1
|
Known and Unexplored Post-Translational Modification Pathways in Schizophrenia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:75-87. [DOI: 10.1007/978-3-030-97182-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
2
|
Post-translational protein modifications in schizophrenia. NPJ SCHIZOPHRENIA 2020; 6:5. [PMID: 32123175 PMCID: PMC7051976 DOI: 10.1038/s41537-020-0093-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
Research investigating the pathophysiology of schizophrenia has not yet precisely defined the molecular phenotype of this disorder. Many studies have investigated cellular dysfunction by examining expression levels of molecular targets in postmortem patient brain; however, inconsistencies between transcript and protein measures in schizophrenia are common in the field and represent a challenge to the identification of a unified model of schizophrenia pathogenesis. In humans, >4800 unique proteins are expressed, and the majority of these are modified by glycans and/or lipids. Estimates indicate ~70% of all eukaryotic proteins are modified by at least one type of glycosylation, while nearly 20% of all proteins are known to be lipid-modified. Protein post-translational modification (PTM) by glycosylation and lipidation rely on the spatiotemporal colocalization of enzyme, substrate, and glycan or lipid donor molecule and do not require an upstream “blueprint” or specialized processing machinery for synthesis. Glycan and lipid PTMs can thus facilitate cellular adaptation to environmental signals more rapidly than changes of gene or protein expression, and can significantly impact the localization, function, and interactions of modified substrates, though relatively few studies in schizophrenia have evaluated the PTM status of target proteins. A growing body of literature reports glycosylation and lipidation abnormalities in schizophrenia brain as well as in patient peripheral fluids. In this review, we explain the functional significance of key glycan and lipid PTMs and summarize current findings associated with abnormal glycosylation and lipidation in this illness.
Collapse
|
3
|
Morris RJ. Thy-1, a Pathfinder Protein for the Post-genomic Era. Front Cell Dev Biol 2018; 6:173. [PMID: 30619853 PMCID: PMC6305390 DOI: 10.3389/fcell.2018.00173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
Thy-1 is possibly the smallest of cell surface proteins – 110 amino acids folded into an Immunoglobulin variable domain, tethered to the outer leaflet of the cell surface membrane via just the two saturated fatty acids of its glycosylphosphatidylinositol (GPI) anchor. Yet Thy-1 is emerging as a key regulator of differentiation in cells of endodermal, mesodermal, and ectodermal origin, acting as both a ligand (for certain integrins and other receptors), and as a receptor, able to modulate signaling and hence differentiation in the Thy-1-expressing cell. This is an extraordinary diversity of molecular pathways to be controlled by a molecule that does not even cross the cell membrane. Here I review aspects of the cell biology of Thy-1, and studies of its role as deduced from gene knock-out studies, that suggest how this protein can participate in so many different signaling-related functions. While mechanisms differ in molecular detail, it appears overall that Thy-1 dampens down signaling to control function.
Collapse
Affiliation(s)
- Roger J Morris
- Department of Chemistry, King's College London, London, United Kingdom
| |
Collapse
|
4
|
Development and characterization of a novel luciferase based cytotoxicity assay. Sci Rep 2018; 8:199. [PMID: 29317736 PMCID: PMC5760659 DOI: 10.1038/s41598-017-18606-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/14/2017] [Indexed: 11/08/2022] Open
Abstract
A simple, accurate, sensitive and robust assay that can rapidly and specifically measure the death of target cells would have applications in many areas of biomedicine and particularly for the development of novel cellular- and immune-therapeutics. In this study, we describe a novel cytotoxicity assay, termed the Matador assay, which takes advantage of the extreme brightness, stability and glow-like characteristics of recently discovered novel marine luciferases and their engineered derivatives. The assay involves expression of a luciferase of interest in target cells in a manner so that it is preferentially retained within the healthy cells but is either released from dead and dying cells or whose activity can be preferentially measured in dead and dying cells. We demonstrate that this assay is highly sensitive, specific, rapid, and can be performed in a single-step manner without the need for any expensive equipment. We further validate this assay by demonstrating its ability to detect cytotoxicity induced by several cellular and immune-therapeutic agents including antibodies, natural killer cells, chimeric antigen receptor expressing T cells and a bispecific T cell engager.
