1
|
Yan J, Kahyo T, Zhang H, Ping Y, Zhang C, Jiang S, Ji Q, Ferdous R, Islam MS, Oyama S, Aramaki S, Sato T, Mimi MA, Hasan MM, Setou M. Alpha-Synuclein Interaction with UBL3 Is Upregulated by Microsomal Glutathione S-Transferase 3, Leading to Increased Extracellular Transport of the Alpha-Synuclein under Oxidative Stress. Int J Mol Sci 2024; 25:7353. [PMID: 39000460 PMCID: PMC11242132 DOI: 10.3390/ijms25137353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson's disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby mediates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3 and that this interaction is downregulated after silencing microsomal glutathione S-transferase 3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase complementation assay, we found that the interaction between α-syn and UBL3 was upregulated by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We suggested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3 overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Jing Yan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
- Quantum Imaging Laboratory, Division of Research and Development in Photonics Technology, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hengsen Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Yashuang Ping
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Chi Zhang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Shuyun Jiang
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
- Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Qianqing Ji
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Rafia Ferdous
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Md. Shoriful Islam
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Soho Oyama
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Shuhei Aramaki
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
- Department of Radiation Oncology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
- Translational Biomedical Photonics, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Mst. Afsana Mimi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Md. Mahmudul Hasan
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan; (J.Y.); (T.K.); (H.Z.); (Y.P.); (C.Z.); (S.J.); (Q.J.); (R.F.); (M.S.I.); (S.O.); (S.A.); (T.S.); (M.A.M.); (M.M.H.)
- International Mass Imaging and Spatial Omics Center, Institute of Photonics Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka 431-3192, Japan
| |
Collapse
|
2
|
Yang L, Xu J, Gao H, Dai S, Liu L, Xi Y, Zhang G, Wen X. Toxicity enhancement of nano titanium dioxide to Brachionus calyciflorus (Rotifera) under simulated sunlight and the underlying mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114556. [PMID: 36669281 DOI: 10.1016/j.ecoenv.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Nano titanium dioxide (nTiO2) generally shows low toxicity to organisms under light-emitting diode (LED) light. However, nTiO2 can induce production of reactive oxygen species (ROS) under ultraviolet (UV) light due to its photocatalytic activity. Therefore, it is reasonable to expect the enhancement of nTiO2 toxicity under sunlight. To test this hypothesis, we compared the toxicity of nTiO2 to Brachionus calyciflorus under simulated sunlight and LED light. The results showed that the 24 h-LC50 of nTiO2 to B. calyciflorus under LED light and simulated sunlight were 24.32 (95% CI: 14.54-46.81 mg/L) and 10.44 mg/L (95% CI: 6.74-17.09 mg/L), respectively. Compared with the blank control, treatments with nTiO2 significantly affected life-table demographic parameters, population growth parameters and swimming linear speed under both simulated sunlight and LED light. However, life expectancy, net reproductive rate, average lifespan, maximal population density, and swimming linear speed in the treatments of nTiO2 at 0.1, 1, and/or 10 mg/L showed markedly lower values under simulated sunlight than those under LED light, suggesting that simulated sunlight could enhance the toxicity of nTiO2. In addition, markedly higher catalase (CAT) activity and malondialdehyde (MDA) content but lower glutathione (GSH) content were observed in treatment with 10 mg/L nTiO2 under simulated sunlight than that under LED light. The results showed that compared with LED light, simulated sunlight significantly induced more oxidative stress in the presence of nTiO2, and the ROS production was mainly localized to the corona and digestive tract of rotifers by confocal laser scanning microscope. Exposure to 10-50 μM of vitamin C, that is an effective ROS scavenger, could rescue the swimming linear speed of rotifers to the normal level in the blank control. These results suggested that oxidative damages on cell membrane might be the vital mechanism underlying the toxicity enhancement of nTiO2 to rotifers under simulated sunlight. Thus, the previous publications under LED light may underestimate the real toxicity and environmental risk of nTiO2 in natural conditions.
Collapse
Affiliation(s)
- Liu Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Jinqian Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Huahua Gao
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Shiniu Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Lingli Liu
- College of Chemistry & Pharmacy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Gen Zhang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Xinli Wen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China.
