1
|
Hernández‐Adame PL, Bertrand B, Escamilla‐Ruiz MI, Ruiz‐García J, Munoz‐Garay C. Molecular and energetic analysis of the interaction and specificity of Maximin 3 with lipid membranes: In vitro and in silico assessments. Protein Sci 2024; 33:e5188. [PMID: 39473071 PMCID: PMC11633330 DOI: 10.1002/pro.5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 12/13/2024]
Abstract
In this study, the interaction of antimicrobial peptide Maximin 3 (Max3) with three different lipid bilayer models was investigated to gain insight into its mechanism of action and membrane specificity. Bilayer perturbation assays using liposome calcein leakage dose-response curves revealed that Max3 is a selective membrane-active peptide. Dynamic light scattering recordings suggest that the peptide incorporates into the liposomal structure without producing a detergent effect. Langmuir monolayer compression assays confirmed the membrane inserting capacity of the peptide. Attenuated total reflection-Fourier transform infrared spectroscopy showed that the fingerprint signals of lipid phospholipid hydrophilic head groups and hydrophobic acyl chains are altered due to Max3-membrane interaction. On the other hand, all-atom molecular dynamics simulations (MDS) of the initial interaction with the membrane surface corroborated peptide-membrane selectivity. Peptide transmembrane MDS shed light on how the peptide differentially modifies lipid bilayer properties. Molecular mechanics Poisson-Boltzmann surface area calculations revealed a specific electrostatic interaction fingerprint of the peptide for each membrane model with which they were tested. The data generated from the in silico approach could account for some of the differences observed experimentally in the activity and selectivity of Max3.
Collapse
Affiliation(s)
| | - Brandt Bertrand
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de México (ICF‐UNAM)CuernavacaMorelosMéxico
| | - Martha Itzel Escamilla‐Ruiz
- Laboratorio de Física Biológica, Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíSan Luis PotosíMéxico
| | - Jaime Ruiz‐García
- Laboratorio de Física Biológica, Instituto de FísicaUniversidad Autónoma de San Luis PotosíSan Luis PotosíSan Luis PotosíMéxico
| | - Carlos Munoz‐Garay
- Instituto de Ciencias FísicasUniversidad Nacional Autónoma de México (ICF‐UNAM)CuernavacaMorelosMéxico
| |
Collapse
|
2
|
Wichmann N, Lund PM, Hansen MB, Hjørringgaard CU, Larsen JB, Kristensen K, Andresen TL, Simonsen JB. Applying flow cytometry to identify the modes of action of membrane-active peptides in a label-free and high-throughput fashion. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183820. [PMID: 34813768 DOI: 10.1016/j.bbamem.2021.183820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Membrane-active peptides (MAPs) have several potential therapeutic uses, including as antimicrobial drugs. Many traditional methods used to evaluate the membrane interactions of MAPs have limited applicability. Low-throughput methods, such as microscopy, provide detailed information but often rely on fluorophore-labeled MAPs, and high-throughput assays, such as the calcein release assay, cannot assess the mechanism behind the disruption of vesicular-based lipid membranes. Here we present a flow cytometric assay that provides detailed information about the peptide-lipid membrane interactions on single artificial lipid vesicles while being high-throughput (1000-2000 vesicles/s) and based on label-free MAPs. We synthesized and investigated six MAPs with different modes of action to evaluate the versatility of the assay. The assay is based on the flow cytometric readouts from artificial lipid vesicles, including the fluorescence from membrane-anchored and core-encapsulated fluorophores, and the vesicle concentration. From these parameters, we were able to distinguish between MAPs that induce vesicle solubilization, permeation (pores/membrane distortion), and aggregation or fusion. Our flow cytometry findings have been verified by traditional methods, including the calcein release assay, dynamic light scattering, and fluorescence microscopy on giant unilamellar vesicles. We envision that the presented flow cytometric assay can be used for various types of peptide-lipid membrane studies, e.g. to identify new antibiotics. Moreover, the assay can easily be expanded to derive additional valuable information.
