1
|
Surai PF, Surai A, Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants (Basel) 2024; 13:98. [PMID: 38247522 PMCID: PMC10812610 DOI: 10.3390/antiox13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Faculty of Technology of Grain and Grain Business, Odessa National Technological University, 65039 Odessa, Ukraine
| | | | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK
| |
Collapse
|
2
|
Mirzaei N, Jahanian Sadatmahalleh S, Rouholamin S, Nasiri M. A randomized trial assessing the efficacy of Silymarin on endometrioma-related manifestations. Sci Rep 2022; 12:17549. [PMID: 36266431 PMCID: PMC9584967 DOI: 10.1038/s41598-022-22073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
To study the effect of silymarin on the Interleukin-6 (IL-6) level, size of endometrioma lesion, pain, sexual function, and Quality of Life (QoL) in women diagnosed with endometriosis. This randomized, double-blind placebo-controlled clinical trial was performed on 70 women with endometriosis which was divided into two groups of intervention and control. The intervention was 140 mg silymarin (or matching placebo) administered twice daily for 12 weeks. The volume of endometrioma lesions, the level of IL-6 concentration in serum, pain, sexual function, and QoL were analyzed before and after the intervention. The means of endometrioma volume (P = 0.04), IL-6 (P = 0.002), and pain (P < 0.001) were reduced significantly in the silymarin group after intervention. However, the QoL and female sexual function did not improve substantially in the two groups (P > 0.05). Silymarin significantly reduced interleukin-6 levels, sizes of endometrioma lesions, and pain-related symptoms. The trial has been registered in the Iranian Registry of Clinical Trials (IRCT20150905023897N5) on 4th February 2020 (04/02/2020) ( https://en.irct.ir/trial/42215 ) and the date of initial participant enrollment was 2nd March 2020 (02/03/2020).
Collapse
Affiliation(s)
- Negin Mirzaei
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Shahideh Jahanian Sadatmahalleh
- grid.412266.50000 0001 1781 3962Department of Reproductive Health and Midwifery, Faculty of Medical Sciences, Tarbiat Modares University, Jalal Al-Ahmad Highway, Nasr Bridge, Tehran, 14115-111 Iran
| | - Safoura Rouholamin
- grid.411036.10000 0001 1498 685XDepartment of Obstetrics and Gynecology, Faculty of Medical Sciences, Isfahan University of Medical Sciences, Hezar-Jerib Ave., Isfahan, 81746 73461 Iran
| | - Malihe Nasiri
- grid.411600.2Department of Basic Sciences, Faculty of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Septembre-Malaterre A, Boumendjel A, Seteyen ALS, Boina C, Gasque P, Guiraud P, Sélambarom J. Focus on the high therapeutic potentials of quercetin and its derivatives. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100220. [PMID: 35403087 PMCID: PMC8759805 DOI: 10.1016/j.phyplu.2022.100220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 04/15/2023]
Abstract
BACKGROUND Polyphenols and particularly flavonoids are of constant interest to the scientific community. Flavonoids are investigated for their biological and pharmacological purposes, notably as antioxidant, anticancer, antiviral and for their anti-inflammatory activities. Certainly, one of the best-known flavonols recognized for its therapeutic and preventive properties, is quercetin. Despite its biological interest, quercetin suffer from some drawbacks, mainly related to its bioavailability. Hence, its synthetic or biosynthetic derivatives have been the subject of intensive research. The health-promoting biological activities of flavonols and derivatives mainly arise from their capacity to disrupt the host-pathogen interactions and/or to regulate host cellular functions including oxidative processes and immunological responses. In the age of coronavirus pandemic, the anti-inflammatory and antiviral potential of flavonols should be put forward to explore these substances for decreasing the viral load and inflammatory storm caused by the infection. PURPOSE OF STUDY The present review will decipher and discuss the antioxidant, anti-inflammatory and antiviral capacities of major flavonol with a focus on the molecular basis and structure-activity relationships. STUDY DESIGN Current study used a combination of quercetin derivatives, pathway, antioxidant, anti-inflammatory, antiviral activities as keywords to retrieve the literature. This study critically reviewed the current literature and presented the ability of natural analogs of quercetin having superior antioxidant, anti-inflammatory and antiviral effects than the original molecule. RESULTS This review allowed the identification of relevant key structure-activity relationship elements and highlight approaches on the mechanisms governing the antioxidant, antiviral and anti-inflammatory activities. CONCLUSION Through a critical analysis of the literature, flavonols and more precisely quercetin derivatives reviewed and found to act simultaneously on inflammation, virus and oxidative stress, three key factors that may lead to life threatening diseases.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | | | - Anne-Laure Sandenon Seteyen
