp A, Girgulis J, Mishra T, de Villers Alant JD, Midha R. Brief Electrical Stimulation Promotes Nerve Regeneration Following Experimental In-Continuity Nerve Injury. Neurosurgery 2018; 85:156-163. [DOI: 10.1093/neuros/nyy221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/02/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Yuval Shapira
- Department of Neurosurgery, Tel Aviv University, Tel Aviv, Israel
| | - Vanessa Sammons
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Joanne Forden
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Gui Fang Guo
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Alexander Kipp
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Jill Girgulis
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Tanmay Mishra
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | | | - Rajiv Midha
- Department of Clinical Neuroscience, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
29
|
Alvites R, Rita Caseiro A, Santos Pedrosa S, Vieira Branquinho M, Ronchi G, Geuna S, Varejão AS, Colette Maurício A. Peripheral nerve injury and axonotmesis: State of the art and recent advances. COGENT MEDICINE 2018. [DOI: 10.1080/2331205x.2018.1466404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Rita Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto (REQUIMTE/LAQV), R. Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Vieira Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Giulia Ronchi
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Stefano Geuna
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Casal D, Mota-Silva E, Iria I, Alves S, Farinho A, Pen C, Lourenço-Silva N, Mascarenhas-Lemos L, Silva-Ferreira J, Ferraz-Oliveira M, Vassilenko V, Videira PA, Goyri-O’Neill J, Pais D. Reconstruction of a 10-mm-long median nerve gap in an ischemic environment using autologous conduits with different patterns of blood supply: A comparative study in the rat. PLoS One 2018; 13:e0195692. [PMID: 29659600 PMCID: PMC5902043 DOI: 10.1371/journal.pone.0195692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 03/27/2018] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate in the Wistar rat the efficacy of various autologous nerve conduits with various forms of blood supply in reconstructing a 10-mm-long gap in the median nerve (MN) under conditions of local ischemia. A 10-mm-long median nerve defect was created in the right arm. A loose silicone tube was placed around the nerve gap zone, in order to simulate a local ischemic environment. Rats were divided in the following experimental groups (each with 20 rats): the nerve Graft (NG) group, in which the excised MN segment was reattached; the conventional nerve flap (CNF) and the arterialized neurovenous flap (ANVF) groups in which the gap was bridged with homonymous median nerve flaps; the prefabricated nerve flap (PNF) group in which the gap was reconstructed with a fabricated flap created by leaving an arteriovenous fistula in contact with the sciatic nerve for 5 weeks; and the two control groups, Sham and Excision groups. In the latter group, the proximal stump of the MN nerve was ligated and no repair was performed. The rats were followed for 100 days. During this time, they did physiotherapy. Functional, electroneuromyographic and histological studies were performed. The CNF and ANVF groups presented better results than the NG group in the following assessments: grasping test, nociception, motor stimulation threshold, muscle weight, and histomorphometric evaluation. Radial deviation of the operated forepaw was more common in rats that presented worse results in the other outcome variables. Overall, CNFs and ANVFs produced a faster and more complete recovery than NGs in the reconstruction of a 10-mm-long median nerve gap in an ischemic environment in the Wistar rat. Although, results obtained with CNFs were in most cases were better than ANVFs, these differences were not statistically significant for most of the outcome variables.