| |
Collapse
|
3
|
Mehta K, Kaur B, Pandey KK, Dhar P, Kaler S. Resveratrol protects against inorganic arsenic-induced oxidative damage and cytoarchitectural alterations in female mouse hippocampus. Acta Histochem 2021; 123:151792. [PMID: 34634674 DOI: 10.1016/j.acthis.2021.151792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
Prolonged inorganic arsenic (iAs) exposure is widely associated with brain damage particularly in the hippocampus via oxidative and apoptotic pathways. Resveratrol (RES) has gained considerable attention because of its benefits to human health. However, its neuroprotective potential against iAs-induced toxicity in CA1 region of hippocampus remains unexplored. Therefore, we investigated the neuroprotective efficacy of RES against arsenic trioxide (As2O3)-induced adverse effects on neuronal morphology, apoptotic markers and oxidative stress parameters in mouse CA1 region (hippocampus). Adult female Swiss albino mice of reproductive maturity were orally exposed to either As2O3 (2 and 4 mg/kg bw) alone or in combination with RES (40 mg/kg bw) for a period of 45 days. After animal sacrifice on day 46, the perfusion fixed brain samples were used for the observation of neuronal morphology and studying the morphometric features. While the freshly dissected hippocampi were processed for biochemical estimation of oxidative stress markers and western blotting of apoptosis-associated proteins. Chronic iAs exposure led to significant decrease in Stratum Pyramidale layer thickness along with reduction in cell density and area of Pyramidal neurons in contrast to the controls. Biochemical analysis showed reduced hippocampal GSH content but no change in total nitrite (NO) levels following iAs exposure. Western blotting showed apparent changes in the expression levels of Bax and Bcl-2 proteins following iAs exposure, however the change was statistically insignificant. Contrastingly, iAs +RES co-treatment exhibited substantial reversal in morphological and biochemical observations. Together, these findings provide preliminary evidence of neuroprotective role of RES on structural and biochemical alterations pertaining to mouse hippocampus following chronic iAs exposure.
Collapse
Affiliation(s)
- K Mehta
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - B Kaur
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - K K Pandey
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - P Dhar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - S Kaler
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
4
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
5
|
Tangeretin-Assisted Platinum Nanoparticles Enhance the Apoptotic Properties of Doxorubicin: Combination Therapy for Osteosarcoma Treatment. NANOMATERIALS 2019; 9:nano9081089. [PMID: 31362420 PMCID: PMC6723885 DOI: 10.3390/nano9081089] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common type of cancer and the most frequent malignant bone tumor in childhood and adolescence. Nanomedicine has become an indispensable field in biomedical and clinical research, with nanoparticles (NPs) promising to increase the therapeutic efficacy of anticancer drugs. Doxorubicin (DOX) is a commonly used chemotherapeutic drug against OS; however, it causes severe side effects that restrict its clinical applications. Here, we investigated whether combining platinum NPs (PtNPs) and DOX could increase their anticancer activity in human bone OS epithelial cells (U2OS). PtNPs with nontoxic, effective, thermally stable, and thermoplasmonic properties were synthesized and characterized using tangeretin. We examined the combined effects of PtNPs and DOX on cell viability, proliferation, and morphology, reactive oxygen species (ROS) generation, lipid peroxidation, nitric oxide, protein carbonyl content, antioxidants, mitochondrial membrane potential (MMP), adenosine tri phosphate (ATP) level, apoptotic and antiapoptotic gene expression, oxidative stress-induced DNA damage, and DNA repair genes. PtNPs and DOX significantly inhibited U2OS viability and proliferation in a dose-dependent manner, increasing lactate dehydrogenase leakage, ROS generation, and malondialdehyde, nitric oxide, and carbonylated protein levels. Mitochondrial dysfunction was confirmed by reduced MMP, decreased ATP levels, and upregulated apoptotic/downregulated antiapoptotic gene expression. Oxidative stress was a major cause of cytotoxicity and genotoxicity, confirmed by decreased levels of various antioxidants. Furthermore, PtNPs and DOX increased 8-oxo-dG and 8-oxo-G levels and induced DNA damage and repair gene expression. Combination of cisplatin and DOX potentially induce apoptosis comparable to PtNPs and DOX. To the best of our knowledge, this is the first report to describe the combined effects of PtNPs and DOX in OS.
Collapse
|
6
|
Ramírez-Expósito MJ, Martínez-Martos JM. The Delicate Equilibrium between Oxidants and Antioxidants in Brain Glioma. Curr Neuropharmacol 2019; 17:342-351. [PMID: 29512467 PMCID: PMC6482474 DOI: 10.2174/1570159x16666180302120925] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/03/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022] Open
Abstract
Gliomas are the most frequent brain tumors in the adult population and unfortunately the adjuvant therapies are not effective. Brain tumorigenesis has been related both to the increased levels of free radicals as inductors of severe damages in healthy cells, but also with the reduced response of endogenous enzyme and non-enzymatic antioxidant defenses. In turn, both processes induce the change to malignant cells. In this review, we analyzed the role of the imbalance between free radicals production and antioxidant mechanism in the development and progression of gliomas but also the influence of redox status on the two major distinctive forms of programmed cell death related to cancer: apoptosis and autophagy. These data may be the reference to the development of new pharmacological options based on redox microenvironment for glioma treatment.