Collapse
|
5
|
Busija AR, Patel HH, Insel PA. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol Cell Physiol 2017; 312:C459-C477. [PMID: 28122734 DOI: 10.1152/ajpcell.00355.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/09/2023]
Abstract
Caveolins (Cavs) are ~20 kDa scaffolding proteins that assemble as oligomeric complexes in lipid raft domains to form caveolae, flask-shaped plasma membrane (PM) invaginations. Caveolae ("little caves") require lipid-lipid, protein-lipid, and protein-protein interactions that can modulate the localization, conformational stability, ligand affinity, effector specificity, and other functions of proteins that are partners of Cavs. Cavs are assembled into small oligomers in the endoplasmic reticulum (ER), transported to the Golgi for assembly with cholesterol and other oligomers, and then exported to the PM as an intact coat complex. At the PM, cavins, ~50 kDa adapter proteins, oligomerize into an outer coat complex that remodels the membrane into caveolae. The structure of caveolae protects their contents (i.e., lipids and proteins) from degradation. Cellular changes, including signal transduction effects, can destabilize caveolae and produce cavin dissociation, restructuring of Cav oligomers, ubiquitination, internalization, and degradation. In this review, we provide a perspective of the life cycle (biogenesis, degradation), composition, and physiologic roles of Cavs and caveolae and identify unanswered questions regarding the roles of Cavs and cavins in caveolae and in regulating cell physiology.1.
Collapse
Affiliation(s)
- Anna R Busija
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Paul A Insel
- Department of Medicine, University of California, San Diego, La Jolla, California; and .,Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Cebula M, Moolla N, Capovilla A, Arnér ESJ. The rare TXNRD1_v3 ("v3") splice variant of human thioredoxin reductase 1 protein is targeted to membrane rafts by N-acylation and induces filopodia independently of its redox active site integrity. J Biol Chem 2013; 288:10002-10011. [PMID: 23413027 DOI: 10.1074/jbc.m112.445932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The human selenoprotein thioredoxin reductase 1 (TrxR1), encoded by the TXNRD1 gene, is a key player in redox regulation. Alternative splicing generates several TrxR1 variants, one of which is v3 that carries an atypical N-terminal glutaredoxin domain. When overexpressed, v3 associates with membranes and triggers formation of filopodia. Here we found that membrane targeting of v3 is mediated by myristoylation and palmitoylation of its N-terminal MGC motif, through which v3 specifically targets membrane rafts. This was suggested by its localization in cholera toxin subunit B-stained membrane areas and also shown using lipid fractionation experiments. Utilizing site-directed mutant variants, we also found that v3-mediated generation of filopodia is independent of the Cys residues in its redox active site, but dependent upon its membrane raft targeting. These results identify v3 as an intricately regulated protein that expands TXNRD1-derived protein functions to the membrane raft compartment.
Collapse
Affiliation(s)
- Marcus Cebula
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Naazneen Moolla
- Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, 2193 Johannesburg, South Africa
| | - Alexio Capovilla
- Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, 2193 Johannesburg, South Africa
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
7
|
Identification and characterization of a novel Neospora caninum immune mapped protein 1. Parasitology 2012; 139:998-1004. [DOI: 10.1017/s0031182012000285] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SUMMARYImmune mapped protein 1 (IMP1) is a newly discovered protein in Eimeria maxima. It is recognized as a potential vaccine candidate against E. maxima and a highly conserved protein in apicomplexan parasites. Although the Neospora caninum IMP1 (NcIMP1) orthologue of E. maxima IMP1 was predicted in the N. caninum genome, it was still not identified and characterized. In this study, cDNA sequence encoding NcIMP1 was cloned by RT-PCR from RNA isolated from Nc1 tachyzoites. NcIMP1 was encoded by an open reading frame of 1182 bp, which encoded a protein of 393 amino acids with a predicted molecular weight of 42·9 kDa. Sequence analysis showed that there was neither a signal peptide nor a transmembrane region present in the NcIMP1 amino acid sequence. However, several kinds of functional protein motifs, including an N-myristoylation site and a palmitoylation site were predicted. Recombinant NcIMP1 (rNcIMP1) was expressed in Escherichia coli and then purified rNcIMP1 was used to prepare specific antisera in mice. Mouse polyclonal antibodies raised against the rNcIMP1 recognized an approximate 43 kDa native IMP1 protein. Immunofluorescence analysis showed that NcIMP1 was localized on the membrane of N. caninum tachyzoites. The N-myristoylation site and the palmitoylation site were found to contribute to the localization of NcIMP1. Furthermore, the rNcIMP1-specific antibodies could inhibit cell invasion by N. caninum tachyzoites in vitro. All the results indicate that NcIMP1 is likely to be a membrane protein of N. caninum and may be involved in parasite invasion.