Collapse
Affiliation(s)
- Diogo Casal
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Plastic and Reconstructive Surgery Department and Burn Unit, Centro Hospitalar de Lisboa Central–Hospital de São José, Lisbon, Portugal
- UCIBIO, Life Sciences Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Eduarda Mota-Silva
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Inês Iria
- CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sara Alves
- Pathology Department, Centro Hospitalar de Lisboa Central–Hospital de São José, Lisbon, Portugal
| | - Ana Farinho
- CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Pen
- Pathology Department, Centro Hospitalar de Lisboa Central–Hospital de São José, Lisbon, Portugal
| | | | - Luís Mascarenhas-Lemos
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Pathology Department, Centro Hospitalar de Lisboa Central–Hospital de São José, Lisbon, Portugal
| | - José Silva-Ferreira
- Pathology Department, Centro Hospitalar de Lisboa Central–Hospital de São José, Lisbon, Portugal
| | - Mário Ferraz-Oliveira
- Pathology Department, Centro Hospitalar de Lisboa Central–Hospital de São José, Lisbon, Portugal
| | - Valentina Vassilenko
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologias, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Paula Alexandra Videira
- UCIBIO, Life Sciences Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CEDOC, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Goyri-O’Neill
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Diogo Pais
- Anatomy Department, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Schwarz D, Pedro MT, Brand C, Bendszus M, Antoniadis G. [Nerve injuries and traumatic lesions of the brachial plexus : Imaging diagnostics and therapeutic options]. Radiologe 2018; 57:184-194. [PMID: 28175932 DOI: 10.1007/s00117-017-0207-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CLINICAL/METHODICAL ISSUE Traumatic lesions of peripheral nerves and the brachial plexus are feared complications because they frequently result in severe functional impairment. The prognosis is greatly dependent on the correct early diagnosis and the right choice of treatment regimen. It is important to distinguish between open and closed injuries. STANDARD RADIOLOGICAL METHODS Initial imaging must critically evaluate or prove nerve continuity and is commonly achieved by high-resolution ultrasonography. During the further course, reactive soft tissue alterations, such as constrictive scarring or neuroma formation can be detected. In the case of deep nerve and plexus injuries this can be excellently achieved by dedicated magnetic resonance neurography (MRN) sequences. METHODICAL INNOVATIONS The signal yield from brachial plexus imaging can be critically enhanced by the use of dedicated surface coil arrays. Furthermore, diffusion tensor imaging (DTI) may enable the regeneration potential of a nerve lesion to be recognized in the future. PERFORMANCE Multiple reports have shown that neurosonography enables a precise evaluation of peripheral nerve structures (up to 90% sensitivity and 95% specificity in nerve transection) and that the method can critically impact on therapeutic decision-making in 60%. Currently, there are only few quantitative data on the exact performance of MRN in traumatic nerve lesions; however, individual reports indicate a high level of agreement with intraoperative findings. PRACTICAL RECOMMENDATIONS In the initial work-up, especially in the case of peripheral, superficial and lesser nerve injuries, neurosonography is the preferred imaging approach to evaluate nerve integrity and the extent of nerve lesions. In the case of extensive nerve injury of proximal nerves and structures of the plexus as well as in the case of suspected root avulsion MRN is the method of choice.
Collapse
Affiliation(s)
- D Schwarz
- AG MR-Neurographie, Abteilung für Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
| | - M T Pedro
- Sektion Periphere Nervenchirurgie, Neurochirurgische Klinik der Universität Ulm, Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Straße 2, 89312, Günzburg, Deutschland
| | - C Brand
- Sektion Periphere Nervenchirurgie, Neurochirurgische Klinik der Universität Ulm, Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Straße 2, 89312, Günzburg, Deutschland
| | - M Bendszus
- AG MR-Neurographie, Abteilung für Neuroradiologie, Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| | - G Antoniadis
- Sektion Periphere Nervenchirurgie, Neurochirurgische Klinik der Universität Ulm, Bezirkskrankenhaus Günzburg, Ludwig-Heilmeyer-Straße 2, 89312, Günzburg, Deutschland.
| |
Collapse
|
32
|
Fang J, Yang J, Yang Y, Li L, Qin B, He W, Yan L, Chen G, Tu Z, Liu X, Gu L. A novel rat model of brachial plexus injury with nerve root stumps. J Neurosci Methods 2018; 295:1-9. [DOI: 10.1016/j.jneumeth.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023]
|
33
|
Üstün R, Oğuz EK, Delilbaşı Ç, Şeker A, Taşpınar F, Öncü MR, Oğuz AR. Neuromuscular degenerative effects of Ankaferd Blood Stopper ® in mouse sciatic nerve model. Somatosens Mot Res 2018; 34:248-257. [PMID: 29334308 DOI: 10.1080/08990220.2017.1421160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE Ankaferd Blood Stopper® (ABS), a licenced medicinal herbal extract, is commonly used as an effective topical haemostatic agent. This study is designed to investigate whether topical ABS application may cause peripheral nerve degeneration and neuromuscular dysfunction in a mouse sciatic nerve model. METHODS Twenty mice were randomly divided into two groups; an ABS treated experimental group and a saline-treated control group. Left sciatic nerves were treated with 0.3 ml of ABS in the experimental group and 0.3 ml of sterile saline in the control group for 5 min. Peripheral nerve degeneration and neuromuscular dysfunction were evaluated by behavioural tests, electrophysiological analysis and weight ratio comparison of target muscles. RESULTS The motor function, assessed by the sciatic function index, was significantly impaired in ABS-treated animals as compared to the animals treated with saline. Motor coordination, evaluated with the rotarod test, was significantly decreased (-42%) in ABS-treated animals compared to the saline-treated animals. The degree of pain, assessed by the reaction latency to thermal stimuli (hot-plate test), was significantly prolonged (313%) in ABS-treated mice when compared to the saline-treated mice. ABS-treated mice showed a significant reduction in motor nerve conduction velocity (MNCV) (-52%) and the compound muscle action potential (CMAP) (-47%); however, it significantly prolonged onset latency (23%). The gastrocnemius muscles weight ratio of the ABS group was considerably lower than that of the control group. CONCLUSIONS These findings demonstrate that ABS triggers peripheral nerve degeneration and functional impairment and, thus promotes a deterioration of sciatic nerves.
