1
|
Housh K, Jha JS, Yang Z, Haldar T, Johnson KM, Yin J, Wang Y, Gates KS. Formation and Repair of an Interstrand DNA Cross-Link Arising from a Common Endogenous Lesion. J Am Chem Soc 2021; 143:15344-15357. [PMID: 34516735 DOI: 10.1021/jacs.1c06926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interstrand DNA cross-links (ICLs) are cytotoxic because they block the strand separation required for read-out and replication of the genetic information in duplex DNA. The unavoidable formation of ICLs in cellular DNA may contribute to aging, neurodegeneration, and cancer. Here, we describe the formation and properties of a structurally complex ICL derived from an apurinic/apyrimidinic (AP) site, which is one of the most common endogenous lesions in cellular DNA. The results characterize a cross-link arising from aza-Michael addition of the N2-amino group of a guanine residue to the electrophilic sugar remnant generated by spermine-mediated strand cleavage at an AP site in duplex DNA. An α,β-unsaturated iminium ion is the critical intermediate involved in ICL formation. Studies employing the bacteriophage φ29 polymerase provided evidence that this ICL can block critical DNA transactions that require strand separation. The results of biochemical studies suggest that this complex strand break/ICL might be repaired by a simple mechanism in which the 3'-exonuclease action of the enzyme apurinic/apyrimidinic endonuclease (APE1) unhooks the cross-link to initiate repair via the single-strand break repair pathway.
Collapse
Affiliation(s)
- Kurt Housh
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jay S Jha
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Zhiyu Yang
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Tuhin Haldar
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Kevin M Johnson
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| | - Jiekai Yin
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry University of California-Riverside Riverside, California 92521-0403, United States
| | - Kent S Gates
- University of Missouri Department of Chemistry 125 Chemistry Building Columbia, Missouri 65211, United States.,University of Missouri Department of Biochemistry 125 Chemistry Building Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Varela JG, Pierce LE, Guo X, Price NE, Johnson KM, Yang Z, Wang Y, Gates KS. Interstrand Cross-Link Formation Involving Reaction of a Mispaired Cytosine Residue with an Abasic Site in Duplex DNA. Chem Res Toxicol 2021; 34:1124-1132. [PMID: 33784065 PMCID: PMC8650171 DOI: 10.1021/acs.chemrestox.1c00004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The formation of interstrand cross-links in duplex DNA is important in biology, medicine, and biotechnology. Interstrand cross-links arising from the reaction of the aldehyde residue of an abasic (apurinic or AP) site with the exocyclic amino groups of guanine or adenine residues on the opposing strand of duplex DNA have previously been characterized. The canonical nucleobase cytosine has an exocyclic amino group but its ability to form interstrand cross-links by reaction with an AP site has not been characterized before now. Here it is shown that substantial yields of interstrand cross-links are generated in sequences having a mispaired cytosine residue located one nucleotide to the 3'-side of the AP site on the opposing strand (e.g., 5'XA/5'CA, where X = AP). Formation of the dC-AP cross-link is pH-dependent, with significantly higher yields at pH 5 than pH 7. Once formed, the dC-AP cross-link is quite stable, showing less than 5% dissociation over the course of 96 h at pH 7 and 37 °C. No significant yields of cross-link are observed when the cytosine residue is paired with its Watson-Crick partner guanine. It was also shown that a single AP site can engage with multiple nucleobase cross-linking partners in some sequences. Specifically, the dG-AP and dC-AP cross-links coexist in dynamic equilibrium in the sequence 5'CXA/5'CAG (X = AP). In this sequence, the dC-AP cross-link dominates. However, in the presence of NaBH3CN, irreversible reduction of small amounts of the dG-AP cross-link present in the mixture shifts the equilibria away from the dC-AP cross-link toward good yields of the dG-APred cross-link.