Collapse
Affiliation(s)
- María Jesús Ramírez-Expósito
- Experimental and Clinical Physiopathology Research Group CTS-1039; Department of Health Sciences, Faculty of Health Sciences; University of Jaén, Campus Universitario Las Lagunillas, Jaén, Spain
| | - José Manuel Martínez-Martos
- Experimental and Clinical Physiopathology Research Group CTS-1039; Department of Health Sciences, Faculty of Health Sciences; University of Jaén, Campus Universitario Las Lagunillas, Jaén, Spain
| |
Collapse
|
7
|
Veganzones S, de la Orden V, Requejo L, Mediero B, González ML, Del Prado N, Rodríguez García C, Gutiérrez-González R, Pérez-Zamarrón A, Martínez A, Maestro ML, Zimman HM, González-Neira A, Vaquero J, Rodríguez-Boto G. Genetic alterations of IDH1 and Vegf in brain tumors. Brain Behav 2017; 7:e00718. [PMID: 28948065 PMCID: PMC5607534 DOI: 10.1002/brb3.718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 02/04/2017] [Accepted: 03/22/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study evaluates the presence of R132H mutation in isocitrate dehydrogenase (IDH1) gene and the vascular endothelial growth factor (VEGF) +936 C/T polymorphism in brain tumors. The impact of these genetic alterations on overall survival (OS) and progression free survival (PFS) was evaluated. METHODS A cohort of 80 patients surgically treated at Hospital Clínico San Carlos, Madrid, between March 2004 and November 2012, was analyzed. Tumors were distributed in 73 primary brain tumors (gliomas, meningiomas, hemangiopericytomas and hemangioblastomas) and seven secondary tumors evolved from a low grade glioma, thus providing a mixed sample. RESULTS IDH1R132H gene mutation was found in 12 patients (15%) and appears more frequently in secondary tumors (5 (71.4%) whereas in 7 (9.7%) primary tumors (p < .001)). The mutation is related to WHO grade II in primary tumors and a supratentorial location in secondary tumors. The OS analysis for IDH1 showed a tendency towards a better prognosis of the tumors containing the mutation (p = .059).The IDH1R132H mutation confers a better PFS (p = .025) on primary tumors. The T allele of VEFG +936 C/T polymorphism was found in 16 patients (20%). No relation was found between this polymorphism and primary or secondary tumor, neither with OS or PFS. CONCLUSIONS IDH1R132H gene mutation is exclusive in supratentorial tumors and more frequent in secondary ones, with a greater survival trend and better PFS in patients who carry it. The T allele of VEGF +936 C/T polymorphism is more common in primary tumors, although there is no statistical relation with survival.
Collapse
Affiliation(s)
- Silvia Veganzones
- Department of Clinical Analysis Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Virginia de la Orden
- Department of Clinical Analysis Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Lucía Requejo
- Department of Neurosurgery Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Beatriz Mediero
- Department of Clinical Analysis Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - María Luisa González
- Department of Clinical Analysis Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Náyade Del Prado
- Department of Epidemiology Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Carmen Rodríguez García
- Department of Neurosurgery Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Raquel Gutiérrez-González
- Department of Neurosurgery Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Alvaro Pérez-Zamarrón
- Department of Neurosurgery Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Armando Martínez
- Department of Pathology Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain.,Department of Surgery Faculty of Medicine Universidad Complutense and Universidad Autónoma Madrid Spain
| | - Marisa L Maestro
- Department of Clinical Analysis Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Horacio Mario Zimman
- Department of Neurosurgery Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Anna González-Neira
- Department of Clinical Analysis Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain
| | - Jesús Vaquero
- Department of Neurosurgery Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain.,Department of Surgery Faculty of Medicine Universidad Complutense and Universidad Autónoma Madrid Spain
| | - Gregorio Rodríguez-Boto
- Department of Neurosurgery Hospital Clínico San Carlos and Hospital Universitario Puerta de Hierro-Majadahonda Majadahonda Madrid Spain.,Department of Surgery Faculty of Medicine Universidad Complutense and Universidad Autónoma Madrid Spain.,Present address: Hospital Universitario Puerta de Hierro-Majadahondac/ Manuel de Falla, 128222 Majadahonda Madrid Spain
| |
Collapse
|
8
|
Duan J, Wei G, Guo C, Cui J, Yan J, Yin Y, Guan Y, Weng Y, Zhu Y, Wu X, Wang Y, Xi M, Wen A. Aralia taibaiensis Protects Cardiac Myocytes against High Glucose-Induced Oxidative Stress and Apoptosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 43:1159-75. [PMID: 26446201 DOI: 10.1142/s0192415x15500664] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Patients with type 2 diabetes have increased cardiovascular disease risk compared with those without diabetes. Hyperglycemia can induce reactive oxygen species (ROS) generation, which contributes to the development of diabetic cardiomyopathy. Our previous study has demonstrated that the total saponins of Aralia taibaiensis (sAT), a frequently-used antidiabetic medicine in traditional Chinese medicine (TCM), can scavenge free radicals in vitro and have good anti-oxidant ability on lipid peroxidation of rat liver microsomes. This work was designed to investigate whether sAT could protect the heart while it was used in the treatment of diabetes. Oxidative stress was induced in H9c2 cells by high glucose (33 mM) and glucose oxidase (15 mU, G/GO) and the protective effects of sAT were evaluated. Treatment of H9c2 cells with G/GO resulted in an increase in cell death, intracellular ROS level and cell oxidative injury, which were markedly reduced by sAT treatment. Further study revealed that sAT induced the nuclear translocation of Nrf2 and expression of its downstream targets. Moreover, Nrf2 siRNA markedly abolished the cytoprotective effects of sAT. sAT exerted cytoprotective effects against oxidative stress induced by hyperglycemia and the cardioprotective effects of sAT might be through the Nrf2/ARE pathway. Thus, sAT might be a promising candidate for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jialin Duan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Guo Wei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jia Cui
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiajia Yan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ying Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yue Guan
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xiaoxiao Wu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yanhua Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| |
Collapse
|
9
|
Li W, Wang C, Peng J, Liang J, Jin Y, Liu Q, Meng Q, Liu K, Sun H. α-Lipoic acid protects HAECs from high glucose-induced apoptosis via decreased oxidative stress, ER stress and mitochondrial injury. RSC Adv 2015. [DOI: 10.1039/c5ra09460g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
α-Lipoic acid (LA) has a wide range of benefits in treating diabetes mellitus (DM) and DM vascular diseases, however, the specific mechanisms are not clearly understood.
