1
|
Vinegoni C, Feruglio PF, Gryczynski I, Mazitschek R, Weissleder R. Fluorescence anisotropy imaging in drug discovery. Adv Drug Deliv Rev 2019; 151-152:262-288. [PMID: 29410158 PMCID: PMC6072632 DOI: 10.1016/j.addr.2018.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Non-invasive measurement of drug-target engagement can provide critical insights in the molecular pharmacology of small molecule drugs. Fluorescence polarization/fluorescence anisotropy measurements are commonly employed in protein/cell screening assays. However, the expansion of such measurements to the in vivo setting has proven difficult until recently. With the advent of high-resolution fluorescence anisotropy microscopy it is now possible to perform kinetic measurements of intracellular drug distribution and target engagement in commonly used mouse models. In this review we discuss the background, current advances and future perspectives in intravital fluorescence anisotropy measurements to derive pharmacokinetic and pharmacodynamic measurements in single cells and whole organs.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Ignacy Gryczynski
- University of North Texas Health Science Center, Institute for Molecular Medicine, Fort Worth, TX, United States
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Ani CJ, Obayemi JD, Uzonwanne VO, Danyuo Y, Odusanya OS, Hu J, Malatesta K, Soboyejo WO. A shear assay study of single normal/breast cancer cell deformation and detachment from poly-di-methyl-siloxane (PDMS) surfaces. J Mech Behav Biomed Mater 2018; 91:76-90. [PMID: 30544025 DOI: 10.1016/j.jmbbm.2018.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/25/2018] [Accepted: 11/12/2018] [Indexed: 02/01/2023]
Abstract
This paper presents the results of a combined experimental and analytical/computational study of viscoelastic cell deformation and detachment from poly-di-methyl-siloxane (PDMS) surfaces. Fluid mechanics and fracture mechanics concepts are used to model the detachment of biological cells observed under shear assay conditions. The analytical and computational models are used to compute crack driving forces, which are then related to crack extension during the detachment of normal breast cells and breast cancer cells from PDMS surfaces that are relevant to biomedical implants. The interactions between cells and the extracellular matrix, or the extracellular matrix and the PDMS substrate, are then characterized using force microscopy measurements of the pull-off forces that are used to determine the adhesion energies. Finally, fluorescence microscopy staining of the cytosketelal structures (actin, micro-tubulin and cyto-keratin), transmembrane proteins (vimentin) and the ECM structures (Arginin Glycine Aspartate - RGD) is used to show that the detachment of cells during the shear assay experiments occurs via interfacial cracking between (between the ECM and the cell membranes) with a high incidence of crack bridging by transmembrane vinculin structures that undergo pull-out until they detach from the actin cytoskeletal structure. The implications of the results are discussed for the design of interfaces that are relevant to implantable biomedical devices and normal/cancer tissue.
Collapse
Affiliation(s)
- C J Ani
- Department of Theoretical and Applied Physics, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria; Department of Physics, Salem University, Km 16, PMB 1060, Lokoja, Kogi State, Nigeria
| | - J D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
| | - V O Uzonwanne
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA
| | - Y Danyuo
- Department of Mechanical Engineering, Ashesi University, Berekuso, Ghana; Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria
| | - O S Odusanya
- Advanced Biotechnology Laboratory, Sheda Science and Technology Complex, Abuja, Nigeria
| | - J Hu
- Princeton Institute for the Science and Technology of Materials (PRISM), and The Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - K Malatesta
- Princeton Institute for the Science and Technology of Materials (PRISM), and The Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - W O Soboyejo
- Department of Mechanical Engineering, Worcester Polytechnic Institute (WPI), Worcester, MA 01609, USA; Department of Materials Science and Engineering, African University of Science and Technology, Km 10, Airport Road, Galadimawa, Abuja, Federal Capital Territory, Nigeria; Advanced Biotechnology Laboratory, Sheda Science and Technology Complex, Abuja, Nigeria.
| |
Collapse
|
3
|
Vinegoni C, Fumene Feruglio P, Brand C, Lee S, Nibbs AE, Stapleton S, Shah S, Gryczynski I, Reiner T, Mazitschek R, Weissleder R. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc 2017; 12:1472-1497. [PMID: 28686582 PMCID: PMC5928516 DOI: 10.1038/nprot.2017.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sungon Lee
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- School of Electrical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Antoinette E Nibbs
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shawn Stapleton
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil Shah
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ignacy Gryczynski
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Cini M, Bradshaw TD, Woodward S. Using titanium complexes to defeat cancer: the view from the shoulders of titans. Chem Soc Rev 2017; 46:1040-1051. [DOI: 10.1039/c6cs00860g] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Seeking ‘unifying mechanisms of action’ in titanium anti-cancer agents: a 40 year odyssey.