Collapse
Affiliation(s)
- Ramazan Üstün
- a Department of Physiology, Faculty of Medicine, Neuroscience Research Unit , Van Yuzuncu Yil University , Van , Turkey
| | - Elif Kaval Oğuz
- b Department of Science Education, Faculty of Education , Van Yuzuncu Yil University , Van , Turkey
| | - Çağrı Delilbaşı
- c Department of Oral and Maxillofacial Surgery, School of Dentistry , Istanbul Medipol University , İstanbul , Turkey
| | - Ayşe Şeker
- a Department of Physiology, Faculty of Medicine, Neuroscience Research Unit , Van Yuzuncu Yil University , Van , Turkey
| | - Filiz Taşpınar
- a Department of Physiology, Faculty of Medicine, Neuroscience Research Unit , Van Yuzuncu Yil University , Van , Turkey
| | - Mehmet Reşit Öncü
- d Department of Emergency Medicine, Faculty of Medicine , Van Yuzuncu Yil University , Van , Turkey
| | - Ahmet Regaip Oğuz
- e Department of Biology, Science Faculty , Van Yuzuncu Yil University , Van , Turkey
| |
Collapse
|
34
|
Cobianchi S, Jaramillo J, Luvisetto S, Pavone F, Navarro X. Botulinum neurotoxin A promotes functional recovery after peripheral nerve injury by increasing regeneration of myelinated fibers. Neuroscience 2017; 359:82-91. [PMID: 28716587 DOI: 10.1016/j.neuroscience.2017.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
The injection of safe doses of botulinum neurotoxin A (BoNT/A) have been reported to be useful for the treatment of neuropathic pain, but it is still unknown how functional recovery is induced after peripheral nerve injury. We evaluated the effects of intranerve application of BoNT/A, on regeneration and sensorimotor functional recovery in partial and complete peripheral nerve injuries in the mouse. After sciatic nerve crush (SNC) and intranerve delivery of BoNT/A (15pg), axonal regeneration was measured by nerve pinch test at different days. Regeneration of myelinated and unmyelinated fibers was assessed by immunohistochemical double labeling for NF200/GAP43 and CGRP/GAP43. S100 was used as Schwann cells marker. Medial footpad skin reinnervation was assessed by PGP staining. Motor functions were assessed by means of nerve conduction tests. In other mice groups, nerve conduction tests were performed also after chronic constriction injury (CCI) of the sciatic nerve and intraplantar injection of BoNT/A (15pg). In SNC mice, BoNT/A increased the rate of axonal regeneration. The advantage of regrowing myelinated axons after BoNT/A injection was evidenced by longer NF200+ nerve profiles and confirmed by nerve histology. We observed also a higher expression of S100 in the distal portion of BoNT/A-injected regenerated nerves. In CCI mice, BoNT/A induced an increase in reinnervation of gastrocnemius and plantar muscles. These results show that a low dose of BoNT/A, insufficient to produce muscular dysfunction, conversely speeds up sensorimotor recovery by stimulating myelinated axonal regeneration, and points out its application as a multipotent treatment for peripheral neuropathies.