Collapse
Affiliation(s)
- Jacqueline Gamboa Varela
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Luke E. Pierce
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Xu Guo
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Nathan E. Price
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
- Department of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Kevin M. Johnson
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Zhiyu Yang
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Kent S. Gates
- University of Missouri, Department of Chemistry, 125 Chemistry Building, Columbia, MO 65211, United States
- University of Missouri, Department of Biochemistry, 125 Chemistry Building, Columbia, MO 65211, United States
| |
Collapse
|
3
|
Nejad MI, Price NE, Haldar T, Lewis C, Wang Y, Gates KS. Interstrand DNA Cross-Links Derived from Reaction of a 2-Aminopurine Residue with an Abasic Site. ACS Chem Biol 2019; 14:1481-1489. [PMID: 31259519 DOI: 10.1021/acschembio.9b00208] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient methods for the site-specific installation of structurally defined interstrand cross-links in duplex DNA may be useful in a wide variety of fields. The work described here developed a high-yield synthesis of chemically stable interstrand cross-links resulting from a reductive amination reaction between an abasic site and the noncanonical nucleobase 2-aminopurine in duplex DNA. Results from footprinting, liquid chromatography-mass spectrometry, and stability studies support the formation of an N2-alkylamine attachment between the 2-aminopurine residue and the Ap site. The reaction performs best when the 2-aminopurine residue on the opposing strand is offset 1 nt to the 5'-side of the abasic site. The cross-link confers substantial resistance to thermal denaturation (melting). The cross-linking reaction is fast (complete in 4 h), employs only commercially available reagents, and can be used to generate cross-linked duplexes in sufficient quantities for biophysical, structural, and DNA repair studies.
Collapse
Affiliation(s)
- Maryam Imani Nejad
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Nathan E. Price
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Tuhin Haldar
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Calvin Lewis
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California Riverside, Riverside, California 92521-0403, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Guo X, Nejad MI, Gu LQ, Gates KS. Selective covalent capture of a DNA sequence corresponding to a cancer-driving C>G mutation in theKRASgene by a chemically reactive probe: optimizing a cross-linking reaction with non-canonical duplex structures. RSC Adv 2019; 9:32804-32810. [PMID: 35529740 PMCID: PMC9073178 DOI: 10.1039/c9ra08009k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 11/21/2022] Open
Abstract
A covalent cross-linking reaction used for selective capture of a disease-relevant DNA sequence.
Collapse
Affiliation(s)
- Xu Guo
- Department of Chemistry
- University of Missouri
- Columbia
- USA
| | | | - Li-Qun Gu
- Department of Bioengineering
- Dalton Cardiovascular Research Center
- University of Missouri
- Columbia
- USA
| | - Kent S. Gates
- Department of Chemistry
- University of Missouri
- Columbia
- USA
- Department of Biochemistry
| |
Collapse
|
5
|
Shi R, Nejad MI, Zhang X, Gu LQ, Gates KS. Generation and Single-Molecule Characterization of a Sequence-Selective Covalent Cross-Link Mediated by Mechlorethamine at a C–C Mismatch in Duplex DNA for Discrimination of a Disease-Relevant Single Nucleotide Polymorphism. Bioconjug Chem 2018; 29:3810-3816. [DOI: 10.1021/acs.bioconjchem.8b00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ruicheng Shi
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Xinyue Zhang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | | |
Collapse
|
6
|
Yang Z, Price NE, Johnson KM, Wang Y, Gates KS. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA. Nucleic Acids Res 2017; 45:6275-6283. [PMID: 28531327 PMCID: PMC5499897 DOI: 10.1093/nar/gkx394] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 01/04/2023] Open
Abstract
Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Nathan E Price
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kevin M Johnson
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| |
Collapse
|
7
|