Collapse
|
8
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
9
|
Gao P, Zhao PM, Wang J, Wang HY, Du XM, Wang GL, Xia GX. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:935-40. [PMID: 18573665 DOI: 10.1016/j.plaphy.2008.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Indexed: 05/08/2023]
Abstract
The CBL/CIPK signaling system mediates a variety of responses to environmental stimuli in plants. In this work, we identified four CBL genes from Gossypium hirsutum, two of which (designated GhCBL2 and GhCBL3) showed preferential expression in the elongating fiber cells. Moreover, the expression patterns of these two CBL genes coincided with that of a putative CBL-interacting protein kinase gene (GhCIPK1) that we isolated in a previous study. Yeast two-hybrid assay indicated that among the four CBLs, GhCIPK1 interacted selectively with GhCBL2 and GhCBL3. The co-expression and interactions of these proteins suggest that they are components of the same signaling pathway. These findings strengthen our previous prediction that CBL/CIPK signaling plays a critical role in the regulation of cotton fiber elongation.
Collapse
Affiliation(s)
- Peng Gao
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Meinnel T, Giglione C. Tools for analyzing and predicting N-terminal protein modifications. Proteomics 2008; 8:626-49. [DOI: 10.1002/pmic.200700592] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci U S A 2006; 103:18992-7. [PMID: 17146050 PMCID: PMC1681352 DOI: 10.1073/pnas.0609009103] [Citation(s) in RCA: 309] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although much evidence suggests that the plasma membrane of eukaryotic cells is not homogenous, the precise architecture of this important structure has not been clear. Here we use transmission electron microscopy of plasma membrane sheets and specific probes to show that most or all plasma membrane-associated proteins are clustered in cholesterol-enriched domains ("islands") that are separated by "protein-free" and cholesterol-low membrane. These islands are further divided into subregions, as shown by the localization of "raft" and "non-raft" markers to specific areas. Abundant actin staining and inhibitor studies show that these structures are connected to the cytoskeleton and at least partially depend on it for their formation and/or maintenance.
Collapse
Affiliation(s)
- Björn F. Lillemeier
- *Howard Hughes Medical Institute and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Janet R. Pfeiffer
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Zurab Surviladze
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Bridget S. Wilson
- Department of Pathology and Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131
| | - Mark M. Davis
- *Howard Hughes Medical Institute and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305; and
- To whom correspondence should be addressed at:
Howard Hughes Medical Institute, Beckman Center, Room B221, 279 Campus Drive, Stanford, CA 94305. E-mail:
| |
Collapse
|
12
|
Matsuda K, Matsuda S, Gladding CM, Yuzaki M. Characterization of the delta2 glutamate receptor-binding protein delphilin: Splicing variants with differential palmitoylation and an additional PDZ domain. J Biol Chem 2006; 281:25577-87. [PMID: 16835239 DOI: 10.1074/jbc.m602044200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The glutamate receptor delta2 (GluRdelta2) is predominantly expressed at parallel fiber-Purkinje cell postsynapses and plays crucial roles in synaptogenesis and synaptic plasticity. Although the mechanism by which GluRdelta2 functions remains unclear, its lack of channel activity and its role in controlling the endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors have suggested that GluRdelta2 may convey signals by interacting with intracellular signaling molecules. Among several proteins that interact with GluRdelta2, delphilin is unique in that it is selectively expressed at parallel fiber-Purkinje cell synapses and that, in addition to a single PDZ domain, it contains a formin homology domain that is thought to regulate actin dynamics. Here, we report a new isoform of delphilin, designated as L-delphilin, that has alternatively spliced N-terminal exons encoding an additional PDZ domain. Although original delphilin, designated S-delphilin, was palmitoylated at the N terminus, this region was spliced out in L-delphilin. As a result, S-delphilin was associated with plasma membranes in COS cells and dendritic spines in hippocampal neurons, whereas L-delphilin formed clusters in soma and dendritic shafts. In addition, S-delphilin, but not L-delphilin, facilitated the expression of GluRdelta2 on the cell surface. These results indicate that, like PSD-95 and GRIP/ABP, delphilin isoforms with differential palmitoylation and clustering capabilities may provide two separate intracellular and surface GluRdelta2 pools and may control GluRdelta2 signaling in Purkinje cells.