Collapse
Affiliation(s)
- Stefano Cobianchi
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| | - Jessica Jaramillo
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
35
|
Du J, Liu J, Yao S, Mao H, Peng J, Sun X, Cao Z, Yang Y, Xiao B, Wang Y, Tang P, Wang X. Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater 2017; 55:296-309. [PMID: 28412554 DOI: 10.1016/j.actbio.2017.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
Abstract
Fibrin plays a crucial role in peripheral nerve regeneration, which could occur spontaneously in the format of longitudinally oriented fibrin cables during the initial stage of nerve regeneration. This fibrin cable can direct migration and proliferation of Schwann cells and axonal regrowth, which is very important to nerve regeneration. In the present study, we prepared a three-dimensional hierarchically aligned fibrin nanofiber hydrogel (AFG) through electrospinning and molecular self-assembly to resemble the architecture and biological function of the native fibrin cable. The AFG displayed a hierarchically aligned topography as well as low elasticity (∼1.5kPa) that were similar to nerve extracellular matrix (ECM) and the native fibrin cable. Rapid, directional cell adhesion and migration of Schwann cells (SCs) and dorsal root ganglions were observed in vitro. The AFG was then used as a potential intraluminal substrate in a bioengineered chitosan tube to bridge a 10-mm-long sciatic nerve gap in rats. We found that the AFG served as a beneficial microenvironment to support SCs cable formation and axonal regrowth within 2weeks. Further histological and morphological analyses as well as electrophysiological and functional examinations were performed after AFG implantation for up to 12weeks. The results from morphological analysis and electrophysiological examination indicated that regenerative outcomes achieved by our developed graft were close to those by an autologous nerve graft, but superior to those by hollow chitosan tubes (hCST) and random fibrin nanofiber hydrogel (RFG). Our results demonstrate that the AFG creates an instructive microenvironment by mimicking the native fibrin cable as well as the oriented and soft features of nerve ECM to accelerate axonal regrowth, thus showing great promising potential for applications in neural regeneration. STATEMENT OF SIGNIFICANCE In peripheral nervous system defect repair, a wide variety of strategies have been proposed for preparing functionalized nerve guidance conduits (NGC) with more complex configurations to obtain optimal repair effects. Longitudinally oriented fibrin cables were reported to form spontaneously during the initial stages of peripheral nerve regeneration in an empty NGC, which can direct the migration and proliferation of Schwann cells and promote axonal regrowth. Therefore, based on the biomimetic idea, we prepared a three-dimensional hierarchically aligned fibrin nanofiber hydrogel (AFG) through electrospinning and molecular self-assembly, resembling the architecture and biological function of the native fibrin cable and serving as an intraluminal filling to accelerate axon regeneration. We found that the AFG was a beneficial microenvironment to support SCs cable formation and accelerate axonal regrowth with improved motor functional recovery.
Collapse
|
36
|
The Dilator Naris Muscle as a Reporter of Facial Nerve Regeneration in a Rat Model. Ann Plast Surg 2016; 76:94-8. [PMID: 25643189 DOI: 10.1097/sap.0000000000000273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Many investigators study facial nerve regeneration using the rat whisker pad model, although widely standardized outcomes measures of facial nerve regeneration in the rodent have not yet been developed. The intrinsic whisker pad "sling" muscles producing whisker protraction, situated at the base of each individual whisker, are extremely small and difficult to study en bloc. Here, we compare the functional innervation of 2 potential reporter muscles for whisker pad innervation: the dilator naris (DN) and the levator labii superioris (LLS), to characterize facial nerve regeneration. METHODS Motor supply of the DN and LLS was elucidated by measuring contraction force and compound muscle action potentials during stimulation of individual facial nerve branches, and by measuring whisking amplitude before and after DN distal tendon release. RESULTS The pattern of DN innervation matched that of the intrinsic whisker pad musculature (ie, via the buccal and marginal mandibular branches of the facial nerve), whereas the LLS seemed to be innervated almost entirely by the zygomatic branch, whose primary target is the orbicularis oculi muscle. CONCLUSIONS Although the LLS has been commonly used as a reporter muscle of whisker pad innervation, the present data show that its innervation pattern does not overlap substantially with the muscles producing whisker protraction. The DN muscle may serve as a more appropriate reporter for whisker pad innervation because it is innervated by the same facial nerve branches as the intrinsic whisker pad musculature, making structure/function correlations more accurate, and more relevant to investigators studying facial nerve regeneration.