Scalabrin M, Quintieri L, Palumbo M, Riccardi Sirtori F, Gatto B. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA. Chem Res Toxicol 2017; 30:614-624. [PMID: 28068470 DOI: 10.1021/acs.chemrestox.6b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Luigi Quintieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Federico Riccardi Sirtori
- Oncology-Chemical Core Technologies Department, Nerviano Medical Sciences , viale Pasteur 10, Nerviano, 20014 Milano, Italy
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| |
Collapse
|
8
|
Nejad MI, Johnson KM, Price NE, Gates KS. A New Cross-Link for an Old Cross-Linking Drug: The Nitrogen Mustard Anticancer Agent Mechlorethamine Generates Cross-Links Derived from Abasic Sites in Addition to the Expected Drug-Bridged Cross-Links. Biochemistry 2016; 55:7033-7041. [PMID: 27992994 DOI: 10.1021/acs.biochem.6b01080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrogen mustard anticancer drugs generate highly reactive aziridinium ions that alkylate DNA. Monoadducts arising from reaction with position N7 of guanine residues are the major DNA adducts generated by these agents. Interstrand cross-links in which the drug bridges position N7 of two guanine residues are formed in low yields relative to those of the monoadducts but are generally thought to be central to medicinal activity. The N7-alkylguanine residues generated by nitrogen mustards are depurinated to yield abasic (Ap) sites in duplex DNA. Here, we show that Ap sites generated by the nitrogen mustard mechlorethamine lead to interstrand cross-links of a type not previously associated with this drug. Gel electrophoretic data were consistent with early evolution of the expected drug-bridged cross-links, followed by the appearance of Ap-derived cross-links. The evidence is further consistent with a reaction pathway involving alkylation of a guanine residue in a 5'-GT sequence, followed by depurination to generate the Ap site, and cross-link formation via reaction of the Ap aldehyde residue with the opposing adenine residue at this site [Price, N. E., Johnson, K. M., Wang, J., Fekry, M. I., Wang, Y., and Gates, K. S. (2014) J. Am. Chem. Soc. 136, 3483-3490]. The monofunctional DNA-alkylating agents 2-chloro-N,N-diethylethanamine 5, (2-chloroethyl)ethylsulfide 6, and natural product leinamycin similarly were found to induce the formation of Ap-derived cross-links in duplex DNA. This work provides the first characterization of Ap-derived cross-links at sequences in which a cytosine residue is located directly opposing the Ap site. Cross-linking processes of this type could be relevant in medicine and biology because Ap sites with directly opposing cytosine residues occur frequently in genomic DNA via spontaneous or enzymatic depurination of guanine and N7-alkylguanine residues.
Collapse
Affiliation(s)
- Maryam Imani Nejad
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kevin M Johnson
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Nathan E Price
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States.,Department of Biochemistry, University of Missouri , 125 Chemistry Building, Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Price N, Johnson KM, Wang J, Fekry MI, Wang Y, Gates KS. Interstrand DNA-DNA cross-link formation between adenine residues and abasic sites in duplex DNA. J Am Chem Soc 2014; 136:3483-90. [PMID: 24506784 PMCID: PMC3954461 DOI: 10.1021/ja410969x] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Indexed: 01/28/2023]
Abstract
The loss of a coding nucleobase from the structure of DNA is a common event that generates an abasic (Ap) site (1). Ap sites exist as an equilibrating mixture of a cyclic hemiacetal and a ring-opened aldehyde. Aldehydes are electrophilic functional groups that can form covalent adducts with nucleophilic sites in DNA. Thus, Ap sites present a potentially reactive aldehyde as part of the internal structure of DNA. Here we report evidence that the aldehyde group of Ap sites in duplex DNA can form a covalent adduct with the N(6)-amino group of adenine residues on the opposing strand. The resulting interstrand DNA-DNA cross-link occurs at 5'-ApT/5'-AA sequences in remarkably high yields (15-70%) under physiologically relevant conditions. This naturally occurring DNA-templated reaction has the potential to generate cross-links in the genetic material of living cells.
