1
|
Le D, Dhamecha D, Gonsalves A, Menon JU. Ultrasound-Enhanced Chemiluminescence for Bioimaging. Front Bioeng Biotechnol 2020; 8:25. [PMID: 32117914 PMCID: PMC7016203 DOI: 10.3389/fbioe.2020.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue imaging has emerged as an important aspect of theragnosis. It is essential not only to evaluate the degree of the disease and thus provide appropriate treatments, but also to monitor the delivery of administered drugs and the subsequent recovery of target tissues. Several techniques including magnetic resonance imaging (MRI), computational tomography (CT), acoustic tomography (AT), biofluorescence (BF) and chemiluminescence (CL), have been developed to reconstruct three-dimensional images of tissues. While imaging has been achieved with adequate spatial resolution for shallow depths, challenges still remain for imaging deep tissues. Energy loss is usually observed when using a magnetic field or traditional ultrasound (US), which leads to a need for more powerful energy input. This may subsequently result in tissue damage. CT requires exposure to radiation and a high dose of contrast agent to be administered for imaging. The BF technique, meanwhile, is affected by strong scattering of light and autofluorescence of tissues. The CL is a more selective and sensitive method as stable luminophores are produced from physiochemical reactions, e.g. with reactive oxygen species. Development of near infrared-emitting luminophores also bring potential for application of CL in deep tissues and whole animal studies. However, traditional CL imaging requires an enhancer to increase the intensity of low-level light emissions, while reducing the scattering of emitted light through turbid tissue environment. There has been interest in the use of focused ultrasound (FUS), which can allow acoustic waves to propagate within tissues and modulate chemiluminescence signals. While light scattering is decreased, the spatial resolution is increased with the assistance of US. In this review, chemiluminescence detection in deep tissues with assistance of FUS will be highlighted to discuss its potential in deep tissue imaging.
Collapse
Affiliation(s)
| | | | | | - Jyothi U. Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
2
|
Ma Q, Ye L, Liu H, Shi Y, Zhou N. An overview of Ca 2+ mobilization assays in GPCR drug discovery. Expert Opin Drug Discov 2017; 12:511-523. [PMID: 28277837 DOI: 10.1080/17460441.2017.1303473] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Calcium ions (Ca2+) serve as a second messenger or universal signal transducer implicated in the regulation of a wide range of physiological processes. A change in the concentration of intracellular Ca2+ is an important step in intracellular signal transduction. G protein-coupled receptors (GPCRs), the largest and most versatile group of cell surface receptors, transduce extracellular signals into intracellular responses via their coupling to heterotrimeric G proteins. Since Ca2+ plays a crucial role in GPCR-induced signaling, measurement of intracellular Ca2+ has attracted more and more attention in GPCR-targeted drug discovery. Areas covered: This review focuses on the most popular functional assays measuring GPCRs-induced intracellular Ca2+ signaling. These include photoprotein-based, synthetic fluorescent indicator-based and genetically encoded calcium indicator (GECI)-based Ca2+ mobilization assays. A brief discussion of the design strategy of fluorescent probes in GPCR studies is also presented. Expert opinion: GPCR-mediated intracellular signaling is multidimensional. There is an urgent need for the development of multiple-readout screening assays capable of simultaneous detection of biased signaling and screening of both agonists and antagonists in the same assay. It is also necessary to develop GECIs offering low cost and consistent assays suitable for investigating GPCR activation in vivo.
Collapse
Affiliation(s)
- Qiang Ma
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| | - Lingyan Ye
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| | - Hongxia Liu
- b Department of Internal Medicine , Edong Healthcare Group , Huangshi , Hubei , China
| | - Ying Shi
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| | - Naiming Zhou
- a College of Life Sciences, Zijingang Campus , Zhejiang University, Institute of Biochemistry and Molecular Biology , Hangzhou , Zhejiang , China
| |
Collapse
|
3
|
Jaffe LF. Stretch-activated calcium channels relay fast calcium waves propagated by calcium-induced calcium influx. Biol Cell 2012; 99:175-84. [PMID: 17302561 DOI: 10.1042/bc20060031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For nearly 30 years, fast calcium waves have been attributed to a regenerative process propagated by CICR (calcium-induced calcium release) from the endoplasmic reticulum. Here, I propose a model containing a new subclass of fast calcium waves which is propagated by CICI (calcium-induced calcium influx) through the plasma membrane. They are called fast CICI waves. These move at the order of 100 to 1000 microm/s (at 20 degrees C), rather than the order of 3 to 30 microm/s found for CICR. Moreover, in this proposed subclass, the calcium influx which drives calcium waves is relayed by stretch-activated calcium channels. This model is based upon reports from approx. 60 various systems. In seven of these reports, calcium waves were imaged, and, in five of these, evidence was presented that these waves were regenerated by CICI. Much of this model involves waves that move along functioning flagella and cilia. In these systems, waves of local calcium influx are thought to cause waves of local contraction by inducing the sliding of dynein or of kinesin past tubulin microtubules. Other cells which are reported to exhibit waves, which move at speeds in the fast CICI range, include ones from a dozen protozoa, three polychaete worms, three molluscs, a bryozoan, two sea urchins, one arthropod, four insects, Amphioxus, frogs, two fish and a vascular plant (Equisetum), together with numerous healthy, as well as cancerous, mammalian cells, including ones from human. In two of these systems, very gentle local mechanical stimulation is reported to initiate waves. In these non-flagellar systems, the calcium influxes are thought to speed the sliding of actinomyosin filaments past each other. Finally, I propose that this mechanochemical model could be tested by seeing if gentle mechanical stimulation induces waves in more of these systems and, more importantly, by imaging the predicted calcium waves in more of them.