Collapse
|
37
|
Mancuso R, Martínez-Muriana A, Leiva T, Gregorio D, Ariza L, Morell M, Esteban-Pérez J, García-Redondo A, Calvo AC, Atencia-Cibreiro G, Corfas G, Osta R, Bosch A, Navarro X. Neuregulin-1 promotes functional improvement by enhancing collateral sprouting in SOD1(G93A) ALS mice and after partial muscle denervation. Neurobiol Dis 2016; 95:168-78. [PMID: 27461051 DOI: 10.1016/j.nbd.2016.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/23/2016] [Accepted: 07/22/2016] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motoneurons, which is preceded by loss of neuromuscular connections in a "dying back" process. Neuregulin-1 (Nrg1) is a neurotrophic factor essential for the development and maintenance of neuromuscular junctions, and Nrg1 receptor ErbB4 loss-of-function mutations have been reported as causative for ALS. Our main goal was to investigate the role of Nrg1 type I (Nrg1-I) in SOD1(G93A) mice muscles. We overexpressed Nrg1-I by means of an adeno-associated viral (AAV) vector, and investigated its effect by means of neurophysiological techniques assessing neuromuscular function, as well as molecular approaches (RT-PCR, western blot, immunohistochemistry, ELISA) to determine the mechanisms underlying Nrg1-I action. AAV-Nrg1-I intramuscular administration promoted motor axon collateral sprouting by acting on terminal Schwann cells, preventing denervation of the injected muscles through Akt and ERK1/2 pathways. We further used a model of muscle partial denervation by transecting the L4 spinal nerve. AAV-Nrg1-I intramuscular injection enhanced muscle reinnervation by collateral sprouting, whereas administration of lapatinib (ErbB receptor inhibitor) completely blocked it. We demonstrated that Nrg1-I plays a crucial role in the collateral reinnervation process, opening a new window for developing novel ALS therapies for functional recovery rather than preservation.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain; Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Anna Martínez-Muriana
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Tatiana Leiva
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - David Gregorio
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lorena Ariza
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marta Morell
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jesús Esteban-Pérez
- Unidad de ELA, Servicio de Neurología, Instituto de Investigación Biomédica, Hospital 12 de Octubre "i+12", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Servicio de Neurología, Instituto de Investigación Biomédica, Hospital 12 de Octubre "i+12", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Ana C Calvo
- Department of Otolaryngology - Head and Neck Surgery, Kresgae Hearing Research Institute, University of Michigan, Michigan, US
| | - Gabriela Atencia-Cibreiro
- Unidad de ELA, Servicio de Neurología, Instituto de Investigación Biomédica, Hospital 12 de Octubre "i+12", Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Gabriel Corfas
- Department of Otolaryngology - Head and Neck Surgery, Kresgae Hearing Research Institute, University of Michigan, Michigan, US
| | - Rosario Osta
- Laboratorio de Genética y Bioquímica (LAGENBIO), Facultad de Veterinaria, Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Assumpció Bosch
- Center of Animal Biotechnology and Gene Therapy and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain.
| |
Collapse
|
38
|
Comparative outcome measures in peripheral regeneration studies. Exp Neurol 2016; 287:348-357. [PMID: 27094121 DOI: 10.1016/j.expneurol.2016.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
Traumatic peripheral nerve injuries are common and often result in partial or permanent paralysis, numbness of the affected limb, and debilitating neuropathic pain. Experimental animal models of nerve injury have utilized a diversity of outcome measures to examine functional recovery following injury. Four primary categories of outcome measures of regenerative success including retrograde labeling with counts of regenerating neurons, immunohistochemistry and histomorphometry, reinnervation of target muscles, and behavioral analysis of recovery will be reviewed. Validity of different outcome measures are discussed in context of hindlimb, forelimb, and facial nerve injury models. Severity of nerve injury will be highlighted, and comparisons between nerve crush injury and more severe transection and neuroma-in-continuity nerve injury paradigms will be evaluated. The case is made that specific outcome measures may be more sensitive to assessing functional recovery following nerve injury than others. This will be discussed in the context of the lack of association between certain outcome measures of nerve regeneration. Examples of inaccurate conclusions from specific outcome measures will also be considered. Overall, researchers must therefore take care to select appropriate outcome measures for animal nerve injury studies dependant on the specific experimental interventions and scientific questions addressed.
Collapse
|
39
|
A systematic review of animal models for experimental neuroma. J Plast Reconstr Aesthet Surg 2015; 68:1447-63. [DOI: 10.1016/j.bjps.2015.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023]
|
40
|
Navarro X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur J Neurosci 2015; 43:271-86. [PMID: 26228942 DOI: 10.1111/ejn.13033] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023]
Abstract
Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets.
Collapse
Affiliation(s)
- Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
41
|
NKCC1 Activation Is Required for Myelinated Sensory Neurons Regeneration through JNK-Dependent Pathway. J Neurosci 2015; 35:7414-27. [PMID: 25972170 DOI: 10.1523/jneurosci.4079-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After peripheral nerve injury, axons are able to regenerate, although specific sensory reinnervation and functional recovery are usually worse for large myelinated than for small sensory axons. The mechanisms that mediate the regeneration of different sensory neuron subpopulations are poorly known. The Na(+)-K(+)-Cl(-) cotransporter 1 (NKCC1) is particularly relevant in setting the intracellular chloride concentration. After axotomy, increased NKCC1 phosphorylation has been reported to be important for neurite outgrowth of sensory neurons; however, the mechanisms underlying its effects are still unknown. In the present study we used in vitro and in vivo models to assess the differential effects of blocking NKCC1 activity on the regeneration of different types of dorsal root ganglia (DRGs) neurons after sciatic nerve injury in the rat. We observed that blocking NKCC1 activity by bumetanide administration induces a selective effect on neurite outgrowth and regeneration of myelinated fibers without affecting unmyelinated DRG neurons. To further study the mechanism underlying NKCC1 effects, we also assessed the changes in mitogen-activated protein kinase (MAPK) signaling under NKCC1 modulation. The inhibition of NKCC1 activity in vitro and in vivo modified pJNK1/2/3 expression in DRG neurons. Together, our study identifies a mechanism selectively contributing to myelinated axon regeneration, and point out the role of Cl(-) modulation in DRG neuron regeneration and in the activation of MAPKs, particularly those belonging to the JNK family.