Collapse
Affiliation(s)
- Nanna Wichmann
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philip M Lund
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Morten B Hansen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Claudia U Hjørringgaard
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jannik B Larsen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kasper Kristensen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Jens B Simonsen
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Buck AK, Elmore DE, Darling LEO. Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides. Future Med Chem 2019; 11:2445-2458. [PMID: 31517514 PMCID: PMC6787493 DOI: 10.4155/fmc-2019-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising in the fight against increasing bacterial resistance, but the development of AMPs with enhanced activity requires a thorough understanding of their mechanisms of action. Fluorescence microscopy is one of the most flexible and effective tools to characterize AMPs, particularly in its ability to measure the membrane interactions and cellular localization of peptides. Recent advances have increased the scope of research questions that can be addressed via microscopy through improving spatial and temporal resolution. Unique combinations of fluorescent labels and dyes can simultaneously consider different aspects of peptide-membrane interaction mechanisms. This review emphasizes the central role that fluorescence microscopy will continue to play in the interrogation of AMP structure-function relationships and the engineering of more potent peptides.
Collapse
Affiliation(s)
- Anne K Buck
- Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Donald E Elmore
- Department of Chemistry & Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Louise EO Darling
- Department of Biological Sciences & Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| |
Collapse
|
4
|
Mercurio FA, Scaloni A, Caira S, Leone M. The antimicrobial peptides casocidins I and II: Solution structural studies in water and different membrane-mimetic environments. Peptides 2019; 114:50-58. [PMID: 30243923 DOI: 10.1016/j.peptides.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Antimicrobial peptides (AMPs) represent crucial components of the natural immune defense machinery of different organisms. Generally, they are short and positively charged, and bind to and destabilize bacterial cytoplasmic membranes, ultimately leading to cell death. Natural proteolytic cleavage of αs2-casein in bovine milk generates the antimicrobial peptides casocidin I and II. In the current study, we report for the first time on a detailed structure characterization of casocidins in solution by means of Nuclear Magnetic Resonance spectroscopy (NMR). Structural studies were conducted in H2O and different membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE) and lipid anionic and zwitterionic vesicles. For both peptides, results indicate a mainly disordered conformation in H2O, with a few residues in a partial helical structure. No wide increase of order occurs upon interaction with lipid vesicles. Conversely, peptide conformation becomes highly ordered in presence of TFE, with both casocidins presenting a large helical content. Our data point out a preference of casocidins to interact with model anionic membranes. These results are compatible with possible mechanisms of action underlying the antimicrobial activity of casocidins that ultimately may affect membrane bilayer stability.
Collapse
Affiliation(s)
- Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), National Research Council & Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Via Mezzocannone 16, 80134 Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, 80147 Naples, Italy
| | - Simonetta Caira
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, 80147 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), National Research Council & Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
5
|
Bonucci A, Caldaroni E, Balducci E, Pogni R. A Spectroscopic Study of the Aggregation State of the Human Antimicrobial Peptide LL-37 in Bacterial versus Host Cell Model Membranes. Biochemistry 2015; 54:6760-8. [PMID: 26502164 DOI: 10.1021/acs.biochem.5b00813] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The LL-37 antimicrobial peptide is the only cathelicidin peptide found in humans that has antimicrobial and immunomodulatory properties. Because it exerts also chemotactic and angiogenetic activity, LL-37 is involved in promoting wound healing, reducing inflammation, and strengthening the host immune response. The key to the effectiveness of antimicrobial peptides (AMPs) lies in the different compositions of bacterial versus host cell membranes. In this context, antimicrobial peptide LL-37 and two variants were studied in the presence of model membranes with different lipid compositions and charges. The investigation was performed using an experimental strategy that combines the site-directed spin labeling-electron paramagnetic resonance technique with circular dichroism and fluorescence emission spectroscopies. LL-37 interacts with negatively charged membranes forming a stable aggregate, which can likely produce toroidal pores until the amount of bound peptide exceeds a critical concentration. At the same time, we have clearly detected an aggregate with a higher oligomeric degree for interaction of LL-37 with neutral membranes. These data confirm the absence of cell selectivity of the peptide and a more complex role in stimulating host cells.
