1
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Glycoside hydrolase family 5: structural snapshots highlighting the involvement of two conserved residues in catalysis. Acta Crystallogr D Struct Biol 2021; 77:205-216. [PMID: 33559609 DOI: 10.1107/s2059798320015557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/24/2020] [Indexed: 11/10/2022] Open
Abstract
The ability of retaining glycoside hydrolases (GHs) to transglycosylate is inherent to the double-displacement mechanism. Studying reaction intermediates, such as the glycosyl-enzyme intermediate (GEI) and the Michaelis complex, could provide valuable information to better understand the molecular factors governing the catalytic mechanism. Here, the GEI structure of RBcel1, an endo-1,4-β-glucanase of the GH5 family endowed with transglycosylase activity, is reported. It is the first structure of a GH5 enzyme covalently bound to a natural oligosaccharide with the two catalytic glutamate residues present. The structure of the variant RBcel1_E135A in complex with cellotriose is also reported, allowing a description of the entire binding cleft of RBcel1. Taken together, the structures deliver different snapshots of the double-displacement mechanism. The structural analysis revealed a significant movement of the nucleophilic glutamate residue during the reaction. Enzymatic assays indicated that, as expected, the acid/base glutamate residue is crucial for the glycosylation step and partly contributes to deglycosylation. Moreover, a conserved tyrosine residue in the -1 subsite, Tyr201, plays a determinant role in both the glycosylation and deglycosylation steps, since the GEI was trapped in the RBcel1_Y201F variant. The approach used to obtain the GEI presented here could easily be transposed to other retaining GHs in clan GH-A.
Collapse
Affiliation(s)
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
2
|
Sweeney RP, Danby PM, Geissner A, Karimi R, Brask J, Withers SG. Development of an active site titration reagent for α-amylases. Chem Sci 2020; 12:683-687. [PMID: 34163800 PMCID: PMC8178983 DOI: 10.1039/d0sc05380e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/03/2020] [Indexed: 01/12/2023] Open
Abstract
α-Amylases are among the most widely used classes of enzymes in industry and considerable effort has gone into optimising their activities. Efforts to find better amylase mutants, such as through high-throughput screening, would be greatly aided by access to precise and robust active site titrating agents for quantitation of active mutants in crude cell lysates. While active site titration reagents designed for retaining β-glycosidases quantify these enzymes down to nanomolar levels, convenient titrants for α-glycosidases are not available. We designed such a reagent by incorporating a highly reactive fluorogenic leaving group onto unsaturated cyclitol ethers, which have been recently shown to act as slow substrates for retaining glycosidases that operate via a covalent 'glycosyl'-enzyme intermediate. By appending this warhead onto the appropriate oligosaccharide, we developed efficient active site titration reagents for α-amylases that effect quantitation down to low nanomolar levels.
Collapse
Affiliation(s)
- Ryan P Sweeney
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Phillip M Danby
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Andreas Geissner
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Ryan Karimi
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Jesper Brask
- Novozymes Krogshoejvej 36 2880 Bagsvaerd Denmark
| | - Stephen G Withers
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
3
|
Probing the catalytic mechanism of bovine CD38/NAD+ glycohydrolase by site directed mutagenesis of key active site residues. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1317-31. [PMID: 24721563 DOI: 10.1016/j.bbapap.2014.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/14/2023]
Abstract
Bovine CD38/NAD(+) glycohydrolase catalyzes the hydrolysis of NAD(+) to nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose via a stepwise reaction mechanism. Our recent crystallographic study of its Michaelis complex and covalently-trapped intermediates provided insights into the modalities of substrate binding and the molecular mechanism of bCD38. The aim of the present work was to determine the precise role of key conserved active site residues (Trp118, Glu138, Asp147, Trp181 and Glu218) by focusing mainly on the cleavage of the nicotinamide-ribosyl bond. We analyzed the kinetic parameters of mutants of these residues which reside within the bCD38 subdomain in the vicinity of the scissile bond of bound NAD(+). To address the reaction mechanism we also performed chemical rescue experiments with neutral (methanol) and ionic (azide, formate) nucleophiles. The crucial role of Glu218, which orients the substrate for cleavage by interacting with the N-ribosyl 2'-OH group of NAD(+), was highlighted. This contribution to catalysis accounts for almost half of the reaction energy barrier. Other contributions can be ascribed notably to Glu138 and Asp147 via ground-state destabilization and desolvation in the vicinity of the scissile bond. Key interactions with Trp118 and Trp181 were also proven to stabilize the ribooxocarbenium ion-like transition state. Altogether we propose that, as an alternative to a covalent acylal reaction intermediate with Glu218, catalysis by bCD38 proceeds through the formation of a discrete and transient ribooxocarbenium intermediate which is stabilized within the active site mostly by electrostatic interactions.