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Chailas Boina
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
- Laboratoire d'immunologie clinique et expérimentale de la zone de l'océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Pascale Guiraud
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| | - Jimmy Sélambarom
- Université de La Réunion, Unité de recherche Etudes Pharmaco-Immunologie (EPI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
4
|
Alsaggar M, Bdour S, Ababneh Q, El-Elimat T, Qinna N, Alzoubi KH. Silibinin attenuates adipose tissue inflammation and reverses obesity and its complications in diet-induced obesity model in mice. BMC Pharmacol Toxicol 2020; 21:8. [PMID: 31973745 PMCID: PMC6979281 DOI: 10.1186/s40360-020-0385-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/17/2020] [Indexed: 01/21/2023] Open
Abstract
Background Obesity is a multifactorial chronic disease that comprises several pathological events, such as adipose hypertrophy, fatty liver and insulin resistance. Inflammation is a key contributer to development of these events, and therefore, targeting inflammation is increasingly considered for management of obesity and its complications. The aim of the current study was to investigate therapeutic outcomes of anti-inflammatory activities of the natural compound Silibinin in reversing obesity and its complication in mice. Methods C57BL/6 male mice were fed high-fat diet for 8 weeks until development of obesity, and then injected with 50 mg/kg silibinin intraperitoneally twice per week, or vehicle for 8 weeks. Throughout the experiment, mice were continuously checked for body weight and food intake, and glucose tolerance test was performed toward the end of the experiment. Animals were sacrificed and serum and tissues were collected for biochemical, histological, and gene expression analysis to assess silibinin effects on adipose inflammation, fat accumulation, liver adipogenesis and glucose homeostasis. Results Silibinin treatment reversed adipose tissue inflammation and adipocyte hypertrophy, and blocked progression in weight gain and obesity development with no significant effects on rates of food intake. Silibinin also reversed fatty liver disease and restored glucose homeostasis in treated animals, and reversed hyperglycemia, hyperinsulinemia and hypertriglyceridemia. Conclusion In this study, we demonstrated that silibinin as an anti-inflammatory therapy is a potential alternative to manage obesity, as well as its related complications. Moreover, silibinin-based therapies could further evolve as a novel treatment to manage various inflammation-driven disorders.
Collapse
Affiliation(s)
- Mohammad Alsaggar
- Department of Pharmaceutical Technology, School of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Shifa Bdour
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Qutaibah Ababneh
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nidal Qinna
- Department of Pharmacology and Biomedical Sciences, University of Petra, Amman, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Silibinin Ameliorates O-GlcNAcylation and Inflammation in a Mouse Model of Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:ijms19082165. [PMID: 30042374 PMCID: PMC6121629 DOI: 10.3390/ijms19082165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying the progression to non-alcoholic steatohepatitis (NASH) remain to be elucidated. In the present study, we aimed to identify the proteins involved in the pathogenesis of liver tissue inflammation and to investigate the effects of silibinin, a natural polyphenolic flavonoid, on steatohepatitis. We performed comparative proteomic analysis using methionine and choline-deficient (MCD) diet-induced NASH model mice. Eighteen proteins were identified from the two-dimensional proteomic analysis, which are not only differentially expressed, but also significantly improved, by silibinin treatment. Interestingly, seven of these proteins, including keratin cytoskeletal 8 and 18, peroxiredoxin-4, and protein disulfide isomerase, are known to undergo GlcNAcylation modification, most of which are related to structural and stress-related proteins in NASH model animals. Thus, we primarily focused on how the GlcNAc modification of these proteins is involved in the progression to NASH. Remarkably, silibinin treatment alleviates the severity of hepatic inflammation along with O-GlcNAcylation in steatohepatitis. In particular, the reduction of inflammation by silibinin is due to the inhibition of the O-GlcNAcylation-dependent NF-κB-signaling pathway. Therefore, silibinin is a promising therapeutic agent for hyper-O-GlcNAcylation as well as NASH.