Collapse
Affiliation(s)
- Wenshuang Li
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Changyuan Wang
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Jinyong Peng
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Jing Liang
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Yue Jin
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Qi Liu
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Qiang Meng
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Kexin Liu
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| | - Huijun Sun
- Department of Clinical Pharmacology
- College of Pharmacy
- Dalian Medical University
- Dalian
- China
| |
Collapse
|
10
|
Hansen JM, Harris C. Glutathione during embryonic development. Biochim Biophys Acta Gen Subj 2014; 1850:1527-42. [PMID: 25526700 DOI: 10.1016/j.bbagen.2014.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/19/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Glutathione (GSH) is a ubiquitous, non-protein biothiol in cells. It plays a variety of roles in detoxification, redox regulation and cellular signaling. Many processes that can be regulated through GSH are critical to developing systems and include cellular proliferation, differentiation and apoptosis. Understanding how GSH functions in these aspects can provide insight into how GSH regulates development and how during periods of GSH imbalance how these processes are perturbed to cause malformation, behavioral deficits or embryonic death. SCOPE OF REVIEW Here, we review the GSH system as it relates to events critical for normal embryonic development and differentiation. MAJOR CONCLUSIONS This review demonstrates the roles of GSH extend beyond its role as an antioxidant but rather GSH acts as a mediator of numerous processes through its ability to undergo reversible oxidation with cysteine residues in various protein targets. Shifts in GSH redox potential cause an increase in S-glutathionylation of proteins to change their activity. As such, redox potential shifts can act to modify protein function on a possible longer term basis. A broad group of targets such as kinases, phosphatases and transcription factors, all critical to developmental signaling, is discussed. GENERAL SIGNIFICANCE Glutathione regulation of redox-sensitive events is an overlying theme during embryonic development and cellular differentiation. Various stresses can change GSH redox states, we strive to determine developmental stages of redox sensitivity where insults may have the most impactful damaging effect. In turn, this will allow for better therapeutic interventions and preservation of normal developmental signaling. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602, United States.
| | - Craig Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 40109-2029, United States
| |
Collapse
|
11
|
Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumour Biol 2014; 36:655-62. [PMID: 25283382 DOI: 10.1007/s13277-014-2644-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022] Open
Abstract
Gliomas are the most malignant and aggressive primary brain tumor in adults. Despite concerted efforts to improve therapies, their prognosis remains very poor. Isocitrate dehydrogenase 1 (IDH1) mutations have been discovered frequently in glioma patients and are strongly correlated with improved survival. However, the effect of IDH1 mutations on the chemosensitivity of gliomas remains unclear. In this study, we generated clonal U87 and U251 glioma cell lines overexpressing the R132H mutant protein (IDH1-R132H). Compared with control cells and cells overexpressing IDH wild type (IDH1-WT), both types of IDH1-R132H cells were more sensitive to temozolomide (TMZ) and cis-diamminedichloroplatinum (CDDP) in a time- and dose-dependent manner. The IDH1-R132H-induced higher chemosensitivity was associated with nicotine adenine disphosphonucleotide (NADPH), glutathione (GSH) depletion, and reactive oxygen species (ROS) generation. Accordingly, this IDH1-R132H-induced growth inhibition was effectively abrogated by GSH in vitro and in vivo. Our study provides direct evidence that the improved survival in patients with IDH1-R132H tumors may partly result from the effects of the IDH1-R132H protein on chemosensitivity. The primary cellular events associated with improved survival are the GSH depletion and increased ROS generation.