Collapse
Affiliation(s)
- Lionel F Jaffe
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
4
|
Dupriez VJ, Maes K, Le Poul E, Burgeon E, Detheux M. Aequorin-Based Functional Assays for G-Protein-Coupled Receptors, Ion Channels, and Tyrosine Kinase Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820214646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Pichler A, Prior JL, Piwnica-Worms D. Imaging reversal of multidrug resistance in living mice with bioluminescence: MDR1 P-glycoprotein transports coelenterazine. Proc Natl Acad Sci U S A 2004; 101:1702-7. [PMID: 14755051 PMCID: PMC341825 DOI: 10.1073/pnas.0304326101] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Coelenterazine is widely distributed among marine organisms, producing bioluminescence by calcium-insensitive oxidation mediated by Renilla luciferase (Rluc) and calcium-dependent oxidation mediated by the photoprotein aequorin. Despite its abundance in nature and wide use of both proteins as reporters of gene expression and signal transduction, little is known about mechanisms of coelenterazine transport and cell permeation. Interestingly, coelenterazine analogues share structural and physiochemical properties of compounds transported by the multidrug resistance MDR1 P-glycoprotein (Pgp). Herein, we report that living cells stably transfected with a codon-humanized Rluc show coelenterazine-mediated bioluminescence in a highly MDR1 Pgp-modulated manner. In Pgp-expressing Rluc cells, low baseline bioluminescence could be fully enhanced (reversed) to non-Pgp matched control levels with potent and selective Pgp inhibitors. Therefore, using coelenterazine and noninvasive bioluminescence imaging in vivo, we could directly monitor tumor-specific Pgp transport inhibition in living mice. While enabling molecular imaging and high-throughput screening of drug resistance pathways, these data also raise concern for the indiscriminate use of Rluc and aequorin as reporters in intact cells or transgenic animals, wherein Pgp-mediated alterations in coelenterazine permeability may impact results.
Collapse
Affiliation(s)
- Andrea Pichler
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
6
|
Abstract
To advance our understanding of biological processes as they occur in living animals, imaging strategies have been developed and refined that reveal cellular and molecular features of biology and disease in real time. One rapid and accessible technology for in vivo analysis employs internal biological sources of light emitted from luminescent enzymes, luciferases, to label genes and cells. Combining this reporter system with the new generation of charge coupled device (CCD) cameras that detect the light transmitted through the animal's tissues has opened the door to sensitive in vivo measurements of mammalian gene expression in living animals. Here, we review the development and application of this imaging strategy, in vivo bioluminescence imaging (BLI), together with in vivo fluorescence imaging methods, which has enabled the real-time study of immune cell trafficking, of various genetic regulatory elements in transgenic mice, and of in vivo gene transfer. BLI has been combined with fluorescence methods that together offer access to in vivo measurements that were not previously available. Such studies will greatly facilitate the functional analysis of a wide range of genes for their roles in health and disease.
Collapse
Affiliation(s)
- Christopher H Contag
- Department of Pediatrics, Stanford University School of Medicine, California 94305-5208, USA.
| | | |
Collapse
|
7
|
Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E, Detheux M. Adaptation of aequorin functional assay to high throughput screening. JOURNAL OF BIOMOLECULAR SCREENING 2002; 7:57-65. [PMID: 11897056 DOI: 10.1177/108705710200700108] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AequoScreen, a cellular aequorin-based functional assay, has been optimized for luminescent high-throughput screening (HTS) of G protein-coupled receptor (GPCRs). AequoScreen is a homogeneous assay in which the cells are loaded with the apoaequorin cofactor coelenterazine, diluted in assay buffer, and injected into plates containing the samples to be tested. A flash of light is emitted following the calcium increase resulting from the activation of the GPCR by the sample. Here we have validated a new plate reader, the Hamamatsu Photonics FDSS6000, for HTS in 96- and 384-well plates with CHO-K1 cells stably coexpressing mitochondrial apoaequorin and different GPCRs (AequoScreen cell lines). The acquisition time, plate type, and cell number per well have been optimized to obtain concentration-response curves with 4000 cells/well in 384-well plates and a high signal:background ratio. The FDSS6000 and AequoScreen cell lines allow reading of twenty 96- or 384-well plates in 1 h with Z' values of 0.71 and 0.78, respectively. These results bring new insights to functional assays, and therefore reinforce the interest in aequorin-based assays in a HTS environment.