Collapse
|
4
|
Lee SS, Greig IR, Vocadlo DJ, McCarter JD, Patrick BO, Withers SG. Structural, Mechanistic, and Computational Analysis of the Effects of Anomeric Fluorines on Anomeric Fluoride Departure in 5-Fluoroxylosyl Fluorides. J Am Chem Soc 2011; 133:15826-9. [DOI: 10.1021/ja204829r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seung Seo Lee
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Ian R. Greig
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - David J. Vocadlo
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - John D. McCarter
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Brian O. Patrick
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
| |
Collapse
|
5
|
Rempel BP, Tropak MB, Mahuran DJ, Withers SG. Tailoring the Specificity and Reactivity of a Mechanism-Based Inactivator of Glucocerebrosidase for Potential Therapeutic Applications. Angew Chem Int Ed Engl 2011; 50:10381-3. [DOI: 10.1002/anie.201103924] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Indexed: 01/07/2023]
|
6
|
Rempel BP, Tropak MB, Mahuran DJ, Withers SG. Tailoring the Specificity and Reactivity of a Mechanism-Based Inactivator of Glucocerebrosidase for Potential Therapeutic Applications. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103924] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Piens K, Fauré R, Sundqvist G, Baumann MJ, Saura-Valls M, Teeri TT, Cottaz S, Planas A, Driguez H, Brumer H. Mechanism-based Labeling Defines the Free Energy Change for Formation of the Covalent Glycosyl-enzyme Intermediate in a Xyloglucan endo-Transglycosylase. J Biol Chem 2008; 283:21864-72. [DOI: 10.1074/jbc.m803057200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Shaikh FA, Müllegger J, He S, Withers SG. Identification of the catalytic nucleophile in Family 42 beta-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis. FEBS Lett 2007; 581:2441-6. [PMID: 17485082 DOI: 10.1016/j.febslet.2007.04.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/18/2007] [Accepted: 04/21/2007] [Indexed: 11/26/2022]
Abstract
The mechanism-based inhibitor 2,4-dinitrophenyl 2-deoxy-2-fluoro-beta-d-galactopyranoside (DNP2FGal) was used to inactivate the Family 42 beta-galactosidase (YesZ) from Bacillus subtilis via the trapping of a glycosyl-enzyme intermediate, thereby tagging the catalytic nucleophile in the active site. Proteolytic digestion of the inactivated enzyme and of a control sample of unlabeled enzyme, followed by comparative high-performance liquid chromatography and mass spectrometric analysis identified a labelled peptide of the sequence ETSPSYAASL. These data, combined with sequence alignments of this region with representative members of Family 42, unequivocally identify the catalytic nucleophile in this enzyme as Glu-295, thereby providing the first direct experimental proof of the identity of this residue within Family 42.
Collapse
Affiliation(s)
- Fathima Aidha Shaikh
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
9
|
Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 2005; 13:5021-34. [PMID: 16005634 DOI: 10.1016/j.bmc.2005.04.085] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/26/2005] [Indexed: 02/04/2023]
Abstract
Mucin-type O-linked glycosylation is a fundamental post-translational modification that is involved in a variety of important biological processes. However, the lack of chemical tools to study mucin-type O-linked glycosylation has hindered our molecular understanding of O-linked glycans in many biological contexts. The review discusses the significance of mucin-type O-linked glycosylation initiated by the polypeptide N-acetylgalactosaminyltransferases in biology and development of chemical tools to study these enzymes and their substrates.