Collapse
|
12
|
Alantolactone induces apoptosis in HepG2 cells through GSH depletion, inhibition of STAT3 activation, and mitochondrial dysfunction. BIOMED RESEARCH INTERNATIONAL 2012; 2013:719858. [PMID: 23533997 PMCID: PMC3591150 DOI: 10.1155/2013/719858] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) constitutively expresses in human liver cancer cells and has been implicated in apoptosis resistance and tumorigenesis. Alantolactone, a sesquiterpene lactone, has been shown to possess anticancer activities in various cancer cell lines. In our previous report, we showed that alantolactone induced apoptosis in U87 glioblastoma cells via GSH depletion and ROS generation. However, the molecular mechanism of GSH depletion remained unexplored. The present study was conducted to envisage the molecular mechanism of alantolactone-induced apoptosis in HepG2 cells by focusing on the molecular mechanism of GSH depletion and its effect on STAT3 activation. We found that alantolactone induced apoptosis in HepG2 cells in a dose-dependent manner. This alantolactone-induced apoptosis was found to be associated with GSH depletion, inhibition of STAT3 activation, ROS generation, mitochondrial transmembrane potential dissipation, and increased Bax/Bcl-2 ratio and caspase-3 activation. This alantolactone-induced apoptosis and GSH depletion were effectively inhibited or abrogated by a thiol antioxidant, N-acetyl-L-cysteine (NAC). The data demonstrate clearly that intracellular GSH plays a central role in alantolactone-induced apoptosis in HepG2 cells. Thus, alantolactone may become a lead chemotherapeutic candidate for the treatment of liver cancer.
Collapse
|
13
|
Khan M, Yi F, Rasul A, Li T, Wang N, Gao H, Gao R, Ma T. Alantolactone induces apoptosis in glioblastoma cells via GSH depletion, ROS generation, and mitochondrial dysfunction. IUBMB Life 2012; 64:783-94. [PMID: 22837216 DOI: 10.1002/iub.1068] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/11/2012] [Indexed: 01/30/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies, the prognosis of glioblastoma remains very poor. Alantolactone, a sesquiterpene lactone compound, has been reported to exhibit antifungal, antibacteria, antihelminthic, and anticancer properties. In this study, we found that alantolactone effectively inhibits growth and triggers apoptosis in glioblastoma cells in a time- and dose-dependent manner. The alantolactone-induced apoptosis was found to be associated with glutathione (GSH) depletion, reactive oxygen species (ROS) generation, mitochondrial transmembrane potential dissipation, cardiolipin oxidation, upregulation of p53 and Bax, downregulation of Bcl-2, cytochrome c release, activation of caspases (caspase 9 and 3), and cleavage of poly (ADP-ribose) polymerase. This alantolactone-induced apoptosis and GSH depletion were effectively inhibited or abrogated by a thiol antioxidant, N-acetyl-L-cysteine, whereas other antioxidant (polyethylene glycol (PEG)-catalase and PEG-superoxide-dismutase) did not prevent apoptosis and GSH depletion. Alantolactone treatment inhibited the translocation of NF-κB into nucleus; however, NF-κB inhibitor, SN50 failed to potentiate alantolactone-induced apoptosis indicating that alantolactone induces NF-κB-independent apoptosis in glioma cells. These findings suggest that the sensitivity of tumor cells to alantolactone appears to results from GSH depletion and ROS production. Furthermore, our in vivo toxicity study demonstrated that alantolactone did not induce significant hepatotoxicity and nephrotoxicity in mice. Therefore, alantolactone may become a potential lead compound for future development of antiglioma therapy.
Collapse
Affiliation(s)
- Muhammad Khan
- Central Research Laboratory, Jilin University Bethune Second Hospital, Changchun, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Glutathione in cancer cell death. Cancers (Basel) 2011; 3:1285-310. [PMID: 24212662 PMCID: PMC3756414 DOI: 10.3390/cancers3011285] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/22/2011] [Accepted: 03/09/2011] [Indexed: 01/08/2023] Open
Abstract
Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH) in cancer cells is particularly relevant in the regulation of carcinogenic mechanisms; sensitivity against cytotoxic drugs, ionizing radiations, and some cytokines; DNA synthesis; and cell proliferation and death. The intracellular thiol redox state (controlled by GSH) is one of the endogenous effectors involved in regulating the mitochondrial permeability transition pore complex and, in consequence, thiol oxidation can be a causal factor in the mitochondrion-based mechanism that leads to cell death. Nevertheless GSH depletion is a common feature not only of apoptosis but also of other types of cell death. Indeed rates of GSH synthesis and fluxes regulate its levels in cellular compartments, and potentially influence switches among different mechanisms of death. How changes in gene expression, post-translational modifications of proteins, and signaling cascades are implicated will be discussed. Furthermore, this review will finally analyze whether GSH depletion may facilitate cancer cell death under in vivo conditions, and how this can be applied to cancer therapy.