Collapse
Affiliation(s)
- Melchior Cini
- Institute of Applied Sciences
- MCAST Main Campus
- Paola
- Malta
| | - Tracey D. Bradshaw
- School of Pharmacy
- Centre for Biomolecular Science
- University of Nottingham
- Nottingham
- UK
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry
- University of Nottingham
- Nottingham NG7 2TU
- UK
| |
Collapse
|
5
|
|
6
|
Genetically encoded sensors of protein hydrodynamics and molecular proximity. Proc Natl Acad Sci U S A 2015; 112:E2569-74. [PMID: 25931526 DOI: 10.1073/pnas.1424021112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specialized light organ of the ponyfish supports the growth of the bioluminescent symbiont Photobacterium leiognathi. The bioluminescence of P. leiognathi is generated within a heteromeric protein complex composed of the bacterial luciferase and a 20-kDa lumazine binding protein (LUMP), which serves as a Förster resonance energy transfer (FRET) acceptor protein, emitting a cyan-colored fluorescence with an unusually long excited state lifetime of 13.6 ns. The long fluorescence lifetime and small mass of LUMP are exploited for the design of highly optimized encoded sensors for quantitative fluorescence anisotropy (FA) measurements of protein hydrodynamics. In particular, large differences in the FA values of the free and target-bound states of LUMP fusions appended with capture sequences of up to 20 kDa are used in quantitative FA imaging and analysis of target proteins. For example, a fusion protein composed of LUMP and a 5-kDa G protein binding domain is used as an FA sensor to quantify the binding of the GTP-bound cell division control protein 42 homolog (Cdc42) (21 kDa) in solution and within Escherichia coli. Additionally, the long fluorescence lifetime and the surface-bound fluorescent cofactor 6,7-dimethyl-8- (1'-dimethyl-ribityl) lumazine in LUMP are utilized in the design of highly optimized FRET probes that use Venus as an acceptor probe. The efficiency of FRET in a zero-length LUMP-Venus fusion is 62% compared to ∼ 31% in a related CFP-Venus fusion. The improved FRET efficiency obtained by using LUMP as a donor probe is used in the design of a FRET-optimized genetically encoded LUMP-Venus substrate for thrombin.
Collapse
|
7
|
Abstract
Fluorescence can be characterized by its intensity, position, wavelength, lifetime, and polarization. The more of these features are acquired in a single measurement, the more can be learned about the sample, i.e., the microenvironment of the fluorescence probe. Polarization-resolved fluorescence lifetime imaging-time-resolved fluorescence anisotropy imaging, TR-FAIM-allows mapping of viscosity or binding or of homo-FRET which can indicate dimerization or generally oligomerization.