Collapse
Affiliation(s)
- Nathan
E. Price
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin M. Johnson
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jin Wang
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Mostafa I. Fekry
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yinsheng Wang
- Department
of Chemistry, University of California-Riverside, Riverside, California 92521-0403, United States
| | - Kent S. Gates
- Department of Chemistry and Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
10
|
Shtemenko NI, Chifotides HT, Domasevitch KV, Golichenko AA, Babiy SA, Li Z, Paramonova KV, Shtemenko AV, Dunbar KR. Synthesis, X-ray structure, interactions with DNA, remarkable in vivo tumor growth suppression and nephroprotective activity of cis-tetrachloro-dipivalato dirhenium(III). J Inorg Biochem 2013; 129:127-34. [DOI: 10.1016/j.jinorgbio.2013.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/05/2013] [Accepted: 09/02/2013] [Indexed: 12/23/2022]
|
11
|
Johnson KM, Price NE, Wang J, Fekry MI, Dutta S, Seiner DR, Wang Y, Gates KS. On the formation and properties of interstrand DNA-DNA cross-links forged by reaction of an abasic site with the opposing guanine residue of 5'-CAp sequences in duplex DNA. J Am Chem Soc 2013; 135:1015-25. [PMID: 23215239 DOI: 10.1021/ja308119q] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5'-CAp sequence under conditions of reductive amination (NaCNBH(3), pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions, and the cross-link, once formed, was stable to a variety of workup conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LC-MS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N(2)-amino group of the opposing guanine residue in 5'-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH(3)/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N(2)-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH(3).
Collapse
Affiliation(s)
- Kevin M Johnson
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Gasser G, Sosniak AM, Metzler-Nolte N. Metal-containing peptide nucleic acid conjugates. Dalton Trans 2011; 40:7061-76. [PMID: 21541385 DOI: 10.1039/c0dt01706j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptide Nucleic Acids (PNAs) are non-natural DNA/RNA analogues with favourable physico-chemical properties and promising applications. Discovered nearly 20 years ago, PNAs have recently re-gained quite a lot of attention. In this Perspective article, we discuss the latest advances on the preparation and utilisation of PNA monomers and oligomers containing metal complexes. These metal- conjugates have found applications in various research fields such as in the sequence-specific detection of nucleic acids, in the hydrolysis of nucleic acids and peptides, as radioactive probes or as modulators of PNA·DNA hybrid stability, and last but not least as probes for molecular and cell biology.
Collapse
Affiliation(s)
- Gilles Gasser
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | | | | |
Collapse
|
13
|
Efimov VA, Fediunin SV, Chakhmakhcheva OG. [Cross-linked nucleic acids: formation, structure, and biological function]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:56-80. [PMID: 20386579 DOI: 10.1134/s1068162010010061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Published data on the main types of reagents capable of introducing covalent interstrand cross links into nucleic acids (NA) are summarized in the present review. The reactivity of cross-linking agents, their preferred binding sites, and methods of determining the cross-link localization in a duplex are discussed. Cell response to DNA cross linking, namely, the blocking of replication and transcription, the initiation of reparation processes, and apoptotic death of the cell, are analyzed, as well as the use of cross-linking reagents in therapy and molecular biology.