Collapse
|
6
|
Silymarin for Treatment of Nonalcoholic Steatohepatitis-A New Kid on the Block? Clin Gastroenterol Hepatol 2017; 15:1863-1865. [PMID: 28804034 DOI: 10.1016/j.cgh.2017.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
|
7
|
Federico A, Dallio M, Loguercio C. Silymarin/Silybin and Chronic Liver Disease: A Marriage of Many Years. Molecules 2017; 22:molecules22020191. [PMID: 28125040 PMCID: PMC6155865 DOI: 10.3390/molecules22020191] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Silymarin is the extract of Silybum marianum, or milk thistle, and its major active compound is silybin, which has a remarkable biological effect. It is used in different liver disorders, particularly chronic liver diseases, cirrhosis and hepatocellular carcinoma, because of its antioxidant, anti-inflammatory and antifibrotic power. Indeed, the anti-oxidant and anti-inflammatory effect of silymarin is oriented towards the reduction of virus-related liver damages through inflammatory cascade softening and immune system modulation. It also has a direct antiviral effect associated with its intravenous administration in hepatitis C virus infection. With respect to alcohol abuse, silymarin is able to increase cellular vitality and to reduce both lipid peroxidation and cellular necrosis. Furthermore, silymarin/silybin use has important biological effects in non-alcoholic fatty liver disease. These substances antagonize the progression of non-alcoholic fatty liver disease, by intervening in various therapeutic targets: oxidative stress, insulin resistance, liver fat accumulation and mitochondrial dysfunction. Silymarin is also used in liver cirrhosis and hepatocellular carcinoma that represent common end stages of different hepatopathies by modulating different molecular patterns. Therefore, the aim of this review is to examine scientific studies concerning the effects derived from silymarin/silybin use in chronic liver diseases, cirrhosis and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Alessandro Federico
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Marcello Dallio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| | - Carmelina Loguercio
- Department of Clinical and Experimental Medicine, Second University of Naples, 80131 Naples, Italy.
| |
Collapse
|
8
|
Neha, Jaggi AS, Singh N. Silymarin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:25-44. [PMID: 27771919 DOI: 10.1007/978-3-319-41342-6_2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silymarin is the active constituent of Silybum marianum (milk thistle) which is a C-25 containing flavonolignan. Milk thistle has a lot of traditional values, being used as a vegetable, as salad, as bitter tonic, and as galactogogue in nursing mothers and in various ailments such as liver complications, depression, dyspepsia, spleenic congestions, varicose veins, diabetes, amenorrhea, uterine hemorrhage, and menstrual problems. In this present chapter, a comprehensive attempt has been made to discuss the potential of silymarin in chronic disorders. An insight into modulation of cellular signaling by silymarin and its implication in various disorders such as liver disorders, inflammatory disorders, cancer, neurological disorders, skin diseases, and hypercholesterolemia is being provided.
Collapse
Affiliation(s)
- Neha
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India
| | - Amteshwar S Jaggi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
9
|
Cocoa polyphenols and inflammatory markers of cardiovascular disease. Nutrients 2014; 6:844-80. [PMID: 24566441 PMCID: PMC3942736 DOI: 10.3390/nu6020844] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/30/2013] [Accepted: 02/06/2014] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have demonstrated the beneficial effect of plant-derived food intake in reducing the risk of cardiovascular disease (CVD). The potential bioactivity of cocoa and its polyphenolic components in modulating cardiovascular health is now being studied worldwide and continues to grow at a rapid pace. In fact, the high polyphenol content of cocoa is of particular interest from the nutritional and pharmacological viewpoints. Cocoa polyphenols are shown to possess a range of cardiovascular-protective properties, and can play a meaningful role through modulating different inflammatory markers involved in atherosclerosis. Accumulated evidence on related anti-inflammatory effects of cocoa polyphenols is summarized in the present review.