Collapse
|
42
|
|
43
|
Shapira Y, Tolmasov M, Nissan M, Reider E, Koren A, Biron T, Bitan Y, Livnat M, Ronchi G, Geuna S, Rochkind S. Comparison of results between chitosan hollow tube and autologous nerve graft in reconstruction of peripheral nerve defect: An experimental study. Microsurgery 2015; 36:664-671. [PMID: 25899554 DOI: 10.1002/micr.22418] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 03/09/2015] [Accepted: 04/03/2015] [Indexed: 11/09/2022]
Abstract
OBJECT This study evaluated a chitosan tube for regeneration of the injured peripheral nerve in a rodent transected sciatic nerve model in comparison to autologous nerve graft repair. METHODS Chitosan hollow tube was used to bridge a 10-mm gap between the proximal and distal ends in 11 rats. In the control group, an end-to-end coaptation of 10-mm long autologous nerve graft was performed in 10 rats for nerve reconstruction. RESULTS SFI showed an insignificant advantage to the autologous group both at 30 days (P = 0.177) and at 90 days post procedure (P = 0.486). Somato-sensory evoked potentials (SSEP) and compound muscle action potentials (CMAP) tests showed similar results between chitosan tube (group 1) and autologous (group 2) groups with no statistically significant differences. Both groups presented the same pattern of recovery with 45% in group 1 and 44% in group 2 (P = 0.96) showing SSEP activity at 30 days. At 90 days most rats showed SSEP activity (91% vs.80% respectively, P = 0.46). The CMAP also demonstrated no statistically significant differences in latency (1.39 ms in group 1 vs. 1.63 ms in group 2; P = 0.48) and amplitude (6.28 mv vs. 6.43 mv respectively; P = 0.8). Ultrasonography demonstrated tissue growth inside the chitosan tube. Gastrocnemius muscle weight showed no statistically significant difference. Histomorphometry of the distal sciatic nerve, 90 days post reconstructive procedure, showed similar number of myelinated fibers and size parameters in both groups (P ≥ 0.05). CONCLUSIONS Chitosan hollow tube used for peripheral nerve reconstruction of rat sciatic nerve showed similar results in comparison to autologous nerve grafting. © 2015 Wiley Periodicals, Inc. Microsurgery 36:664-671, 2016.
Collapse
Affiliation(s)
- Yuval Shapira
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| | - Michael Tolmasov
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| | - Moshe Nissan
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| | - Evgeniy Reider
- Department of Anesthesiology, Tel Aviv Sourasky Medical Center, Israel
| | - Akiva Koren
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| | - Tali Biron
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| | - Yifat Bitan
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| | - Mira Livnat
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Shimon Rochkind
- Division of Peripheral Nerve Reconstruction, Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Israel
| |
Collapse
|
44
|
Geuna S. The sciatic nerve injury model in pre-clinical research. J Neurosci Methods 2015; 243:39-46. [PMID: 25629799 DOI: 10.1016/j.jneumeth.2015.01.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 12/15/2022]
Abstract
In the pre-clinical view, the study of peripheral nerve repair and regeneration still needs to be carried out in animal models due to the structural complexity of this organ which can be only partly simulated in vitro. The far most used experimental model is based on the injury of the sciatic nerve, the largest nerve trunk in mammals. In this paper, the potential application of the sciatic nerve injury model in pre-clinical research is critically reviewed. This paper is aimed at helping researchers in properly employing this in vivo model for the study of nerve repair and regeneration as well as interpreting the results in a clinical translation perspective.