Collapse
Affiliation(s)
- Alessio Bonucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , 53100 Siena, Italy
| | - Elena Caldaroni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , 53100 Siena, Italy
| | - Enrico Balducci
- School of Biosciences and Veterinary Medicine, University of Camerino , 62032 Camerino, Italy
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , 53100 Siena, Italy
| |
Collapse
|
6
|
Robert É, Lefèvre T, Fillion M, Martial B, Dionne J, Auger M. Mimicking and Understanding the Agglutination Effect of the Antimicrobial Peptide Thanatin Using Model Phospholipid Vesicles. Biochemistry 2015; 54:3932-41. [PMID: 26057537 DOI: 10.1021/acs.biochem.5b00442] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thanatin is a cationic 21-residue antimicrobial and antifongical peptide found in the spined soldier bug Podisus maculiventris. It is believed that it does not permeabilize membranes but rather induces the agglutination of bacteria and inhibits cellular respiration. To clarify its mode of action, lipid vesicle organization and aggregation propensity as well as peptide secondary structure have been studied using different membrane models. Dynamic light scattering and turbidimetry results show that specific mixtures of negatively charged and zwitterionic phospholipid vesicles are able to mimic the agglutination effect of thanatin observed on Gram-negative and Gram-positive bacterial cells, while monoconstituent ("conventional") models cannot reproduce this phenomenon. The model of eukaryotic cell reveals no particular interaction with thanatin, which is consistent with the literature. Infrared spectroscopy shows that under the conditions under which vesicle agglutination occurs, thanatin exhibits a particular spectral pattern in the amide I' region and in the region associated with Arg side chains. The data suggest that thanatin mainly retains its hairpin structure, Arg residues being involved in strong interactions with anionic groups of phospholipids. In the absence of vesicle agglutination, the peptide conformation and Arg side-chain environment are similar to those observed in solution. The data show that a negatively charged membrane is required for thanatin to be active, but this condition is insufficient. The activity of thanatin seems to be modulated by the charge surface density of membranes and thanatin concentration.
Collapse
Affiliation(s)
- Émile Robert
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Matthieu Fillion
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Justine Dionne
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, Québec, QC, Canada G1V 0A6
| |
Collapse
|
7
|
Fillion M, Valois-Paillard G, Lorin A, Noël M, Voyer N, Auger M. Membrane Interactions of Synthetic Peptides with Antimicrobial Potential: Effect of Electrostatic Interactions and Amphiphilicity. Probiotics Antimicrob Proteins 2014; 7:66-74. [DOI: 10.1007/s12602-014-9177-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Gagnon MC, Turgeon B, Savoie JD, Parent JF, Auger M, Paquin JF. Evaluation of the effect of fluorination on the property of monofluorinated dimyristoylphosphatidylcholines. Org Biomol Chem 2014; 12:5126-35. [DOI: 10.1039/c4ob00934g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis and characterization of three monofluorinated dimyristoylphosphatidylcholines, with the fluorine atom located at the extremities of the acyl chain in position 2 of the glycerol (sn-2), is described.