Collapse
|
15
|
Wu J, Hansen JM, Hao L, Taylor RN, Sidell N. Retinoic acid stimulation of VEGF secretion from human endometrial stromal cells is mediated by production of reactive oxygen species. J Physiol 2010; 589:863-75. [PMID: 21173077 DOI: 10.1113/jphysiol.2010.200808] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is widely accepted that vascular endothelial growth factor (VEGF) is involved in angiogenic functions that are necessary for successful embryonic implantation. We have shown that retinoic acid (RA), which is known to play a necessary role in early events in pregnancy, can combine with transcriptional activators of VEGF (e.g. TPA, TGF-β, IL-1β) to rapidly induce VEGF secretion from human endometrial stromal cells through a translational mechanism of action. We have now determined that this stimulation of VEGF by RA is mediated through an increased production of cellular reactive oxygen species (ROS). Results indicated that RA, but not TPA or TGF-β, directly increases ROS production in endometrial stromal cells and that the co-stimulating activity of RA on VEGF secretion can be mimicked by direct addition of H2O2. Importantly, co-treatment of RA with TPA or TGF-β further stimulated ROS production in a fashion that positively correlated with levels of VEGF secretion. The antioxidants N-acetylcysteine and glutathione monoethyl ester inhibited both RA + TPA and RA + TGF-β-stimulated secretion of VEGF, as well as RA-induced ROS production. Treatment of cells with RA resulted in a shift in the glutathione (GSH) redox potential to a more oxidative state, suggesting that the transduction pathway leading to increased VEGF secretion is at least partially mediated through the antioxidant capacity of GSH couples. The specificity of this action on GSH-sensitive signalling pathways is suggested by the determination that RA had no effect on the redox potential of thioredoxin. Together, these findings predict a redox-mediated mechanism for retinoid regulation of localized VEGF secretion in the human endometrium that may be necessary for the successful establishment of pregnancy.
Collapse
Affiliation(s)
- Juanjuan Wu
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
16
|
Evaluation of pharmacokinetics of bioreducible gene delivery vectors by real-time PCR. Pharm Res 2009; 26:1581-9. [PMID: 19240986 DOI: 10.1007/s11095-009-9847-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/04/2009] [Indexed: 12/18/2022]
Abstract
PURPOSE To investigate pharmacokinetics of reversibly stabilized DNA nanoparticles (rSDN) using a single-step lysis RT-PCR. METHODS rSDN were prepared by coating bioreducible polycation/DNA polyplexes with multivalent N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers. Targeted polyplexes were formulated by linking cyclic RGD ligand (c(RGDyK)) to the HPMA surface layer of rSDN. The pharmacokinetic parameters in tumor-bearing mice were analyzed by PKAnalyst. RESULTS The pharmacokinetics of naked plasmid DNA, simple DNA polyplexes, rSDN, and RGD-targeted rSDN exhibited two-compartment model characteristics with area under the blood concentration-time curve (AUC) increasing from 1,102 ng x ml(-1) x min(-1) for DNA to 3,501 ng x ml(-1) x min(-1) for rSDN. Non-compartment model analysis revealed increase in mean retention time (MRT) from 4.5 min for naked DNA to 22.9 min for rSDN. CONCLUSIONS RT-PCR is a sensitive and convenient method suitable for analyzing pharmacokinetics and biodistribution of DNA polyplexes. Surface stabilization of DNA polyplexes can significantly extend their MRT and AUC compared to naked DNA. DNA degradation in rSDN in blood circulation, due to a combined effect of disulfide reduction and competitive reactions with charged molecules in the blood, contributes to DNA elimination.
Collapse
|
17
|
Abstract
The glutathione (GSH) content of cancer cells is particularly relevant in regulating mutagenic mechanisms, DNA synthesis, growth, and multidrug and radiation resistance. In malignant tumors, as compared with normal tissues, that resistance associates in most cases with higher GSH levels within these cancer cells. Thus, approaches to cancer treatment based on modulation of GSH should control possible growth-associated changes in GSH content and synthesis in these cells. Despite the potential benefits for cancer therapy of a selective GSH-depleting strategy, such a methodology has remained elusive up to now. Metastatic spread, not primary tumor burden, is the leading cause of cancer death. For patient prognosis to improve, new systemic therapies capable of effectively inhibiting the outgrowth of seeded tumor cells are needed. Interaction of metastatic cells with the vascular endothelium activates local release of proinflammatory cytokines, which act as signals promoting cancer cell adhesion, extravasation, and proliferation. Recent work shows that a high percentage of metastatic cells with high GSH levels survive the combined nitrosative and oxidative stresses elicited by the vascular endothelium and possibly by macrophages and granulocytes. ?-Glutamyl transpeptidase overexpression and an inter-organ flow of GSH (where the liver plays a central role), by increasing cysteine availability for tumor GSH synthesis, function in combination as a metastatic-growth promoting mechanism. The present review focuses on an analysis of links among GSH, adaptive responses to stress, molecular mechanisms of invasive cancer cell survival and death, and sensitization of metastatic cells to therapy. Experimental evidence shows that acceleration of GSH efflux facilitates selective GSH depletion in metastatic cells.