Collapse
Affiliation(s)
- Stefano Geuna
- Neuroscience Institute of the Cavalieri Ottolenghi Foundation & Department of Clinical and Biological Sciences, University of Turin, Italy.
| |
Collapse
|
45
|
Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS One 2014; 9:e114328. [PMID: 25546454 PMCID: PMC4278744 DOI: 10.1371/journal.pone.0114328] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Spasticity obstructs motor function recovery post-stroke, and has been reported to occur in spinal cord injury and electrophysiological studies. The purpose of the present study was to assess spinal cord circuit spasticity in post-stroke mice. At 3, 7, 21, and 42 d after photothrombotic ischemic cortical injury in C57BL/6J mice, we observed decreased rate-dependent depression (RDD) of the Hoffmann reflex (H reflex) in the affected forelimb of mice compared with the limbs of sham mice and the non-affected forelimb. This finding suggests a hyper-excitable stretch reflex in the affected forelimb. We then performed immunohistochemical and western blot analyses to examine the expression of the potassium-chloride cotransporter 2 (KCC2) and phosphorylation of the KCC2 serine residue, 940 (S940), since this is the main chloride extruder that affects neuronal excitability. We also performed immunohistochemical analyses on the number of vesicular glutamate transporter 1 (vGluT1)-positive boutons to count the number of Ia afferent fibers that connect to motoneurons. Western bolts revealed that, compared with sham mice, experimental mice had significantly reduced KCC2 expression at 7 d post-stroke, and dephosphorylated S940 at 3 and 7 d post-stroke in motoneuron plasma membranes. We also observed a lower density of KCC2-positive areas in the plasma membrane of motoneurons at 3 and 7 d post-stroke. However, western blot and immunohistochemical analyses revealed that there were no differences between groups 21 and 42 d post-stroke, respectively. In addition, at 7 and 42 d post-stroke, experimental mice exhibited a significant increase in vGluT1 boutons compared with sham mice. Our findings suggest that both the down-regulation of KCC2 and increases in Ia afferent fibers are involved in post-stroke spasticity.
Collapse
Affiliation(s)
- Takuya Toda
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kazuto Ishida
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sachiko Lee
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
46
|
Mancuso R, Osta R, Navarro X. Presymptomatic electrophysiological tests predict clinical onset and survival in SOD1(G93A) ALS mice. Muscle Nerve 2014; 50:943-9. [PMID: 24619579 DOI: 10.1002/mus.24237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION We assessed the predictive value of electrophysiological tests as a marker of clinical disease onset and survival in superoxide-dismutase 1 (SOD1)(G93A) mice. METHODS We evaluated the accuracy of electrophysiological tests in differentiating transgenic versus wild-type mice. We made a correlation analysis of electrophysiological parameters and the onset of symptoms, survival, and number of spinal motoneurons. RESULTS Presymptomatic electrophysiological tests show great accuracy in differentiating transgenic versus wild-type mice, with the most sensitive parameter being the tibialis anterior compound muscle action potential (CMAP) amplitude. The CMAP amplitude at age 10 weeks correlated significantly with clinical disease onset and survival. Electrophysiological tests increased their survival prediction accuracy when evaluated at later stages of the disease and also predicted the amount of lumbar spinal motoneuron preservation. CONCLUSIONS Electrophysiological tests predict clinical disease onset, survival, and spinal motoneuron preservation in SOD1(G93A) mice. This is a methodological improvement for preclinical studies.
Collapse
Affiliation(s)
- Renzo Mancuso
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | | | |
Collapse
|
47
|
Mekaj AY, Morina AA, Bytyqi CI, Mekaj YH, Duci SB. Application of topical pharmacological agents at the site of peripheral nerve injury and methods used for evaluating the success of the regenerative process. J Orthop Surg Res 2014; 9:94. [PMID: 25303779 PMCID: PMC4198735 DOI: 10.1186/s13018-014-0094-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022] Open
Abstract
Traumatic injuries of the peripheral nerves are very common. Surgical repair of the damaged nerve is often complicated by scar tissue formation around the damaged nerve itself. The main objective of this study is to present the recent data from animal experimental studies where pharmacological topical agents are used at the site of peripheral nerve repair. Some of the most commonly topical agents used are tacrolimus (FK506), hyaluronic acid and its derivatives, and melatonin, whereas methylprednisolone and vitamin B12 have been used less. These studies have shown that the abovementioned substances have neuroprotective and neuroregenerative properties though different mechanisms. The successes of the regenerative process of the nerve repair in experimental research, using topical agents, can be evaluated using variety of methods such as morphological, electrophysiologic, and functional evaluation. However, most authors agree that despite good microsurgical repair and topical application of these substances, full regeneration and functional recovery of the nerve injured are almost never achieved.