Collapse
|
8
|
Waud JP, Bermúdez Fajardo A, Sudhaharan T, Trimby AR, Jeffery J, Jones A, Campbell AK. Measurement of proteases using chemiluminescence-resonance-energy-transfer chimaeras between green fluorescent protein and aequorin. Biochem J 2001; 357:687-97. [PMID: 11463339 PMCID: PMC1221998 DOI: 10.1042/0264-6021:3570687] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Homogeneous assays, without a separation step, are essential for measuring chemical events in live cells and for drug discovery screens, and are desirable for making measurements in cell extracts or clinical samples. Here we demonstrate the principle of chemiluminescence resonance energy transfer (CRET) as a homogeneous assay system, using two proteases as models, one extracellular (alpha-thrombin) and the other intracellular (caspase-3). Chimaeras were engineered with aequorin as the chemiluminescent energy donor and green fluorescent protein (GFP) or enhanced GFP as the energy acceptors, with a protease linker (6 or 18 amino acid residues) recognition site between the donor and acceptor. Flash chemiluminescent spectra (20--60 s) showed that the spectra of chimaeras matched GFP, being similar to that of luminous jellyfish, justifying their designation as 'Rainbow' proteins. Addition of the protease shifted the emission spectrum to that of aequorin in a time- and dose-dependent manner. Separation of the proteolysed fragments showed that the ratio of green to blue light matched the extent of proteolysis. The caspase-3 Rainbow protein was able to provide information on the specificity of caspases in vitro and in vivo. It was also able to monitor caspase-3 activation in cells provoked into apoptosis by staurosporine (1 or 2 microM). CRET can also monitor GFP fluor formation. The signal-to-noise ratio of our Rainbow proteins is superior to that of fluorescence resonance energy transfer, providing a potential platform for measuring agents that interact with the reactive site between the donor and acceptor.
Collapse
Affiliation(s)
- J P Waud
- Department of Medical Biochemistry, Cardiff and Vale NHS Trust, Llandough Hospital, Llandough, Penarth, Vale of Glamorgan CF64 2XX, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brúlet P. Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci U S A 2000; 97:7260-5. [PMID: 10860991 PMCID: PMC16533 DOI: 10.1073/pnas.97.13.7260] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monitoring calcium fluxes in real time could help to understand the development, the plasticity, and the functioning of the central nervous system. In jellyfish, the chemiluminescent calcium binding aequorin protein is associated with the green fluorescent protein and a green bioluminescent signal is emitted upon Ca(2+) stimulation. We decided to use this chemiluminescence resonance energy transfer between the two molecules. Calcium-sensitive bioluminescent reporter genes have been constructed by fusing green fluorescent protein and aequorin, resulting in much more light being emitted. Chemiluminescent and fluorescent activities of these fusion proteins have been assessed in mammalian cells. Cytosolic Ca(2+) increases were imaged at the single-cell level with a cooled intensified charge-coupled device camera. This bifunctional reporter gene should allow the investigation of calcium activities in neuronal networks and in specific subcellular compartments in transgenic animals.
Collapse
Affiliation(s)
- V Baubet
- Unité d'Embryologie Moléculaire, Unité de Recherche Associée 1947, Centre National de la Recherche Scientifique, Institut Pasteur, 25 rue du docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
10
|
Jeffery J, Kendall JM, Campbell AK. Apoaequorin monitors degradation of endoplasmic reticulum (ER) proteins initiated by loss of ER Ca(2+). Biochem Biophys Res Commun 2000; 268:711-5. [PMID: 10679270 DOI: 10.1006/bbrc.2000.2194] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoaequorin was targeted to the cytosol, nucleus, and endoplasmic reticulum of HeLa cells in order to determine the effect of Ca(2+) release from the ER on protein degradation. In resting cells apoaequorin had a rapid half-life (ca. 20-30 min) in the cytosol or nucleus, but was relatively stable for up to 24 h in the ER (t(1/2) > 24 h). However, release of Ca(2+) from the ER, initiated by the addition of inhibitors of the ER Ca(2+)/Mg(2+) ATPase such as 2 microM thapsigargin or 1 microM ionomycin, initiated rapid loss of apoaequorin in the ER, but had no detectable effect on apoaequorin turnover in the cytosol nor the nucleus. This loss of apoprotein was not the result of secretion into the external fluid, and could not be inhibited by inhibitors of protein degradation by proteosomes. Proteolysis of apoaequorin in cell extracts (t(1/2) < 20 min) was completely inhibited in the presence of 1 mM Ca(2+), and this effect was independent of the ER retention signal KDEL at the C-terminus. Proteolysis was unaffected by the presence of selected serine protease inhibitors, or 10 microM Zn(2+), a known caspase-3 inhibitor. The results show that apoaequorin can monitor proteolysis of ER proteins activated by loss of ER Ca(2+). Several Ca(2+)-binding proteins exist in the ER, acting as the Ca(2+) store and chaperones. Our results have important implications both for the role of ER Ca(2+) in cell activation and stress and when using aequorin for monitoring free ER Ca(2+) over long time periods.
Collapse
Affiliation(s)
- J Jeffery
- Department of Medical Biochemistry, University of Wales College of Medicine, Heath Park, Cardiff, CF4 4XN, United Kingdom
| | | | | |
Collapse
|