Collapse
|
14
|
Yoshimura Y, Ohtake T, Okada H, Fujimoto K. A new approach for reversible RNA photocrosslinking reaction: application to sequence-specific RNA selection. Chembiochem 2009; 10:1473-6. [PMID: 19437470 DOI: 10.1002/cbic.200900057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yoshinaga Yoshimura
- School of Materials Science (Japan) Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| | | | | | | |
Collapse
|
15
|
Rahman MM, Yasuda H, Katsura S, Mizuno A. Covalent Binding and Conformational Change of pUC19 DNA by Rhodium (II) Metal Complex. J Biomol Struct Dyn 2007; 24:553-60. [PMID: 17508777 DOI: 10.1080/07391102.2007.10507144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Binding of Rhodium (II) acetate [Rh(2)(O(2)CCH(3))(4)] (Rh1) compound with plasmid pUC19 DNA has been studied using different molar ratio of Rh1. After incubation for 24hr at 37 degrees C, binding of the Rh1 to pUC19 DNA was confirmed by agarose gel electrophoresis. The electrophoretic results indicated the slower migration speed for the linearized pUC19 DNA. Conformation change of the DNA after Rh1 binding was also indicated at higher molar ratio of Rh1. The atomic force microscopy images showed that the Rh1 induced the conformation change to unwind pUC19 DNA. The Rh1-DNA complexes are observed very stable due to covalent bond. This study clearly demonstrates that [Rh(2)(O(2)CCH(3))(4)] reacts with pUC19 DNA and covalently binds to be stable Rh1-pUC19 DNA as interstrand adducts.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | | | | | | |
Collapse
|
16
|
Romano KP, Newman AG, Zahran RW, Millard JT. DNA interstrand cross-linking by epichlorohydrin. Chem Res Toxicol 2007; 20:832-8. [PMID: 17441735 PMCID: PMC2727797 DOI: 10.1021/tx700066h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Epichlorohydrin (ECH), an important industrial chemical, is a bifunctional alkylating agent with the potential to form DNA cross-links. Occupational exposure to this suspect carcinogen leads to chromosomal aberrations, and ECH has been shown previously to undergo reaction with DNA in vivo and in vitro. We used denaturing polyacrylamide gel electrophoresis to monitor the possible formation of interstrand cross-links within DNA oligomers by ECH and the related compound, epibromohydrin (EBH). Although both compounds did indeed form cross-links between deoxyguanosine residues, EBH was a more efficient cross-linker than ECH. The optimal pH for cross-linking also varied, with ECH more efficient at pH 5.0 and EBH more efficient at pH 7.0. Both agents were relatively flexible in the sequences targeted, with comparable efficiencies for 5'-GGC and 5'GC sites. Furthermore, interstrand cross-linking by the two optical isomers of ECH correlated with their relative cytotoxicities, with R-ECH about twice as potent as S-ECH.
Collapse
Affiliation(s)
- Keith P Romano
- Department of Chemistry, Colby College, Waterville Maine 04901, USA
| | | | | | | |
Collapse
|
17
|
Zhang Q, Yu ET, Kellersberger KA, Crosland E, Fabris D. Toward building a database of bifunctional probes for the MS3D investigation of nucleic acids structures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1570-1581. [PMID: 16875836 DOI: 10.1016/j.jasms.2006.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 05/11/2023]
Abstract
This report illustrates the approaches employed to investigate critical aspects of the activity of crosslinking reagents toward nucleic acid substrates, which should be evaluated to identify candidate probes for mass spectrometric 3D (MS3D) investigations of biomolecules and macromolecular complexes. Representative members of different classes of bifunctional reagents were taken into consideration, including bikethoxal and phenyl-diglyoxal [bis-(1,2-dicarbonyls)], cisplatin (coordinative binding agents), chlorambucil and nitrogen mustard [bis-(2-chloroethyl)amines], and sym-triazine trichloride (triazines). Nanospray-Fourier transform mass spectrometry (FTMS) was applied without desalting or separation procedures to characterize the covalent products obtained by probing dinucleotide and trinucleotide substrates under a variety of experimental conditions in vitro. The carefully controlled composition of these substrates enabled us to obtain valid comparisons of probe activity toward individual nucleotides and evaluate possible base-specific effects, including the stability of the different adducts in solution under the selected reaction conditions. The gas-phase behavior of the observed products was investigated using sustained off-resonance irradiation collision-induced dissociation (SORI-CID) to obtain valuable information for guiding the design of sequencing experiments and helping the data interpretation. Structured RNA substrates, such as HIV-1 stemloop 1, were finally employed to investigate the structural determinant of adduct formation and highlight the different nature of the spatial information provided by the various candidate probes.