Collapse
Affiliation(s)
- Keiko Matsuda
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
13
|
Rhee JM, Pirity MK, Lackan CS, Long JZ, Kondoh G, Takeda J, Hadjantonakis AK. In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis 2006; 44:202-18. [PMID: 16604528 PMCID: PMC2887760 DOI: 10.1002/dvg.20203] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The visualization of live cell behaviors operating in situ combined with the power of mouse genetics represents a major step toward understanding the mechanisms regulating embryonic development, homeostasis, and disease progression in mammals. The availability of genetically encoded fluorescent protein reporters, combined with improved optical imaging modalities, have led to advances in our ability to examine cells in vivo. We developed a series of lipid-modified fluorescent protein fusions that are targeted to and label the secretory pathway and the plasma membrane, and that are amenable for use in mice. Here we report the generation of two strains of mice, each expressing a spectrally distinct lipid-modified GFP-variant fluorescent protein fusion. The CAG::GFP-GPI strain exhibited widespread expression of a glycosylphosphatidylinositol-tagged green fluorescent protein (GFP) fusion, while the CAG::myr-Venus strain exhibited widespread expression of a myristoyl-Venus yellow fluorescent protein fusion. Imaging of live transgenic embryonic stem (ES) cells, either live or fixed embryos and postnatal tissues demonstrated that glycosylphosphatidyl inositol- and myristoyl-tagged GFP-variant fusion proteins are targeted to and serve as markers of the plasma membrane. Moreover, our data suggest that these two lipid-modified protein fusions are dynamically targeted both to overlapping as well as distinct lipid-enriched compartments within cells. These transgenic strains not only represent high-contrast reporters of cell morphology and plasma membrane dynamics, but also may be used as in vivo sensors of lipid localization. Furthermore, combining these reporters with the study of mouse mutants will be a step forward in understanding the inter- and intracellular behaviors underlying morphogenesis in both normal and mutant contexts.
Collapse
Affiliation(s)
- Jerry M. Rhee
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Melinda K. Pirity
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Chantal S. Lackan
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Jonathan Z. Long
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
| | - Gen Kondoh
- Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Junji Takeda
- Department of Social and Environmental Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York
- Correspondence to: Anna-Katerina Hadjantonakis, Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, New York 10021.
| |
Collapse
|
14
|
Canobbio I, Balduini C, Torti M. Signalling through the platelet glycoprotein Ib-V–IX complex. Cell Signal 2004; 16:1329-44. [PMID: 15381249 DOI: 10.1016/j.cellsig.2004.05.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 05/12/2004] [Indexed: 11/16/2022]
Abstract
The glycoprotein Ib-V-IX is one of the major adhesive receptors expressed on the surface of circulating platelets. It is composed of four different polypeptides-GPIbalpha, GPIbbeta, GPIX, and GPV-and represents a multifunctional receptor able to interact with a number of ligands, including the adhesive protein von Willebrand factor, the coagulation factors thrombin, factors XI and XII, and the membrane glycoproteins P-selectin and Mac-1. Interaction of GPIb-V-IX with the subendothelial von Willebrand factor is essential for primary haemostasis, as it initiates platelet adhesion to the subendothelial matrix at the sites of vascular injury even under high flow conditions. Upon interaction with von Willebrand factor, GPIb-V-IX initiates transmembrane signalling events for platelet activation, which eventually result in integrin alpha(IIb)beta(3) stimulation and platelet aggregation. The investigation of the biochemical mechanisms for platelet activation by GPIb-V-IX has attracted increasing attention during the last years. This review will describe and discuss recent findings that have provided new insights into the events underlying GPIb-V-IX transmembrane signalling. In particular, it will summarise basic concepts on the structure of this receptor, extracellular ligands, and intracellular interactors potentially involved in transmembrane signalling. The recently suggested role of membrane Fc receptors in GPIb-V-IX-initiated platelet activation will also be discussed, along with the involvement of lipid metabolising enzymes, tyrosine kinases, and the cytoskeleton in the crosstalk between GPIb-V-IX and integrin alpha(IIb)beta(3).