Collapse
|
10
|
Kabel A, Mahmoud H, El Kholy S. Ameliorative potential of gemfibrozil and silymarin on experimentally induced nephrotoxicity in rats. AFRICAN JOURNAL OF UROLOGY 2013. [DOI: 10.1016/j.afju.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
11
|
Ali F, Ismail A, Kersten S. Molecular mechanisms underlying the potential antiobesity-related diseases effect of cocoa polyphenols. Mol Nutr Food Res 2013; 58:33-48. [DOI: 10.1002/mnfr.201300277] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/02/2013] [Accepted: 09/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Faisal Ali
- Department of Nutrition and Dietetics; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; Selangor Malaysia
- Halal Products Research Institute; Universiti Putra Malaysia; Selangor Malaysia
| | - Sander Kersten
- Metabolism and Genomics Group; Division of Human Nutrition; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
12
|
Boesch-Saadatmandi C, Wagner AE, Wolffram S, Rimbach G. Effect of quercetin on inflammatory gene expression in mice liver in vivo - role of redox factor 1, miRNA-122 and miRNA-125b. Pharmacol Res 2012; 65:523-30. [PMID: 22402395 DOI: 10.1016/j.phrs.2012.02.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/09/2012] [Accepted: 02/21/2012] [Indexed: 12/13/2022]
Abstract
The anti-inflammatory properties of the flavonol quercetin have been intensively investigated using in vitro cell systems and are to a great extent reflected by changes in the expression of inflammatory markers. However, information relating to the degree at which quercetin affects inflammatory gene expression in vivo is limited. Recently, micro RNAs (miRNAs) have been identified as powerful post-transcriptional gene regulators. The effect of quercetin on miRNA regulation in vivo is largely unknown. Laboratory mice were fed for six weeks with control or quercetin enriched high fat diets and biomarkers of inflammation as well as hepatic levels of miRNAs previously involved in inflammation (miR-125b) and lipid metabolism (miR-122) were determined. We found lower mRNA steady state levels of the inflammatory genes interleukin 6, C-reactive protein, monocyte chemoattractant protein 1, and acyloxyacyl hydrolase in quercetin fed mice. In addition we found evidence for an involvement of redox factor 1, a modulator of nuclear factor κB signalling, on the attenuation of inflammatory gene expression mediated by dietary quercetin. Furthermore, the results demonstrate that hepatic miR-122 and miR-125b concentrations were increased by dietary quercetin supplementation and may therefore contribute to the gene-regulatory activity of quercetin in vivo.
Collapse
Affiliation(s)
- Christine Boesch-Saadatmandi
- Institute of Human Nutrition and Food Science, Christian-Albrechts-University Kiel, Hermann-Rodewald-Strasse 6, 24118 Kiel, Germany
| | | | | | | |
Collapse
|
13
|
Chocolate: (un)healthy source of polyphenols? GENES AND NUTRITION 2010; 6:1-3. [PMID: 21437025 DOI: 10.1007/s12263-010-0185-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/09/2010] [Indexed: 02/05/2023]
Abstract
There is recent epidemiological evidence that chocolate consumption may improve vascular health. Furthermore, several small-scale human intervention studies indicate that habitual chocolate intake enhances the production of vasodilative nitric oxide and may lower blood pressure. It is hypothesized that potential beneficial effects of chocolate on vascular health are at least partly mediated by cocoa polyphenols including procyanidins. Based on cell culture studies, molecular targets of chocolate polyphenols are endothelial nitric oxide synthetase as well as arginase. However, human bioavailability studies suggest that the plasma concentrations of cocoa polyphenols are manifold lower than those concentrations used in cultured cells in vitro. The experimental evidence for beneficial vascular effects of chocolate in human interventions studies is yet not fully convincing. Some human intervention studies on chocolate and its polyphenols lack a stringent study design. They are sometimes underpowered and not always placebo controlled. Dietary chocolate intake in many of these human studies was up to 100 g per day. Since chocolate is a rich source of sugar and saturated fat, it is questionable whether chocolate could be recommended as part of a nutrition strategy to promote vascular health.
Collapse
|
14
|
Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J Nutr Biochem 2010; 22:293-9. [PMID: 20579867 DOI: 10.1016/j.jnutbio.2010.02.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022]
Abstract
In the present study the effect of quercetin and its major metabolites quercetin-3-glucuronide (Q3G) and isorhamnetin on inflammatory gene expression was determined in murine RAW264.7 macrophages stimulated with lipopolysaccharide. Quercetin and isorhamnetin but not Q3G significantly decreased mRNA and protein levels of tumor necrosis factor alpha. Furthermore a significant decrease in mRNA levels of interleukin 1β, interleukin 6, macrophage inflammatory protein 1α and inducible nitric oxide synthase was evident in response to the quercetin treatment. However Q3G did not affect inflammatory gene expression. Anti-inflammatory properties of quercetin and isorhamnetin were accompanied by an increase in heme oxygenase 1 protein levels, a downstream target of the transcription factor Nrf2, known to antagonize chronic inflammation. Furthermore, proinflammatory microRNA-155 was down-regulated by quercetin and isorhamnetin but not by Q3G. Finally, anti-inflammatory properties of quercetin were confirmed in vivo in mice fed quercetin-enriched diets (0.1 mg quercetin/g diet) over 6 weeks.