Collapse
Affiliation(s)
- Klaus Suhling
- Department of Physics, King's College London, London, UK
| | | | | |
Collapse
|
8
|
Wang H, Chalovich JM, Marriott G. Structural dynamics of troponin I during Ca2+-activation of cardiac thin filaments: a multi-site Förster resonance energy transfer study. PLoS One 2012; 7:e50420. [PMID: 23227172 PMCID: PMC3515578 DOI: 10.1371/journal.pone.0050420] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/23/2012] [Indexed: 12/20/2022] Open
Abstract
A multi-site, steady-state Förster resonance energy transfer (FRET) approach was used to quantify Ca2+-induced changes in proximity between donor loci on human cardiac troponin I (cTnI), and acceptor loci on human cardiac tropomyosin (cTm) and F-actin within functional thin filaments. A fluorescent donor probe was introduced to unique and key cysteine residues on the C- and N-termini of cTnI. A FRET acceptor probe was introduced to one of three sites located on the inner or outer domain of F-actin, namely Cys-374 and the phalloidin-binding site on F-actin, and Cys-190 of cTm. Unlike earlier FRET analyses of protein dynamics within the thin filament, this study considered the effects of non-random distribution of dipoles for the donor and acceptor probes. The major conclusion drawn from this study is that Ca2+ and myosin S1-binding to the thin filament results in movement of the C-terminal domain of cTnI from the outer domain of F-actin towards the inner domain, which is associated with the myosin-binding. A hinge-linkage model is used to best-describe the finding of a Ca2+-induced movement of the C-terminus of cTnI with a stationary N-terminus. This dynamic model of the activation of the thin filament is discussed in the context of other structural and biochemical studies on normal and mutant cTnI found in hypertrophic cardiomyopathies.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Joseph M. Chalovich
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Gerard Marriott
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Devauges V, Marquer C, Lécart S, Cossec JC, Potier MC, Fort E, Suhling K, Lévêque-Fort S. Homodimerization of amyloid precursor protein at the plasma membrane: a homoFRET study by time-resolved fluorescence anisotropy imaging. PLoS One 2012; 7:e44434. [PMID: 22973448 PMCID: PMC3433432 DOI: 10.1371/journal.pone.0044434] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Classical FRET (Förster Resonance Energy Transfer) using two fluorescent labels (one for the donor and another one for the acceptor) is not efficient for studying the homodimerization of a protein as only half of the homodimers formed can be identified by this technique. We thus resorted to homoFRET detected by time-resolved Fluorescence Anisotropy IMaging (tr-FAIM). To specifically image the plasma membrane of living cells, an original combination of tr-FAIM and Total Internal Reflection Fluorescence Lifetime Imaging Microscope (TIRFLIM) was implemented. The correcting factor accounting for the depolarization due to the high numerical aperture (NA) objective, mandatory for TIRF microscopy, was quantified on fluorescein solutions and on HEK293 cells expressing enhanced Green Fluorescence Protein (eGFP). Homodimerization of Amyloid Precursor Protein (APP), a key mechanism in the etiology of Alzheimer’s disease, was measured on this original set-up. We showed, both in epifluorescence and under TIRF excitation, different energy transfer rates associated with the homodimerization of wild type APP-eGFP or of a mutated APP-eGFP, which forms constitutive dimers. This original set-up thus offers promising prospects for future studies of protein homodimerization in living cells in control and pathological conditions.
Collapse
Affiliation(s)
- Viviane Devauges
- Institut des Sciences Moléculaires d’Orsay, CNRS UMR 8214, Univ. Paris Sud, Orsay, France
- Laboratoire Charles Fabry, CNRS UMR 8501, Institut d’Optique, Univ. Paris Sud, Palaiseau, France
- Centre de Photonique Biomédicale, Univ. Paris Sud, CLUPS/LUMAT FR2764, Orsay, France
| | | | - Sandrine Lécart
- Centre de Photonique Biomédicale, Univ. Paris Sud, CLUPS/LUMAT FR2764, Orsay, France
| | | | | | - Emmanuel Fort
- Institut Langevin, ESPCI ParisTech, Univ. Paris Diderot, UMR 7587, Paris, France
| | - Klaus Suhling
- Department of Physics, King’s College London, Strand, London, United Kingdom
| | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d’Orsay, CNRS UMR 8214, Univ. Paris Sud, Orsay, France
- Centre de Photonique Biomédicale, Univ. Paris Sud, CLUPS/LUMAT FR2764, Orsay, France
- * E-mail:
| |
Collapse
|
10
|
Jameson DM, Ross JA. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 2010; 110:2685-708. [PMID: 20232898 DOI: 10.1021/cr900267p] [Citation(s) in RCA: 398] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David M Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB222, Honolulu, Hawaii 96813, USA.