Collapse
Affiliation(s)
- Ilaria Canobbio
- Center of Excellence for Applied Biology, Department of Biochemistry, University of Pavia, via Bassi 21, Pavia 27100, Italy
| | | | | |
Collapse
|
15
|
Alexander M, Bor YC, Ravichandran KS, Hammarskjöld ML, Rekosh D. Human immunodeficiency virus type 1 Nef associates with lipid rafts to downmodulate cell surface CD4 and class I major histocompatibility complex expression and to increase viral infectivity. J Virol 2004; 78:1685-96. [PMID: 14747534 PMCID: PMC369412 DOI: 10.1128/jvi.78.4.1685-1696.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are membrane microdomains that are functionally distinct from other membrane regions. We have shown that 10% of human immunodeficiency virus type 1 (HIV-1) Nef expressed in SupT1 cells is present in lipid rafts and that this represents virtually all of the membrane-associated Nef. To determine whether raft targeting, rather than simply membrane localization, has functional significance, we created a Nef fusion protein (LAT-Nef) containing the N-terminal 35 amino acids from LAT, a protein that is exclusively localized to rafts. Greater than 90% of the LAT-Nef protein was found in the raft fraction. In contrast, a mutated form, lacking two cysteine palmitoylation sites, showed less than 5% raft localization. Both proteins were equally expressed and targeted nearly exclusively to membranes. The LAT-Nef protein was more efficient than its nonraft mutant counterpart at downmodulating both cell surface CD4 and class I major histocompatibility complex (MHC) expression, as well as in enhancing first-round infectivity and being incorporated into virus particles. This demonstrates that targeting of Nef to lipid rafts is mechanistically important for all of these functions. Compared to wild-type Nef, LAT-Nef downmodulated class I MHC nearly as effectively as the wild-type Nef protein, but was only about 60% as effective for CD4 downmodulation and 30% as effective for infectivity enhancement. Since the LAT-Nef protein was found entirely in rafts while the wild-type Nef protein was distributed 10% in rafts and 90% in the soluble fraction, our results suggest that class I MHC downmodulation by Nef may be performed exclusively by raft-bound Nef. In contrast, CD4 downmodulation and infectivity enhancement may require a non-membrane-bound Nef component as well as the membrane-bound form.
Collapse
Affiliation(s)
- Melissa Alexander
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Carter Immunology Center, and the Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
16
|
Cheng H, Straub SG, Sharp GWG. Protein acylation in the inhibition of insulin secretion by norepinephrine, somatostatin, galanin, and PGE2. Am J Physiol Endocrinol Metab 2003; 285:E287-94. [PMID: 12684222 DOI: 10.1152/ajpendo.00535.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The major physiological inhibitors of insulin secretion, norepinephrine, somatostatin, galanin, and prostaglandin E2, act via specific receptors that activate pertussis toxin (PTX)-sensitive G proteins. Four inhibitory mechanisms are known: 1) activation of ATP-sensitive K channels and repolarization of the beta-cell; 2) inhibition of L-type Ca2+ channels; 3) decreased activity of adenylyl cyclase; and 4) inhibition of exocytosis at a "distal" site in stimulus-secretion coupling. We have examined the underlying mechanisms of inhibition at this distal site. In rat pancreatic islets, 2-bromopalmitate, cerulenin, and polyunsaturated fatty acids, all of which suppress protein acyltransferase activity, blocked the distal inhibitory effects of norepinephrine in a concentration-dependent manner. In contrast, control compounds such as palmitate, 16-hydroxypalmitate, and etomoxir, which do not block protein acylation, had no effect. Furthermore, 2-bromopalmitate also blocked the distal inhibitory actions of somatostatin, galanin, and prostaglandin E2. Importantly, neither 2-bromopalmitate nor cerulenin affected the action of norepinephrine to decrease cAMP production. We also examined the effects of norepinephrine, 2-bromopalmitate, and cerulenin on palmitate metabolism. Palmitate oxidation and its incorporation into lipids seemed not to contribute to the effects of 2-bromopalmitate and cerulenin on norepinephrine action. These data suggest that protein acylation mediates the distal inhibitory effect on insulin secretion. We propose that the inhibitors of insulin secretion, acting via PTX-sensitive G proteins, activate a specific protein acyltransferase, causing the acylation of a protein or proteins critical to exocytosis. This particular acylation and subsequent disruption of the essential and precise interactions involved in core complex formation would block exocytosis.