Collapse
Affiliation(s)
- José M Estrela
- Department of Physiology, University of Valencia, Valencia, Spain.
| | | | | |
Collapse
|
18
|
Yang MS, Yu LC, Gupta RC. Analysis of Multiple Metabolomic Subsets In Vitro: Methodological Considerations. Toxicol Mech Methods 2008; 15:29-32. [DOI: 10.1080/15376520490446383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Kitiphongspattana K, Khan TA, Ishii-Schrade K, Roe MW, Philipson LH, Gaskins HR. Protective role for nitric oxide during the endoplasmic reticulum stress response in pancreatic beta-cells. Am J Physiol Endocrinol Metab 2007; 292:E1543-54. [PMID: 17264231 DOI: 10.1152/ajpendo.00620.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Higher requirements for disulfide bond formation in professional secretory cells may affect intracellular redox homeostasis, particularly during an endoplasmic reticulum (ER) stress response. To assess this hypothesis, we investigated the effects of the ER stress response on the major redox couple (GSH/GSSG), endogenous ROS production, expression of genes involved in ER oxidative protein folding, general antioxidant defense, and thiol metabolism by use of the well-validated MIN6 beta-cell as a model and mouse islets. The data revealed that glucose concentration-dependent decreases in the GSH/GSSG ratio were further decreased significantly by ER-derived oxidative stress induced by inhibiting ER-associated degradation with the specific proteasome inhibitor lactacystin (10 microM) in mouse islets. Notably, minimal cell death was observed during 12-h treatments. This was likely attributed to the upregulation of genes encoding the rate limiting enzyme for glutathione synthesis (gamma-glutamylcysteine ligase), as well as genes involved in antioxidant defense (glutathione peroxidase, peroxiredoxin-1) and ER protein folding (Grp78/BiP, PDI, Ero1). Gene expression and reporter assays with a NO synthase inhibitor (Nomega-nitro-L-arginine methyl ester, 1-10 mM) indicated that endogenous NO production was essential for the upregulation of several ER stress-responsive genes. Specifically, gel shift analyses demonstrate NO-independent binding of the transcription factor NF-E2-related factor to the antioxidant response element Gclc-ARE4 in MIN6 cells. However, endogenous NO production was necessary for activation of Gclc-ARE4-driven reporter gene expression. Together, these data reveal a distinct protective role for NO during the ER stress response, which helps to dissipate ROS and promote beta-cell survival.
Collapse
|
20
|
Oupicky D, Bisht HS, Manickam DS, Zhou QH. Stimulus-controlled delivery of drugs and genes. Expert Opin Drug Deliv 2005; 2:653-65. [PMID: 16296792 DOI: 10.1517/17425247.2.4.653] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Macromolecular and colloidal systems used for the systemic delivery of drugs and genes promise to improve the way we treat and prevent numerous diseases. New generations of drug and gene delivery systems (DGDS) are being designed to enhance further efficiency by using a range of endogenous and external stimuli. This review focuses on three qualitatively distinct ways a stimulus can improve the efficiency of DGDS; namely, by selectively triggering release of the therapeutic agent from the DGDS, by modulating physical properties of DGDS and by favourably altering physiological properties of tissues to enhance DGDS transport. Recent developments in these areas are discussed to illustrate the potential of stimulus-controlled DGDS in the development of new generations of therapeutics.