| | | |
Collapse
|
11
|
Dutko-Gwóźdź J, Gwóźdź T, Orłowski M, Greb-Markiewicz B, Duś D, Dobrucki J, Ozyhar A. The variety of complexes formed by EcR and Usp nuclear receptors in the nuclei of living cells. Mol Cell Endocrinol 2008; 294:45-51. [PMID: 18771703 DOI: 10.1016/j.mce.2008.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 07/23/2008] [Accepted: 07/23/2008] [Indexed: 11/29/2022]
Abstract
The heterodimer of the ecdysone receptor (EcR) and ultraspiracle (Usp), members of the nuclear receptor superfamily, is considered to be functional receptor for the ecdysteroids that coordinate essential biological processes in insects. In this work we have applied a bimolecular fluorescence complementation (BiFC) method to directly analyze the formation of the EcR/Usp complex. The BiFC experiments were carried out in mammalian cells which are routinely used for heterologous studies of the EcR/Usp complex, including experiments on EcR-based artificial molecular gene switches. BiFC analysis, supported by flow cytometry, revealed that EcR-Usp interaction is nuclei-restricted. If expressed separately, Usp and EcR are able to form nuclear complexes in the absence of the cognate dimerization partner. We have observed that Muristerone A that is widely used for the induction of ecdysteroid-dependent transcription in mammalian cells, does not significantly change the number of EcR/Usp and EcR/EcR complexes, and it does not influence their subcellular localization.
Collapse
Affiliation(s)
- Joanna Dutko-Gwóźdź
- Department of Biochemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław Poland
| | | | | | | | | | | | | |
Collapse
|
12
|
Lee HJ, Yan Y, Marriott G, Corn RM. Quantitative functional analysis of protein complexes on surfaces. J Physiol 2004; 563:61-71. [PMID: 15613368 PMCID: PMC1665573 DOI: 10.1113/jphysiol.2004.081117] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A major challenge in cell and molecular physiology research is to understand the mechanisms of biological processes in terms of the interactions, activities and regulation of the underlying proteins. Functional and mechanistic analyses of the large number of proteins that participate in the regulation of cellular processes will require new approaches and techniques for high throughput and multiplexed functional analyses of protein interactions, protein conformational dynamics and protein activity. In this review we focus on the development and application of proteomics and associated technologies for quantitative functional analysis of proteins and their complexes that include: (1) the application of surface plasmon resonance (SPR) imaging for multiplexed, label-free analyses of protein interactions, binding constants for biomolecular interactions and protein activities; and (2) high content analysis of protein motions within functional multiprotein complexes.
Collapse
Affiliation(s)
- Hye Jin Lee
- Department of Physiology, University of Wisconsin-Madison, WI 53706, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Förster (or Fluorescence) Resonance Energy Transfer (FRET) is unique in generating fluorescence signals sensitive to molecular conformation, association, and separation in the 1-10 nm range. We introduce a revised photophysical framework for the phenomenon and provide a systematic catalog of FRET techniques adapted to imaging systems, including new approaches proposed as suitable prospects for implementation. Applications extending from a single molecule to live cells will benefit from multidimensional microscopy techniques, particularly those adapted for optical sectioning and incorporating new algorithms for resolving the component contributions to images of complex molecular systems.
Collapse
Affiliation(s)
- Elizabeth A Jares-Erijman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
| | | |
Collapse
|
14
|
Robinson JM, Dong WJ, Cheung HC. Can Förster resonance energy transfer measurements uniquely position troponin residues on the actin filament? A case study in multiple-acceptor FRET. J Mol Biol 2003; 329:371-80. [PMID: 12758083 DOI: 10.1016/s0022-2836(03)00424-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Straightforward interpretation of Förster resonance energy transfer (FRET) data in terms of the distance from donor-labeled troponon-tropomyosin (TnTm) to acceptor-labeled actin is complicated by the potential for energy transfer to acceptors on neighboring actin monomers (cross-transfer). Calculations indicate that cross-transfer can account for a substantial percentage of the total transfer efficiency. In some cases, this renders isolated FRET data uninterpretable. To overcome these limitations, we have developed an analysis method that incorporates cross-transfer and can, in principle, define the most probable (in the "least-squares" sense) position of a TnTm residue on the actin filament. The technique analyzes data from four or more FRET experiments using acceptors attached to different residues on actin. We have used this method to specify the coordinates of skeletal troponin I (sTnI) residue 133 relative to the actin filament under Mg(2+) and Ca(2+)-saturating conditions. Ca(2+)-activation causes the C terminus of the regulatory domain of TnI to move away from the actin surface by 6.3A, laterally along the actin surface toward actin subdomain 3 by 22.0A, and azimuthally toward the actin inner domain by 13.2A. This information is used to construct a low-resolution structural model of thin filament activation.
Collapse
Affiliation(s)
- John M Robinson
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham, 35294-2041, USA.
| | | | | |
Collapse
|