Collapse
Affiliation(s)
- Qingrong Zhang
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Eizadora T Yu
- University of Maryland Baltimore County, Baltimore, Maryland, USA
| | | | | | - Daniele Fabris
- Marlene and Stewart, Greenbaum Cancer Center, University of Maryland Baltimore County and University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Millard JT, Hanly TC, Murphy K, Tretyakova N. The 5'-GNC site for DNA interstrand cross-linking is conserved for diepoxybutane stereoisomers. Chem Res Toxicol 2006; 19:16-9. [PMID: 16411651 PMCID: PMC1599837 DOI: 10.1021/tx050250z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bifunctional alkylating agent 1,2,3,4-diepoxybutane forms interstrand DNA-DNA cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the duplex. For racemic diepoxybutane, these cross-links predominate within 5'-GNC/3'CNG sequences, where N is any nucleotide. We used denaturing polyacrylamide gel electrophoresis (dPAGE) to examine the role of stereochemistry in the cross-linking reaction, subjecting a restriction fragment to cross-linking with S,S-DEB, R,R-DEB, or meso-DEB. DNA cross-links generated by each isomer were isolated by dPAGE, and the sites of cross-linking were identified by sequencing gel analysis of DNA fragments generated by hot piperidine cleavage. We found that the 5'-GNC consensus sequence of racemic DEB is conserved, but the efficiencies of cross-linking vary, with S,S- > R,R- > meso-DEB. These results help explain the observed differences between the biological activities of DEB stereoisomers.
Collapse
Affiliation(s)
- Julie T Millard
- Department of Chemistry, Colby College, 5757 Mayflower Hill Drive, Waterville, Maine 04901, USA.
| | | | | | | |
Collapse
|
19
|
Yoshimura Y, Ito Y, Fujimoto K. Interstrand photocrosslinking of DNA via p-carbamoylvinyl phenol nucleoside. Bioorg Med Chem Lett 2005; 15:1299-301. [PMID: 15713374 DOI: 10.1016/j.bmcl.2005.01.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Revised: 01/11/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
We report a novel interstrand photocrosslinking of oligodeoxynucleotides (ODNs). In this system, a modified ODN containing p-carbamoylvinyl phenol nucleoside reacts by photoirradiation at 366 nm with adenine residue of a complementary template ODN to yield a crosslinked ODN in 97% yield.
Collapse
|
20
|
Kopnin PB, Kravchenko IV, Furalyov VA, Pylev LN, Kopnin BP. Cell type-specific effects of asbestos on intracellular ROS levels, DNA oxidation and G1 cell cycle checkpoint. Oncogene 2005; 23:8834-40. [PMID: 15480427 DOI: 10.1038/sj.onc.1208108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exposure to asbestos fibers increases the risk of development of mesotheliomas and lung carcinomas, but not fibrosarcomas. We present data suggesting that resistance of fibroblasts to asbestos-induced carcinogenesis is likely to be connected with their lower ability to generate reactive oxygen species (ROS) in response to asbestos exposure and stricter control of proliferation of cells bearing asbestos/ROS-induced injuries. In fact, chrysotile (Mg6Si4O10(OH)8) asbestos exposure (5-10 microg/cm2) increased intracellular ROS and 8-oxo-guanine contents in rat pleural mesothelial cells, but not in lung fibroblasts. Simultaneously, moderate dosages of chrysotile and other agents increasing ROS levels (hydrogen peroxide, H2O2 and ethyl-methanesulfonate, EMS) inhibited cell cycle progression, in particular G1-to-S transition, in fibroblasts, but not in mesothelial cells. The arrested fibroblasts underwent cell death, while the majority of chrysotile-treated mesothelial cells survived. The differences in cell cycle response to asbestos/ROS-induced injuries correlated with distinct activity of p53-p21Cip1/Waf1 pathway in the two cell types. Chrysotile, H2O2 and EMS caused p53 upregulation in both cell types, but mesothelial cells, unlike fibroblasts, showed no accumulation of p21Cip1/Waf1. Of note, treatment with doxorubicin caused similar p53-dependent p21Cip1/Waf1 upregulation and cell cycle arrest in both cell types. This suggests differential response of fibroblasts and mesothelial cells specifically to asbestos/ROS exposure rather than to all DNA-damaging insults.