Collapse
Affiliation(s)
- David Oupicky
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
21
|
Yang MS, Yu LC, Gupta RC. Analysis of changes in energy and redox states in HepG2 hepatoma and C6 glioma cells upon exposure to cadmium. Toxicology 2004; 201:105-13. [PMID: 15297025 DOI: 10.1016/j.tox.2004.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/03/2004] [Accepted: 04/15/2004] [Indexed: 10/26/2022]
Abstract
The energy and redox states of the HepG2 hepatoma and the C6 glioma cells were studied by quantifying the levels of ATP, ADP, AMP, GSH, and GSSG. These values were used to calculate the energy charge potential (ECP = [ATP + 0.5ADP]/TAN), total adenosine nucleotides (TAN = ATP + ADP + AMP), total glutathione (TG = [GSH + GSSG]/TAN), and the redox state (GSH/GSSG ratio). For comparison between cell types, the level of each energy metabolite (ATP, ADP, and AMP) was normalized against TAN of the respective cell. The results showed that ATP:ADP:AMP ratio was 0.76:0.11:0.13 for the HepG2 cells and 0.80:0.11:0.09 for the C6 glioma cells. ECP was 0.81 +/- 0.01 and 0.85 +/- 0.01 for the HepG2 and the C6 glioma cells, respectively. GSH/GSSG ratio was 2.66 +/- 0.16 and 3.63 +/- 0.48 for HepG2 and C6 glioma cells, respectively. TG was 3.2 +/- 0.54 for the HepG2 cells and 2.43 +/- 0.18 for the C6 glioma cells, indicating that the level of total glutathione is more than two to three times higher than the total energy metabolites in these cell lines. Following a 3-h incubation in medium containing different concentrations of Cd, there was a dose-dependent decrease in cell viability. The 3-h LC50 for the HepG2 cells was 0.5 mM and that for the C6 glioma cells was 0.4 mM. Cellular TAN decreased with a decrease in cell viability. Upon careful analysis of the energy state, there was a significant increase in relative amount of ATP and decrease in ADP and AMP in both cells as Cd concentration increased from 0 to 0.1, 0.2, and 0.6 mM. However, ECP in both cell lines increased, which indicated that the level of high energy phosphate was adequate. There was also a significant increase in TG and a significant decrease in GSH/GSSG in the C6 glioma cells when cells were exposed to as low as 0.1 mM Cd, which suggested that the cellular redox state was compromised. The HepG2 cells, on the other hand, showed no significant change in both TG and GSH/GSSG level until Cd concentration reached 0.6 mM. Results of the present study also showed that there were differences between the two cells in response to the same level of Cd exposure. The C6 glioma cells were more sensitive to Cd-induced injuries. Although there was a decrease in total amount of high energy phosphate as cell viability decreased, the surviving cells were not devoid of high energy phosphates. The relative abundance of ATP amongst the adenosine nucleotide pool and the increase in ECP could be interpreted as a way the cells signal the conservation of energy utilization in response to the damaged mitochondrial function. This move for energy conservation might be the cause of eventual cell death through the process of apoptosis.
Collapse
Affiliation(s)
- M S Yang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, PRC.
| | | | | |
Collapse
|
22
|
Abstract
The redox-state is a critical determinate of cell function, and any major imbalances can cause severe damage or death. The cellular redox status therefore needs to be sensed and modulated before such imbalances occur. Various redox-active components are involved in these processes, including thioredoxins, glutaredoxins and other thiol/disulphide-containing proteins. The cellular reactions for cytoprotection and for signalling are integrated with physiological redox-reactions in photosynthesis, assimilation and respiration. They also determine the developmental fate of the cell and finally decide on proliferation or cell death. An international workshop on redox regulation, organized by the research initiative FOR 387 of the Deutsche Forschungsgemeinschaft, was held in Bielefeld, Germany in 2002. A selection of articles originating from the meeting is printed in this issue of Physiologia Plantarum.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Lehrstuhl für Biochemie und Physiologie der Pflanzen, Universität Bielefeld, D-33501 Bielefeld, Germany Lehrstuhl für Pflanzenphysiologie, Universität Osnabrück, D-49069 Osnabrück, Germany
| | | |
Collapse
|
23
|
Reddy SPM, Mossman BT. Role and regulation of activator protein-1 in toxicant-induced responses of the lung. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1161-78. [PMID: 12424143 DOI: 10.1152/ajplung.00140.2002] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant cell proliferation and differentiation after toxic injury to airway epithelium can lead to the development of various lung diseases including cancer. The activator protein-1 (AP-1) transcription factor, composed of mainly Jun-Jun and Jun-Fos protein dimers, acts as an environmental biosensor to various external toxic stimuli and regulates gene expression involved in various biological processes. Gene disruption studies indicate that the AP-1 family members c-jun, junB, and fra1 are essential for embryonic development, whereas junD, c-fos, and fosB are required for normal postnatal growth. However, broad or target-specific transgenic overexpression of the some of these proteins gives very distinct phenotype(s), including tumor formation. This implies that, although they are required for normal cellular processes, their abnormal activation after toxic injury can lead to the pathogenesis of the lung disease. Consistent with this view, various environmental toxicants and carcinogens differentially regulate Jun and Fos expression in cells of the lung both in vivo and in vitro. Moreover, Jun and Fos proteins distinctly bind to the promoter regions of a wide variety of genes to differentially regulate their expression in epithelial injury, repair, and differentiation. Importantly, lung tumors induced by various carcinogens display a sustained expression of certain AP-1 family members. Therefore a better understanding of the mechanisms of regulation and functional role(s), as well as identification of target genes of members of the AP-1 family in airway epithelial cells, will provide additional insight into toxicant-induced lung diseases. These studies might offer a unique opportunity to use AP-1 family members and transactivation as potential diagnostic markers or drug targets for early detection and/or prevention of various lung diseases.
Collapse
Affiliation(s)
- Sekhar P M Reddy
- Department of Environmental Health Sciences and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|