Collapse
Affiliation(s)
- Haiying Cheng
- Dept. of Molecular Medicine, College of Veterinary Medicine, Cornell Univ., Ithaca, NY 14853-6401, USA
| | | | | |
Collapse
|
17
|
Ma HH, Yang L, Yang XY, Xu ZP, Li BL. Bacterial expression, purification, and in vitro N-myristoylation of fusion hepatitis B virus preS1 with the native-type N-terminus. Protein Expr Purif 2003; 27:49-54. [PMID: 12509984 DOI: 10.1016/s1046-5928(02)00541-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Very low-level expression of hepatitis B virus (HBV) preS1 with the native-type N-terminus hampered the biochemical and functional studies on its myristoylation. In the present study, the fusion HBV preS1 with the native-type N-terminus and a His6-Tag fused to C-terminus (HBV preS1-HT) was highly expressed in Escherichia coli. This was due to an introduced mutation of the rare codon GGA found in the HBV preS1 to the codon preferred by E. coli, GGU. The protein was rapidly purified from bacterial lysate by Ni-IDA affinity chromatography. The experimental assays using 3H-labeled substrate demonstrate that the purified HBV preS1-HT can be effectively N-myristoylated by recombinant human protein N-myristoyltransferase (NMT) in vitro.
Collapse
Affiliation(s)
- Han-Hui Ma
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
18
|
Scheifele LZ, Rhoads JD, Parent LJ. Specificity of plasma membrane targeting by the rous sarcoma virus gag protein. J Virol 2003; 77:470-80. [PMID: 12477852 PMCID: PMC140635 DOI: 10.1128/jvi.77.1.470-480.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2002] [Accepted: 09/24/2002] [Indexed: 12/16/2022] Open
Abstract
Budding of C-type retroviruses begins when the viral Gag polyprotein is directed to the plasma membrane by an N-terminal membrane-binding (M) domain. While dispersed basic amino acids within the M domain are critical for stable membrane association and consequent particle assembly, additional residues or motifs may be required for specific plasma membrane targeting and binding. We have identified an assembly-defective Rous sarcoma virus (RSV) Gag mutant that retains significant membrane affinity despite having a deletion of the fourth alpha-helix of the M domain. Examination of the mutant protein's subcellular distribution revealed that it was not localized to the plasma membrane but instead was mistargeted to intracytoplasmic membranes. Specific plasma membrane targeting was restored by the addition of myristate plus a single basic residue, by multiple basic residues, or by the heterologous hydrophobic membrane-binding domain from the cellular Fyn protein. These results suggest that the fourth alpha-helix of the RSV M domain promotes specific targeting of Gag to the plasma membrane, either through a direct interaction with plasma membrane phospholipids or a membrane-associated cellular factor or by maintaining the conformation of Gag to expose specific plasma membrane targeting sequences.
Collapse
Affiliation(s)
- Lisa Z Scheifele
- Cell and Molecular Biology Program, The Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
19
|
Navarro-Lérida I, Alvarez-Barrientos A, Gavilanes F, Rodriguez-Crespo I. Distance-dependent cellular palmitoylation of de-novo-designed sequences and their translocation to plasma membrane subdomains. J Cell Sci 2002; 115:3119-30. [PMID: 12118067 DOI: 10.1242/jcs.115.15.3119] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using recursive PCR, we created an artificial protein sequence that consists of a consensus myristoylation motif (MGCTLS) followed by the triplet AGS repeated nine times and fused to the GFP reporter. This linker-GFP sequence was utilized as a base to produce multiple mutants that were used to transfect COS-7 cells. Constructs where a `palmitoylable' cysteine residue was progressively moved apart from the myristoylation site to positions 3, 9, 15 and 21 of the protein sequence were made, and these mutants were used to investigate the effect of protein myristoylation on subsequent palmitoylation,subcellular localization, membrane association and caveolin-1 colocalization. In all cases, dual acylation of the GFP chimeras correlated with translocation to Triton X-100-insoluble cholesterol/sphingomyelin-enriched subdomains. Whereas a strong Golgi labeling was observed in all the myristoylated chimeras, association with the plasma membrane was only observed in the dually acylated constructs. Taking into account the conflicting data regarding the existence and specificity of cellular palmitoyl-transferases, our results provide evidence that de-novo-designed sequences can be efficiently S-acylated with palmitic acid in vivo, strongly supporting the hypothesis that non-enzymatic protein palmitoylation can occur within mammalian cells. Additionally, this palmitoylation results in the translocation of the recombinant construct to low-fluidity domains in a myristate-palmitate distance-dependent manner.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Abstract
Membrane-proximal cysteines 259 and 260 in the cytoplasmic tail of the coxsackievirus and adenovirus receptor (CAR) are known to be essential for the tumor suppression activity of CAR. We demonstrate that these residues provide an S-acylation motif for modification of CAR with the fatty acid palmitate. Substitution of alanine for cysteines 259 and 260 results in the additional localization of CAR in perinuclear compartments with no effect on the efficiency of adenovirus infection. The results indicate that palmitylation is important for stable plasma membrane expression and biological activity of CAR but is not critical for adenovirus receptor performance.