Collapse
Affiliation(s)
- Pavel B Kopnin
- Institute of Carcinogenesis, Blokhin Cancer Research Center, Kashirskoye shosse 24, Moscow 115478, Russia.
| | | | | | | | | |
Collapse
|
21
|
Wang Y, Zhang Q, Wang Y. Tandem mass spectrometry for the determination of the sites of DNA interstrand cross-link. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1565-1571. [PMID: 15519223 DOI: 10.1016/j.jasms.2004.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 07/16/2004] [Accepted: 07/16/2004] [Indexed: 05/24/2023]
Abstract
Formation of DNA interstrand cross-link is implicated in the mechanism of anticancer activity of some drugs. Here we examined the fragmentation of deprotonated ions of double-stranded oligodeoxynucleotides (ODNs) that are covalently held together with either a mitomycin C or a 4,5',8-trimethylpsoralen. Our results showed that, upon collisional activation, the covalently-bound duplex ODNs cleaved to give a series of wn and [an-base] ions; the sites of interstrand cross-linking could be determined from the mass shifts of some product ions. In addition, compared with the product-ion spectra acquired on an ion trap, those obtained from sustained off-resonance irradiation-collisionally activated dissociation (SORI-CAD) on a Fourier transform mass spectrometer offered high mass-resolving power, which facilitated unambiguous assignment of product ions and made it an effective method for locating the cross-linking sites.
Collapse
Affiliation(s)
- Yuesong Wang
- Department of Chemistry, University of California at Riverside, Riverside, California 92521-0403, USA
| | | | | |
Collapse
|
22
|
Agapova LS, Volodina JL, Chumakov PM, Kopnin BP. Activation of Ras-Ral Pathway Attenuates p53-independent DNA Damage G2 Checkpoint. J Biol Chem 2004; 279:36382-9. [PMID: 15208305 DOI: 10.1074/jbc.m405007200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Earlier we have found that in p53-deficient cells the expression of activated Ras attenuates the DNA damage-induced arrest in G(1) and G(2). In the present work we studied Ras-mediated effects on the G(2) checkpoint in two human cell lines, MDAH041 immortalized fibroblasts and Saos-2 osteosarcoma cells. The transduction of the H-Ras mutants that retain certain functions (V12S35, V12G37, and V12C40 retain the ability to activate Raf or RalGDS or phosphatidylinositol 3-kinase, respectively) as well as the activated or dominant-negative mutants of RalA (V23 and N28, respectively) has revealed that the activation of Ras-RalGEFs-Ral pathway was responsible for the attenuation of the G(2) arrest induced by ethyl metanesulfonate or doxorubicin. Noteworthy, the activated RalA V23N49 mutant, which cannot interact with RLIP76/RalBP1 protein, one of the best studied Ral effectors, retained the ability to attenuate the DNA damage-induced G(2) arrest. Activation of the Ras-Ral signaling affected neither the level nor the intracellular localization of cyclin B1 and CDC2 but interfered with the CDC2 inhibitory phosphorylation at Tyr(15) and the decrease in the cyclin B/CDC2 kinase activity in damaged cells. The revealed function of the Ras-Ral pathway may contribute to the development of genetic instability in neoplastic cells.
Collapse
Affiliation(s)
- Larissa S Agapova
- Institute of Carcinogenesis, Russian Cancer Research Center, 115478 Moscow, Russia
| | | | | | | |
Collapse
|