Collapse
Affiliation(s)
- Marie-Claude Gagnon
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | - Bianka Turgeon
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | - Jean-Daniel Savoie
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | - Jean-François Parent
- Department of Chemistry
- PROTEO
- CERMA
- Québec, Canada
- Canada Research Chair in Organic and Medicinal Chemistry
| | | | - Jean-François Paquin
- Canada Research Chair in Organic and Medicinal Chemistry
- Department of Chemistry
- PROTEO
- CGCC
- Québec, Canada
| |
Collapse
|
9
|
Abstract
Antimicrobial peptides (AMPs) provide a primordial source of immunity, conferring upon eukaryotic cells resistance against bacteria, protozoa, and viruses. Despite a few examples of anionic peptides, AMPs are usually relatively short positively charged polypeptides, consisting of a dozen to about a hundred amino acids, and exhibiting amphipathic character. Despite significant differences in their primary and secondary structures, all AMPs discovered to date share the ability to interact with cellular membranes, thereby affecting bilayer stability, disrupting membrane organization, and/or forming well-defined pores. AMPs selectively target infectious agents without being susceptible to any of the common pathways by which these acquire resistance, thereby making AMPs prime candidates to provide therapeutic alternatives to conventional drugs. However, the mechanisms of AMP actions are still a matter of intense debate. The structure-function paradigm suggests that a better understanding of how AMPs elicit their biological functions could result from atomic resolution studies of peptide-lipid interactions. In contrast, more strict thermodynamic views preclude any roles for three-dimensional structures. Indeed, the design of selective AMPs based solely on structural parameters has been challenging. In this chapter, we will focus on selected AMPs for which studies on the corresponding AMP-lipid interactions have helped reach an understanding of how AMP effects are mediated. We will emphasize the roles of both liquid- and solid-state NMR spectroscopy for elucidating the mechanisms of action of AMPs.
Collapse
|
10
|
Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, Rossolini GM, Mangoni ML, Bracci L, Pini A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One 2012; 7:e46259. [PMID: 23056272 PMCID: PMC3462775 DOI: 10.1371/journal.pone.0046259] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/31/2012] [Indexed: 01/21/2023] Open
Abstract
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.
Collapse
Affiliation(s)
- Chiara Falciani
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Luisa Lozzi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Simona Pollini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Veronica Carnicelli
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | | | - Barbara Lelli
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Stefano Bindi
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Silvia Scali
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Antonio Di Giulio
- Dipartimento di Scienze e Tecnologie Biomediche, Università di L’Aquila, L’Aquila, Italy
| | - Gian Maria Rossolini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche A. Fanelli, Università di Roma, La Sapienza, Roma, Italy
| | - Luisa Bracci
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
| | - Alessandro Pini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
- Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, Siena, Italy
- * E-mail:
| |
Collapse
|
11
|
Spinella SA, Nelson RB, Elmore DE. Measuring peptide translocation into large unilamellar vesicles. J Vis Exp 2012:e3571. [PMID: 22314806 PMCID: PMC3353517 DOI: 10.3791/3571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.
Collapse
|
12
|
Lorin A, Noël M, Provencher MÈ, Turcotte V, Masson C, Cardinal S, Lagüe P, Voyer N, Auger M. Revisiting peptide amphiphilicity for membrane pore formation. Biochemistry 2011; 50:9409-20. [PMID: 21942823 DOI: 10.1021/bi201335t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It has previously been shown that an amphipathic de novo designed peptide made of 10 leucines and four phenylalanines substituted with crown ethers induces vesicle leakage without selectivity. To gain selectivity against negatively charged dimyristoylphosphatidylglycerol (DMPG) bilayers, one or two leucines of the peptide were substituted with positively charged residues at each position. All peptides induce significant calcein leakage of DMPG vesicles. However, some peptides do not induce significant leakage of zwitterionic dimyristoylphosphatidylcholine vesicles and are thus active against only bacterial model membranes. The intravesicular leakage is induced by pore formation instead of membrane micellization. Nonselective peptides are mostly helical, while selective peptides mainly adopt an intermolecular β-sheet structure. This study therefore demonstrates that the position of the lysine residues significantly influences the secondary structure and bilayer selectivity of an amphipathic 14-mer peptide, with β-sheet peptides being more selective than helical peptides.