Collapse
Affiliation(s)
- Wouter van't Hof
- Institute of Genetic Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
21
|
Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J Neurosci 2002. [PMID: 11978826 DOI: 10.1523/jneurosci.22-09-03493.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term changes in excitatory synapse strength are thought to reflect changes in synaptic abundance of AMPA receptors mediated by receptor trafficking. AMPA receptor-binding protein (ABP) and glutamate receptor-interacting protein (GRIP) are two similar PDZ (postsynaptic density 95/Discs large/zona occludens 1) proteins that interact with glutamate receptors 2 and 3 (GluR2 and GluR3) subunits. Both proteins have proposed roles during long-term potentiation and long-term depression in the delivery and anchorage of AMPA receptors at synapses. Here we report a variant of ABP-L (seven PDZ form of ABP) called pABP-L that is palmitoylated at a cysteine residue at position 11 within a novel 18 amino acid N-terminal leader sequence encoded through differential splicing. In cultured hippocampal neurons, nonpalmitoylated ABP-L localizes with internal GluR2 pools expressed from a Sindbis virus vector, whereas pABP-L is membrane targeted and associates with surface-localized GluR2 receptors at the plasma membrane in spines. Mutation of Cys-11 to alanine blocks the palmitoylation of pABP-L and targets the protein to intracellular clusters, confirming that targeting the protein to spines is dependent on palmitoylation. Non-palmitoylated GRIP is primarily intracellular, but a chimera with the pABP-L N-terminal palmitoylation sequence linked to the body of the GRIP protein is targeted to spines. We suggest that pABP-L and ABP-L provide, respectively, synaptic and intracellular sites for the anchorage of AMPA receptors during receptor trafficking to and from the synapse.
Collapse
|
22
|
Parat MO, Stachowicz RZ, Fox PL. Oxidative stress inhibits caveolin-1 palmitoylation and trafficking in endothelial cells. Biochem J 2002; 361:681-8. [PMID: 11802799 PMCID: PMC1222352 DOI: 10.1042/0264-6021:3610681] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During normal and pathological conditions, endothelial cells (ECs) are subjected to locally generated reactive oxygen species, produced by themselves or by other vessel wall cells. In excess these molecules cause oxidative injury to the cell but at moderate levels they might modulate intracellular signalling pathways. We have investigated the effect of oxidative stress on the palmitoylation and trafficking of caveolin-1 in bovine aortic ECs. Exogenous H2O2 did not alter the intracellular localization of caveolin-1 in ECs. However, metabolic labelling experiments showed that H2O2 inhibited the trafficking of newly synthesized caveolin-1 to membrane raft domains. Several mechanisms potentially responsible for this inhibition were examined. Impairment of caveolin-1 synthesis by H2O2 was not responsible for diminished trafficking. Similarly, the inhibition was independent of H2O2-induced caveolin-1 phosphorylation as shown by the markedly different concentration dependences. We tested the effect of H2O2 on palmitoylation of caveolin-1 by the incorporation of [3H]palmitic acid. Exposure of ECs to H2O2 markedly inhibited the palmitoylation of caveolin-1. Comparable inhibition was observed after treatment of cells with H2O2 delivered either as a bolus or by continuous delivery with glucose and glucose oxidase. Kinetic studies showed that H2O2 did not alter the rate of caveolin-1 depalmitoylation but instead decreased the 'on-rate' of palmitoylation. Together these results show for the first time the modulation of protein palmitoylation by oxidative stress, and suggest a cellular mechanism by which stress might influence caveolin-1-dependent cell activities such as the concentration of signalling proteins and cholesterol trafficking.
Collapse
Affiliation(s)
- Marie-Odile Parat
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|