Collapse
|
15
|
Rimbach G, Melchin M, Moehring J, Wagner AE. Polyphenols from cocoa and vascular health-a critical review. Int J Mol Sci 2009; 10:4290-4309. [PMID: 20057946 PMCID: PMC2790109 DOI: 10.3390/ijms10104290] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 02/05/2023] Open
Abstract
Cocoa is a rich source of dietary polyphenols. In vitro as well as cell culture data indicate that cocoa polyphenols may exhibit antioxidant and anti-inflammatory, as well as anti-atherogenic activity. Several molecular targets (e.g., nuclear factor kappa B, endothelial nitric oxide synthase, angiotensin converting enzyme) have been recently identified which may partly explain potential beneficial cardiovascular effects of cocoa polyphenols. However cocoa polyphenol concentrations, as used in many cell culture studies, are not physiologically achievable. Bioavailability studies indicate that plasma concentrations of cocoa polyphenols following dietary intake are low and in the nanomolar range. Human studies regarding the effect of cocoa polyphenols on vascular health are often underpowered and lack a rigorous study design. If dietary cocoa polyphenol intake is due to chocolate its high energy content needs to be taken into account. In order to determine potential health benefits of cocoa polyphenols large scale, long term, randomized, placebo controlled studies, (ideally with a cross-over design) as well as prospective studies are warranted.
Collapse
Affiliation(s)
- Gerald Rimbach
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +49-431-880-2583; Fax: +49-431-880-2628
| | | | | | | |
Collapse
|
16
|
Brandon-Warner E, Sugg JA, Schrum LW, McKillop IH. Silibinin inhibits ethanol metabolism and ethanol-dependent cell proliferation in an in vitro model of hepatocellular carcinoma. Cancer Lett 2009; 291:120-9. [PMID: 19900758 DOI: 10.1016/j.canlet.2009.10.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 02/07/2023]
Abstract
Chronic ethanol consumption is a known risk factor for developing hepatocellular carcinoma (HCC). The use of plant-derived antioxidants is gaining increasing clinical prominence as a potential therapy to ameliorate the effects of ethanol on hepatic disease development and progression. This study demonstrates silibinin, a biologically active flavanoid derived from milk thistle, inhibits cytochrome p4502E1 induction, ethanol metabolism and reactive oxygen species generation in HCC cells in vitro. These silibinin-mediated effects also inhibit ethanol-dependent increases in HCC cell proliferation in culture.
Collapse
|
17
|
Cisár P, Jány R, Waczulíková I, Sumegová K, Muchová J, Vojtassák J, Duraćková Z, Lisý M, Rohdewald P. Effect of pine bark extract (Pycnogenol) on symptoms of knee osteoarthritis. Phytother Res 2008; 22:1087-92. [PMID: 18570266 DOI: 10.1002/ptr.2461] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The safe and efficacious use of Pycnogenol (French maritime pine bark extract) in other inflammatory diseases prompted this study of its antiinflammatory effects in patients with osteoarthritis (OA). The aim of the study was to evaluate whether Pycnogenol reduces the symptoms of OA in a double-blind, placebo-controlled, randomly allocated trial with patients suffering from knee osteoarthritis stages I and II. METHODS 100 patients were treated for 3 months either by 150 mg Pycnogenol per day at meals or by placebo. Patients had to report any change of use of previously prescribed antiinflammatory medication during the study period. Patients filled the Western Ontario and Mc Masters University (WOMAC) questionnaire for osteoarthritis every 2 weeks and evaluated weekly pain symptoms using a visual analogue scale for pain intensity. RESULTS Following treatment with Pycnogenol patients reported an improvement of WOMAC index (p < 0.05), and a significant alleviation of pain by visual analogue scale (p < 0.04), the placebo had no effect. The use of analgesics diminished in the verum group but increased under the placebo. Treatment with Pycnogenol was well tolerated. CONCLUSION Results show that Pycnogenol in patients with mild to moderate OA improves symptoms and is able to spare NSAIDs.