Collapse
Affiliation(s)
- Aurélien Lorin
- Département de chimie, Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des protéines, Centre de recherche sur les matériaux avancés, Université Laval, Québec, Québec, Canada G1V 0A6
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bocchinfuso G, Bobone S, Mazzuca C, Palleschi A, Stella L. Fluorescence spectroscopy and molecular dynamics simulations in studies on the mechanism of membrane destabilization by antimicrobial peptides. Cell Mol Life Sci 2011; 68:2281-301. [PMID: 21584808 PMCID: PMC11114703 DOI: 10.1007/s00018-011-0719-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Since their initial discovery, 30 years ago, antimicrobial peptides (AMPs) have been intensely investigated as a possible solution to the increasing problem of drug-resistant bacteria. The interaction of antimicrobial peptides with the cellular membrane of bacteria is the key step of their mechanism of action. Fluorescence spectroscopy can provide several structural details on peptide-membrane systems, such as partition free energy, aggregation state, peptide position and orientation in the bilayer, and the effects of the peptides on the membrane order. However, these "low-resolution" structural data are hardly sufficient to define the structural requirements for the pore formation process. Molecular dynamics simulations, on the other hand, provide atomic-level information on the structure and dynamics of the peptide-membrane system, but they need to be validated experimentally. In this review we summarize the information that can be obtained by both approaches, highlighting their versatility and complementarity, suggesting that their synergistic application could lead to a new level of insight into the mechanism of membrane destabilization by AMPs.
Collapse
Affiliation(s)
- Gianfranco Bocchinfuso
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sara Bobone
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Claudia Mazzuca
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Antonio Palleschi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS Italy
| | - Lorenzo Stella
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, IS Italy
| |
Collapse
|
14
|
Mazzuca C, Orioni B, Coletta M, Formaggio F, Toniolo C, Maulucci G, De Spirito M, Pispisa B, Venanzi M, Stella L. Fluctuations and the rate-limiting step of peptide-induced membrane leakage. Biophys J 2011; 99:1791-800. [PMID: 20858423 DOI: 10.1016/j.bpj.2010.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/28/2010] [Accepted: 07/07/2010] [Indexed: 11/16/2022] Open
Abstract
Peptide-induced vesicle leakage is a common experimental test for the membrane-perturbing activity of antimicrobial peptides. The leakage kinetics is usually very slow, requiring minutes to hours for complete release of vesicle contents, and exhibits a biphasic behavior. We report here that, in the case of the peptaibol trichogin GA IV, all processes involved in peptide-membrane interaction, such as peptide-membrane association, peptide aggregation, and peptide translocation, take place on a timescale much shorter than the leakage kinetics. On the basis of these findings, we propose a stochastic model in which the leakage kinetics is determined by the discrete nature of a vesicle suspension: peptides are continuously exchanging among vesicles, producing significant fluctuations over time in the number of peptide molecules bound to each vesicle, and in the formation of pores. According to this model, the fast initial leakage is caused by vesicles that contain at least one pore after the peptides are randomly distributed among the liposomes, whereas the slower release is associated with the time needed to occasionally reach in an intact vesicle the critical number of bound peptides necessary for pore formation. Fluctuations due to peptide exchange among vesicles therefore represent the rate-limiting step of such a slow mechanism.