Collapse
Affiliation(s)
- Howard C Hang
- Department of Chemistry, University of California, Berkeley 94720-1460, USA.
| | | |
Collapse
|
10
|
Wilson DJ, Konermann L. Mechanistic studies on enzymatic reactions by electrospray ionization MS using a capillary mixer with adjustable reaction chamber volume for time-resolved measurements. Anal Chem 2005; 76:2537-43. [PMID: 15117195 DOI: 10.1021/ac0355348] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass spectrometry (MS)-based techniques have enormous potential for kinetic studies on enzyme-catalyzed processes. In particular, the use of electrospray ionization (ESI) MS for steady-state measurements is well established. However, there are very few reports of MS-based studies in the pre-steady-state regime, because it is difficult to achieve the time resolution required for this type of experiment. We have recently developed a capillary mixer with adjustable reaction chamber volume for kinetic studies by ESI-MS with millisecond time resolution (Wilson, D. J.; Konermann, L. Anal. Chem. 2003, 75, 6408-6414). Data can be acquired in kinetic mode, where the concentrations of selected reactive species are monitored as a function of time, or in spectral mode, where entire mass spectra are obtained for selected reaction times. Here, we describe the application of this technique to study the kinetics of enzyme reactions. The hydrolysis of p-nitrophenyl acetate by chymotrypsin was chosen as a simple chromophoric model system. On-line addition of a "makeup solvent" immediately prior to ionization allowed the pre-steady-state accumulation of acetylated chymotrypsin to be monitored. The rate constant for acetylation, as well as the dissociation constant of the enzyme-substrate complex obtained from these data, is in excellent agreement with results obtained by conventional stopped-flow methods. Bradykinin was chosen to illustrate the performance of the ESI-MS-based method with a nonchromophoric substrate. In this case, the unfavorable rate constant ratio for acylation and deacylation of the enzyme precluded measurements in the pre-steady-state regime. Steady-state experiments were carried out to determine the turnover number and the Michaelis constant for bradykinin. The methodologies used in this work open a wide range of possibilities for future ESI-MS-based kinetic assays in enzymology.
Collapse
Affiliation(s)
- Derek J Wilson
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | |
Collapse
|
11
|
Amaya MF, Watts AG, Damager I, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM. Structural Insights into the Catalytic Mechanism of Trypanosoma cruzi trans-Sialidase. Structure 2004; 12:775-84. [PMID: 15130470 DOI: 10.1016/j.str.2004.02.036] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Revised: 02/27/2004] [Accepted: 02/29/2004] [Indexed: 11/17/2022]
Abstract
Sialidases are a superfamily of sialic-acid-releasing enzymes that are of significant interest due to their implication as virulence factors in the pathogenesis of a number of diseases. However, extensive studies of viral and microbial sialidases have failed to provide a comprehensive picture of their mechanistic properties, in part because the structures of competent enzyme-substrate complexes and reaction intermediates have never been described. Here we report these structures for the Trypanosoma cruzi trans-sialidase (TcTS), showing that catalysis by sialidases occurs via a similar mechanism to that of other retaining glycosidases, but with some intriguing differences that may have evolved in response to the substrate structure.
Collapse
Affiliation(s)
- María Fernanda Amaya
- Unité de Biochimie Structurale, CNRS URA 2185, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lee JK, Bain AD, Berti PJ. Probing the Transition States of Four Glucoside Hydrolyses with13C Kinetic Isotope Effects Measured at Natural Abundance by NMR Spectroscopy. J Am Chem Soc 2004; 126:3769-76. [PMID: 15038730 DOI: 10.1021/ja0394028] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinetic isotope effects (KIEs) were measured for methyl glucoside (4) hydrolysis on unlabeled material by NMR. Twenty-eight (13)C KIEs were measured on the acid-catalyzed hydrolysis of alpha-4 and beta-4, as well as enzymatic hydrolyses with yeast alpha-glucosidase and almond beta-glucosidase. The 1-(13)C KIEs on the acid-catalyzed reactions of alpha-4 and beta-4, 1.007(2) and 1.010(6), respectively, were in excellent agreement with the previously reported values (1.007(1), 1.011(2): Bennet and Sinnott, J. Am. Chem. Soc. 1986, 108, 7287). Transition state analysis of the acid-catalyzed reactions using the (13)C KIEs, along with the previously reported (2)H KIEs, confirmed that both reactions proceed with a stepwise D(N)A(N) mechanism and showed that the glucosyl oxocarbenium ion intermediate exists in an E(3) sofa or (4)H(3) half-chair conformation. (13)C KIEs showed that the alpha-glucosidase reaction also proceeded through a D(N)*A(N) mechanism, with a 1-(13)C KIE of 1.010(4). The secondary (13)C KIEs showed evidence of distortions in the glucosyl ring at the transition state. For the beta-glucosidase-catalyzed reaction, the 1-(13)C KIE of 1.032(1) demonstrated a concerted A(N)D(N) mechanism. The pattern of secondary (13)C KIEs was similar to the acid-catalyzed reaction, showing no signs of distortion. KIE measurement at natural abundance makes it possible to determine KIEs much more quickly than previously, both by increasing the speed of KIE measurement and by obviating the need for synthesis of isotopically labeled compounds.