Collapse
Affiliation(s)
- Peter Cisár
- 2nd Department of Orthopaedics of the Comenius University School of Medicine, University Hospital Ruzinov, Ruzinovská 6, 82606 Bratislava, Slovakia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gene induction by glycyrol to apoptosis through endonuclease G in tumor cells and prediction of oncogene function by microarray analysis. Anticancer Drugs 2008; 19:503-15. [DOI: 10.1097/cad.0b013e3282fba582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Mackenzie GG, Oteiza PI. Modulation of transcription factor NF-kappaB in Hodgkin's lymphoma cell lines: effect of (-)-epicatechin. Free Radic Res 2006; 40:1086-94. [PMID: 17015253 DOI: 10.1080/10715760600788396] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transcription factor NF-kappaB plays a central role in tumorogenesis and in different types of cancer, including Hodgkin's lymphoma. Previously, we described that ( - )-epicatechin (EC) inhibits PMA-induced NF-kappaB activation in Jurkat T cells. Therefore, we investigated the capacity of EC to inhibit NF-kappaB activation, the underlying mechanisms and the effects of EC on cell viability in Hodgkin's lymphoma cells. EC inhibited NF-kappaB-DNA binding activity in L-428 and KM-H2 cells. This inhibition was not associated with EC antioxidant activity, with changes in p65 phosphorylation or NF-kappaB nuclear translocation. Results suggest that EC acted inhibiting the binding of NF-kappaB to DNA. The combined treatment with EC and an inhibitor of NF-kappaB nuclear translocation (SN-50) caused an additive inhibitory effect on NF-kappaB activation. The partial cell viability decrease, under conditions that EC and SN-50 completely prevented NF-kappaB-DNA binding, indicates that the inhibition of other signaling pathways should be also targeted in the treatment of Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Gerardo G Mackenzie
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | | |
Collapse
|
20
|
Mozzicafreddo M, Cuccioloni M, Eleuteri AM, Fioretti E, Angeletti M. Flavonoids inhibit the amidolytic activity of human thrombin. Biochimie 2006; 88:1297-306. [PMID: 16690199 DOI: 10.1016/j.biochi.2006.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 04/06/2006] [Indexed: 11/16/2022]
Abstract
The effect of a group of natural flavonoids on human thrombin amidolytic activity was investigated using a spectrophotometric inhibition assay while information on the kinetics and thermodynamics was obtained using optical biosensor techniques. All the flavonoids tested acted as reversible inhibitors, and the quercetin-thrombin complex was found to be most stable at pH=7.5. Docking analysis indicated that quercetin's inhibitory behavior could be related to its planar structure and low steric hindrance, and to its ability to form a critical H-bond with thrombin His57.
Collapse
Affiliation(s)
- M Mozzicafreddo
- MCAB Department, University of Camerino, Camerino, MC, Italy.
| | | | | | | | | |
Collapse
|
21
|
Dzubák P, Hajdúch M, Gazák R, Svobodová A, Psotová J, Walterová D, Sedmera P, Kren V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg Med Chem 2006; 14:3793-810. [PMID: 16466920 DOI: 10.1016/j.bmc.2006.01.035] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Large series of O-alkyl derivatives (methyl and benzyl) of silybin and 2,3-dehydrosilybin was prepared. Selective alkylation of the silybin molecule was systematically investigated. For the first time we present here, for example, preparation of 19-nor-2,3-dehydrosilybin. All prepared silybin/2,3-dehydrosilybin derivatives were tested for cytotoxicity on a panel of drugs sensitive against multidrug resistant cell lines and the ability to inhibit P-glycoprotein mediated efflux activity. We have identified effective and relatively non-cytotoxic inhibitors of P-gp derived from 2,3-dehydrosilybin. Some of them were more effective inhibitors at concentrations lower than a standard P-gp efflux inhibitor cyclosporin A. Another group of 2,3-dehydrosilybin derivatives also had better inhibitory effects on P-gp efflux but a cytotoxicity comparable with that of parent 2,3-dehydrosilybin. Structural requirements for improving inhibitory activity and reducing toxicity of 2,3-dehydrosilybin were established. Effect of E-ring substitution as well as an influence of the substituent size at the C-7-OH position of A-ring on P-gp-inhibitory activity was evaluated for the first time in this study.