Collapse
Affiliation(s)
- C Mazzuca
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee TH, Hall KN, Swann MJ, Popplewell JF, Unabia S, Park Y, Hahm KS, Aguilar MI. The membrane insertion of helical antimicrobial peptides from the N-terminus of Helicobacter pylori ribosomal protein L1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:544-57. [PMID: 20100457 DOI: 10.1016/j.bbamem.2010.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 01/08/2023]
Abstract
The interaction of two helical antimicrobial peptides, HPA3 and HPA3P with planar supported lipid membranes was quantitatively analysed using two complementary optical biosensors. The peptides are analogues of Hp(2-20) derived from the N-terminus of Helicobacter pylori ribosomal protein L1 (RpL1). The binding of these two peptide analogues to zwitterionic dimyristoyl-phosphatidylcholine (DMPC) and negatively charged membranes composed of DMPC/dimyristoylphosphatidylglycerol (DMPG) (4:1) was determined using surface plasmon resonance (SPR) and dual polarisation interferometry (DPI). Using SPR analysis, it was shown that the proline substitution in HPA3P resulted in much lower binding for both zwitterionic and anionic membranes than HPA3. Structural changes in the planar DMPC and DMPC/DMPG (4:1) bilayers induced by the binding of both Hp(2-20) analogues were then resolved in real-time with DPI. The overall process of peptide-induced changes in membrane structure was analysed by the real-time changes in bound peptide mass as a function of bilayer birefringence. The insertion of both HPA3 and HPA3P into the supported lipid bilayers resulted in a decrease in birefringence with increasing amounts of bound peptide which reflects a decrease in the order of the bilayer. The binding of HPA3 to each membrane was associated with a higher level of bound peptide and greater membrane lipid disordering and a faster and higher degree of insertion into the membrane than HPA3P. Furthermore, the binding of both HPA3 and HPA3P to negatively charged DMPC/DMPG bilayers also leads to a greater disruption of the lipid ordering. These results demonstrate the geometrical changes in the membrane upon peptide insertion and the extent of membrane structural changes can be obtained quantitatively. Moreover, monitoring the effect of peptides on a structurally characterised bilayer has provided further insight into the role of membrane structure changes in the molecular basis of peptide selectivity and activity and may assist in defining the mode of antimicrobial action.
Collapse
Affiliation(s)
- Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Vic, 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Interaction of LL-37 with model membrane systems of different complexity: influence of the lipid matrix. Biophys J 2008; 94:4688-99. [PMID: 18326643 DOI: 10.1529/biophysj.107.123620] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the main difference between bacterial and mammalian cell membranes is their net charge, the focal point of consideration in many model membrane experiments with antimicrobial peptides is lipid headgroup charge. We studied the interaction of the human multifunctional peptide LL-37 with single phospholipid monolayers, bilayers, and bilayers composed of binary mixtures of the four phospholipid species predominantly used in model membrane experiments (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylserine). We found that 1), the effects on single lipid monolayers are not comparable to those on the corresponding bilayers; 2), there are four different effects of LL-37 on bilayers of the four lipids; 3), the preference of LL-37 for the specific lipids is roughly inversely related to chain packing density; and 4), in the binary lipid mixtures, one lipid-and not necessarily the charged one--generally governs the mode of lipid/peptide interaction. Thus, our results show that lipid net charge is not the decisive factor determining the membrane-perturbing mechanism of LL-37, but only one of several parameters, among them packing density, the ability to form intermolecular H-bonds, and lipid molecular shape, which emphasizes how profoundly the choice of the model system can influence the outcome of a study of lipid/peptide interaction.
Collapse
|
17
|
Domanov YA, Kinnunen PKJ. Antimicrobial peptides temporins B and L induce formation of tubular lipid protrusions from supported phospholipid bilayers. Biophys J 2006; 91:4427-39. [PMID: 16997872 PMCID: PMC1779916 DOI: 10.1529/biophysj.106.091702] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The binding of the antimicrobial peptides temporins B and L to supported lipid bilayer (SLB) model membranes composed of phosphatidylcholine and phosphatidylglycerol (4:1, mol/mol) caused the formation of fibrillar protrusions, visible by fluorescent microscopy of both a fluorescent lipid analog and a labeled peptide. Multicolor imaging at low peptide-to-lipid ratios (P/L < approximately 1:5) revealed an initial in-plane segregation of membrane-bound peptide and partial exclusion of lipid from the peptide-enriched areas. Subsequently, at higher P/L numerous flexible lipid fibrils were seen growing from the areas enriched in lipid. The fibrils have diameters <250 nm and lengths of up to approximately 1 mm. Fibril formation reduces the in-plane heterogeneity and results in a relatively even redistribution of bound peptide over the planar bilayer and the fibrils. Physical properties of the lipid fibrils suggest that they have a tubular structure. Our data demonstrate that the peptide-lipid interactions alone can provide a driving force for the spontaneous membrane shape transformations leading to tubule outgrowth and elongation. Further experiments revealed the importance of positive curvature strain in the tubulation process as well as the sufficient positive charge on the peptide (>/=+2). The observed membrane transformations could provide a simplified in vitro model for morphogenesis of intracellular tubular structures and intercellular connections.