Collapse
Affiliation(s)
| | | | | | - Ymer H Mekaj
- Institute of Pathophysiology, Faculty of Medicine, University of Prishtina, Rrethi i spitalit p,n,, Prishtina 10000, Kosovo.
| | | |
Collapse
|
48
|
Allodi I, Mecollari V, González-Pérez F, Eggers R, Hoyng S, Verhaagen J, Navarro X, Udina E. Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 2014; 62:1736-46. [PMID: 24989458 DOI: 10.1002/glia.22712] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/07/2023]
Abstract
Fibroblast growth factor 2 (FGF-2) is a trophic factor expressed by glial cells and different neuronal populations. Addition of FGF-2 to spinal cord and dorsal root ganglia (DRG) explants demonstrated that FGF-2 specifically increases motor neuron axonal growth. To further explore the potential capability of FGF-2 to promote axon regeneration, we produced a lentiviral vector (LV) to overexpress FGF-2 (LV-FGF2) in the injured rat peripheral nerve. Cultured Schwann cells transduced with FGF-2 and added to collagen matrix embedding spinal cord or DRG explants significantly increased motor but not sensory neurite outgrowth. LV-FGF2 was as effective as direct addition of the trophic factor to promote motor axon growth in vitro. Direct injection of LV-FGF2 into the rat sciatic nerve resulted in increased expression of FGF-2, which was localized in the basal lamina of Schwann cells. To investigate the in vivo effect of FGF-2 overexpression on axonal regeneration after nerve injury, Schwann cells transduced with LV-FGF2 were grafted in a silicone tube used to repair the resected rat sciatic nerve. Electrophysiological tests conducted for up to 2 months after injury revealed accelerated and more marked reinnervation of hindlimb muscles in the animals treated with LV-FGF2, with an increase in the number of motor and sensory neurons that reached the distal tibial nerve at the end of follow-up.
Collapse
Affiliation(s)
- Ilary Allodi
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Defining Peripheral Nervous System Dysfunction in the SOD-1G93ATransgenic Rat Model of Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2014; 73:658-70. [DOI: 10.1097/nen.0000000000000081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
50
|
Mancuso R, del Valle J, Morell M, Pallás M, Osta R, Navarro X. Lack of synergistic effect of resveratrol and sigma-1 receptor agonist (PRE-084) in SOD1G⁹³A ALS mice: overlapping effects or limited therapeutic opportunity? Orphanet J Rare Dis 2014; 9:78. [PMID: 24885036 PMCID: PMC4035830 DOI: 10.1186/1750-1172-9-78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by the loss of motoneurons (MNs) in the spinal cord, brainstem and motor cortex, causing progressive paralysis and death. Nowadays, there is no effective therapy and most patients die 2-5 years after diagnosis. Sigma-1R is a transmembrane protein highly expressed in the CNS and specially enriched in MNs. Mutations on the Sigma-1R leading to frontotemporal lobar degeneration-ALS were recently described in human patients. We previously reported the therapeutic role of the selective sigma-1R agonist 2-(4-morpholi-nethyl)1-phenylcyclohexanecarboxylate (PRE-084) in SOD1G93A ALS mice, that promoted spinal MN preservation and extended animal survival by controlling NMDA receptor calcium influx. Resveratrol (RSV, trans-3,4',5-trihydroxystilbene) is a natural polyphenol with promising neuroprotective effects. We recently found that RSV administration to SOD1G93A mice preserves spinal MN function and increases mice survival. These beneficial effects were associated to activation of Sirtuin 1 (Sirt1) and AMP-activated protein kinase (AMPK) pathways, leading to the modulation of autophagy and an increase of mitochondrial biogenesis. The main goal of this work was to assess the effect of combined RSV and PRE-084 administration in SOD1G93A ALS mice. METHODS We determined the locomotor performance of the animals by rotarod test and evaluated spinal motoneuron function using electrophysiological tests. RESULTS RSV plus PRE-084 treatment from 8 weeks of age significantly improved locomotor performance and spinal MN function, accompanied by a significant reduction of MN degeneration and an extension of mice lifespan. In agreement with our previous findings, there was an induction of PKC-specific phosphorylation of the NMDA-NR1 subunit and an increased expression and activation of Sirt1 and AMPK in the ventral spinal cord of treated SOD1G93A animals. CONCLUSIONS Although combined PRE and RSV treatment significantly ameliorated SOD1G93A mice, it did not show a synergistic effect compared to RSV-only and PRE-084-only treated groups.
Collapse
Affiliation(s)
- Renzo Mancuso
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Jaume del Valle
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Marta Morell
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Mercé Pallás
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBERNED, Barcelona, Spain
| | - Rosario Osta
- Laboratory of Genetic Biochemistry (LAGENBIO-I3A), Aragon Institute of Health Sciences, Universidad de Zaragoza, Zaragoza, Spain
| | - Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
- Unitat de Fisiologia Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain
| |
Collapse
|