Collapse
Affiliation(s)
- Jason K Lee
- Department of Chemistry, Antimicrobial Research Centre, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | | | | |
Collapse
|
13
|
Tarling CA, He S, Sulzenbacher G, Bignon C, Bourne Y, Henrissat B, Withers SG. Identification of the catalytic nucleophile of the family 29 alpha-L-fucosidase from Thermotoga maritima through trapping of a covalent glycosyl-enzyme intermediate and mutagenesis. J Biol Chem 2003; 278:47394-9. [PMID: 12975375 DOI: 10.1074/jbc.m306610200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fucose-containing glycoconjugates are key antigenic determinants in many biological processes. A change in expression levels of the enzymes responsible for tailoring these glycoconjugates has been associated with many pathological conditions and it is therefore surprising that little information is known regarding the mechanism of action of these important catabolic enzymes. Thermotoga maritima, a thermophilic bacterium, produces a wide range of carbohydrate-processing enzymes including a 52-kDa alpha-L-fucosidase that has 38% sequence identity and 56% similarity to human fucosidases. The catalytic nucleophile of this enzyme was identified to be Asp-224 within the peptide sequence 222WNDMGWPEKGKEDL235 using the mechanism-based covalent inactivator 2-deoxy-2-fluoro-alpha-L-fucosyl fluoride. The 10(4)-fold lower activity (kcat/Km) of the site-directed mutant D224A, and the subsequent rescue of activity upon addition of exogenous nucleophiles, conclusively confirms this assignment. This article presents the first direct identification of the catalytic nucleophile of an alpha-L-fucosidase, a key step in the understanding of these important enzymes.
Collapse
Affiliation(s)
- Chris A Tarling
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Wilson DJ, Konermann L. A Capillary Mixer with Adjustable Reaction Chamber Volume for Millisecond Time-Resolved Studies by Electrospray Mass Spectrometry. Anal Chem 2003; 75:6408-14. [PMID: 16465695 DOI: 10.1021/ac0346757] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel continuous-flow apparatus for on-line kinetic studies of (bio)chemical solution-phase processes by electrospray ionization mass spectrometry (ESI-MS) is described. The device is based on two concentric capillaries. Fluid is released from the inner capillary into the intercapillary space, where it mixes with solution flowing through the outer capillary, thus initiating the reaction of interest. Gas-phase analyte ions are formed near the tip of the outer capillary by pneumatically assisted ESI. This setup allows the mixer to be placed directly within the ion source, thus providing a minimal dead volume of ~8 nL. Time-resolved data can be recorded in both "spectral" and "kinetic" modes. In the former case, the position of the inner capillary is fixed at various points, such that entire mass spectra can be recorded for selected reaction times. For experiments in kinetic mode, the mass spectrometer monitors the signal intensity at selected m/z values, while the inner capillary is continuously pulled back, thus providing intensity-time profiles for specific reactive species. A theoretical framework is developed that allows the measured kinetics to be analyzed by taking into account the effects of laminar flow within the reaction capillary. Failure to take these effects into account results in erroneous rate constants. Studies on the demetalation kinetics of chlorophyll reveal that the apparatus can reliably measure rate constants up to at least 100 s-1. This represents a substantial improvement over previous ESI-MS-based kinetic methods. Spectral mode experiments on the refolding of ubiquitin show the changing proportions of denatured and tightly folded protein subpopulations in solution. When monitored in kinetic mode, the refolding process was found to proceed with a rate constant of 5.2 s-1.
Collapse
Affiliation(s)
- Derek J Wilson
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | |
Collapse
|