Collapse
Affiliation(s)
- Yegor A Domanov
- Helsinki Biophysics & Biomembrane Group, Medical Biochemistry/Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
18
|
Violette A, Fournel S, Lamour K, Chaloin O, Frisch B, Briand JP, Monteil H, Guichard G. Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. ACTA ACUST UNITED AC 2006; 13:531-8. [PMID: 16720274 DOI: 10.1016/j.chembiol.2006.03.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 03/20/2006] [Accepted: 03/24/2006] [Indexed: 11/16/2022]
Abstract
Unnatural oligomeric scaffolds designed to adopt defined secondary structures (e.g., helices), while retaining the chemical diversity of amino acid side chains, are of practical value to elaborate functional mimetics of bioactive alpha-polypeptides. Enantiopure N,N'-linked oligoureas as short as seven residues long have been previously shown to fold into a stable helical structure, stabilized by 12- and 14-membered H-bonded rings. We now report that eight-residue oligoureas designed to mimic globally amphiphilic alpha-helical host-defense peptides are effective against both gram-negative and gram-positive bacteria (including methicillin-resistant Staphylococcus aureus [MRSA]) and exhibit selectivity for bacterial versus mammalian cells. Circular dichroism (CD) spectroscopy studies suggest enhanced helical propensity of oligoureas in the presence of phospholipid vesicles. The utility of this new class of nonpeptidic foldamers for biological applications is highlighted by high resistance to proteolytic degradation.
Collapse
Affiliation(s)
- Aude Violette
- Immunologie et Chimie Thérapeutiques, UPR 9021 CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Faudry E, Vernier G, Neumann E, Forge V, Attree I. Synergistic Pore Formation by Type III Toxin Translocators ofPseudomonas aeruginosa†. Biochemistry 2006; 45:8117-23. [PMID: 16800636 DOI: 10.1021/bi060452+] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type III secretion/translocation systems are essential actors in the pathogenicity of Gram-negative bacteria. The injection of bacterial toxins across the host cell plasma membranes is presumably accomplished by a proteinaceous structure, the translocon. In vitro, Pseudomonas aeruginosa translocators PopB and PopD form ringlike structures observed by electron microscopy. We demonstrate here that PopB and PopD are functionally active and sufficient to form pores in lipid vesicles. Furthermore, the two translocators act in synergy to promote membrane permeabilization. The size-based selectivity observed for the passage of solutes indicates that the membrane permeabilization is due to the formation of size-defined pores. Our results provide also new insights into the mechanism of translocon pore formation that may occur during the passage of toxins from the bacterium into the cell. While proteins bind to lipid vesicles equally at any pH, the kinetics of membrane permeabilization accelerate progressively with decreasing pH values. Electrostatic interactions and the presence of anionic lipids were found to be crucial for pore formation whereas cholesterol did not appear to play a significant role in functional translocon formation.
Collapse
Affiliation(s)
- Eric Faudry
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés (UMR 5092 CNRS/CEA/UJF), 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | |
Collapse
|
20
|
Lewis RNAH, Zhang YP, McElhaney RN. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1668:203-14. [PMID: 15737331 DOI: 10.1016/j.bbamem.2004.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 10/26/2022]
Abstract
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (approximately 11-15 degrees C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (approximately 23-25 degrees C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing approximately 30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.
Collapse
Affiliation(s)
- Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | | | | |
Collapse
|