Collapse
Affiliation(s)
- Petr Dzubák
- Department of Paediatrics, Faculty of Medicine, Palacký University and University Hospital in Olomouc, Puskinova 6, CZ-775 20, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kren V, Walterová D. Silybin and silymarin--new effects and applications. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149:29-41. [PMID: 16170386 DOI: 10.5507/bp.2005.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This article aims to review critically literature published mainly within this millennium on the new and emerging applications of silymarin, the polyphenolic fraction from the seeds of Silybum marianum and its main component silybin. Silymarin and silybin used so far mostly as hepatoprotectants were shown to have other interesting activities as e.g., anticancer and canceroprotective. These activities were demonstrated in a large variety of illnesses of different organs as e.g., prostate, lungs, CNS, kidneys, pancreas and others. Besides the cytoprotective activity of silybin mediated by its antioxidative and radical-scavenging properties also new activities based on the specific receptor interaction were discovered--e.g., inhibition and modulation of drug transporters, P-glycoproteins, estrogenic receptors, nuclear receptors and some others. New derivatives of silybin open new ways to its therapeutic applications. Pharmacology dealing with optically pure silybin diastereomers may suggest new mechanisms of its action.
Collapse
Affiliation(s)
- Vladimír Kren
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
23
|
Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI. Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at multiple steps in Jurkat T cells. FASEB J 2003; 18:167-9. [PMID: 14630700 DOI: 10.1096/fj.03-0402fje] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The capacity of the flavan-3-ols [(-)-epicatechin (EC) and (+)-catechin (CT)] and a B dimeric procyanidin (DP-B) to modulate phorbol 12-myristate 13-acetate (PMA)-induced NF-kappaB activation in Jurkat T cells was investigated. The classic PMA-triggered increase in cell oxidants was prevented when cells were preincubated for 24 h with EC, CT, or DP-B (1.7-17.2 microM). PMA induced the phosphorylation of IKKbeta and the subsequent degradation of IkappaBalpha. These events were inhibited in cells pretreated with the flavonoids. PMA induced a 4.6-fold increase in NF-kappaB nuclear binding activity in control cells. Pretreatment with EC, CT, or DP-B decreased PMA-induced NF-kappaB binding activity and the transactivation of the NF-kappaB-driven gene IL-2. EC, CT, and DP-B inhibited, in vitro, NF-kappaB binding to its DNA consensus sequence, but they had no effect on the binding activity of CREB or OCT-1. Thus, EC, CT, or DP-B can influence the immune response by modulating NF-kappaB activation. This modulation can occur at early (regulation of oxidant levels, IKK activation) as well as late (binding of NF-kappaB to DNA) stages of the NF-kappaB activation cascade. A model is presented for possible interactions between DP-B and NF-kappaB proteins, which could lead to the inhibition of NF-kappaB binding to kappaB sites.
Collapse
Affiliation(s)
- Gerardo G Mackenzie
- Departamento de Química BiolOgica, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
24
|
Rimbach G, Minihane AM, Majewicz J, Fischer A, Pallauf J, Virgli F, Weinberg PD. Regulation of cell signalling by vitamin E. Proc Nutr Soc 2002; 61:415-25. [PMID: 12691170 DOI: 10.1079/pns2002183] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Vitamin E, the most important lipid-soluble antioxidant, was discovered at the University of California at Berkeley in 1922. Since its discovery, studies of the constituent tocopherols and tocotrienols have focused mainly on their antioxidant properties. In 1991 Angelo Azzi's group (Boscoboinik et al. 1991a,b) first described non-antioxidant cell signalling functions for alpha-tocopherol, demonstrating that vitamin E regulates protein kinase C activity in smooth muscle cells. At the transcriptional level, alpha-tocopherol modulates the expression of the hepatic alpha-tocopherol transfer protein, as well as the expression of liver collagen alphal gene, collagenase gene and alpha-tropomyosin gene. Recently, a tocopherol-dependent transcription factor (tocopherol-associated protein) has been discovered. In cultured cells it has been demonstrated that vitamin E inhibits inflammation, cell adhesion, platelet aggregation and smooth muscle cell proliferation. Recent advances in molecular biology and genomic techniques have led to the discovery of novel vitamin E-sensitive genes and signal transduction pathways.
Collapse
Affiliation(s)
- Gerald Rimbach
- Hugh Sinclair Human Nutrition Unit, School of Food Biosciences, University of Reading, Reading RG6 6AP, UK.
| | | | | | | | | | | | | |
Collapse
|