1
|
Wang S, Ma C. A practical guide for fast implementation of SNARE-mediated liposome fusion. BIOPHYSICS REPORTS 2024; 10:31-40. [PMID: 38737475 PMCID: PMC11079601 DOI: 10.52601/bpr.2023.230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 05/14/2024] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAER) family proteins are the engines of most intra-cellular and exocytotic membrane fusion pathways (Jahn and Scheller 2006). Over the past two decades, in-vitro liposome fusion has been proven to be a powerful tool to reconstruct physiological SNARE-mediated membrane fusion processes (Liu et al. 2017). The reconstitution of the membrane fusion process not only provides direct evidence of the capability of the cognate SNARE complex in driving membrane fusion but also allows researchers to study the functional mechanisms of regulatory proteins in related pathways (Wickner and Rizo 2017). Heretofore, a variety of delicate methods for in-vitro SNARE-mediated liposome fusion have been established (Bao et al. 2018; Diao et al. 2012; Duzgunes 2003; Gong et al. 2015; Heo et al. 2021; Kiessling et al. 2015; Kreye et al. 2008; Kyoung et al. 2013; Liu et al. 2017; Scott et al. 2003). Although technological advances have made reconstitution more physiologically relevant, increasingly elaborate experimental procedures, instruments, and data processing algorithms nevertheless hinder the non-experts from setting up basic SNARE-mediated liposome fusion assays. Here, we describe a low-cost, timesaving, and easy-to-handle protocol to set up a foundational in-vitro SNARE-mediated liposome fusion assay based on our previous publications (Liu et al. 2023; Wang and Ma 2022). The protocol can be readily adapted to assess various types of SNARE-mediated membrane fusion and the actions of fusion regulators by using appropriate alternative additives (e.g., proteins, macromolecules, chemicals, etc.). The total time required for one round of the assay is typically two days and could be extremely compressed into one day.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark‐Hypoxia by Catalytic Microenvironment‐Tailored Nanoreactors for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
3
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:15006-15012. [PMID: 33871140 DOI: 10.1002/anie.202102097] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO4 2- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO4 2- -catalyzed generation of 1 O2 from H2 O2 and protects MoO4 2- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.
Collapse
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
4
|
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2020; 192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Lipid nanoparticles, especially liposomes and lipid/nucleic acid complexed nanoparticles have shown great success in the pharmaceutical industry. Their success is attributed to stable drug loading, extended pharmacokinetics, reduced off-target side effects, and enhanced delivery efficiency to disease targets with formidable blood-brain or plasma membrane barriers. Therefore, they offer promising formulation options for drugs limited by low therapeutic indexes in traditional dosage forms and current "undruggable" targets. Recent development of siRNA, antisense oligonucleotide, or the CRISPR complex-loaded lipid nanoparticles and liposomal vaccines also shed light on their potential in enabling versatile formulation platforms for new pharmaceutical modalities. Analytical characterization of these nanoparticles is critical to drug design, formulation development, understanding in vivo performance, as well as quality control. The multi-lipid excipients, unique core-bilayer structure, and nanoscale size all underscore their complicated critical quality attributes, including lipid species, drug encapsulation efficiency, nanoparticle characteristics, product stability, and drug release. To address these challenges and facilitate future applications of lipid nanoparticles in drug development, we summarize available analytical approaches for physicochemical characterizations of lipid nanoparticle-based pharmaceutical modalities. Furthermore, we compare advantages and challenges of different techniques, and highlight the promise of new strategies for automated high-throughput screening and future development.
Collapse
Affiliation(s)
- Yuchen Fan
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria Marioli
- Pharma Technical Development Europe Analytics, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kelly Zhang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
5
|
Tsuei M, Shivrayan M, Kim YK, Thayumanavan S, Abbott NL. Optical “Blinking” Triggered by Collisions of Single Supramolecular Assemblies of Amphiphilic Molecules with Interfaces of Liquid Crystals. J Am Chem Soc 2020; 142:6139-6148. [DOI: 10.1021/jacs.9b13360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Manisha Shivrayan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas L. Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
dos Santos JL, Mendanha SA, Vieira SL, Gonçalves C. Portable Proportional-Integral-Derivative controlled chambers for giant unilamellar vesicles electroformation. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1a1b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, Shiku H, Akiyoshi K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 2016; 6:21933. [PMID: 26911358 PMCID: PMC4766490 DOI: 10.1038/srep21933] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/03/2016] [Indexed: 12/18/2022] Open
Abstract
Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze–thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.
Collapse
Affiliation(s)
- Yuko T Sato
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaori Umezaki
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shinichi Sawada
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sada-atsu Mukai
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naozumi Harada
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kazunari Akiyoshi
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
8
|
Ytzhak S, Weitman H, Ehrenberg B. The Effect of Lipid Composition on the Permeability of Fluorescent Markers from Photosensitized Membranes. Photochem Photobiol 2013; 89:619-24. [DOI: 10.1111/php.12035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/19/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Shany Ytzhak
- Department of Physics and Institute of Nanotechnology and Advanced Materials; Bar Ilan University; Ramat Gan; Israel
| | - Hana Weitman
- Department of Physics and Institute of Nanotechnology and Advanced Materials; Bar Ilan University; Ramat Gan; Israel
| | - Benjamin Ehrenberg
- Department of Physics and Institute of Nanotechnology and Advanced Materials; Bar Ilan University; Ramat Gan; Israel
| |
Collapse
|
9
|
Pan H, Marsh JN, Christenson ET, Soman NR, Ivashyna O, Lanza GM, Schlesinger PH, Wickline SA. Postformulation peptide drug loading of nanostructures. Methods Enzymol 2012; 508:17-39. [PMID: 22449919 DOI: 10.1016/b978-0-12-391860-4.00002-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cytolytic peptides have commanded attention for their anticancer potential because the membrane-disrupting function that produces cell death is less likely to be overcome by resistant mutations. Congruently, peptides that are involved in molecular recognition and biological activities become attractive therapeutic candidates because of their high specificity, better affinity, reduced immunogenicity, and reduced off target toxicity. However, problems of inadequate delivery, rapid deactivation in vivo, and poor bioavailability have limited clinical application. Therefore, peptide drug development for clinical use requires an appropriate combination of an effective therapeutic peptide and a robust delivery methodology. In this chapter, we describe methods for the postformulation insertion of peptide drugs into lipidic nanostructures, the physical characterization of peptide-nanostructure complexes, and the evaluation of their therapeutic effectiveness both in vitro and in vivo.
Collapse
Affiliation(s)
- Hua Pan
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yaroslavov AA, Sybachin AV, Kesselman E, Schmidt J, Talmon Y, Rizvi SAA, Menger FM. Liposome fusion rates depend upon the conformation of polycation catalysts. J Am Chem Soc 2011; 133:2881-3. [PMID: 21322595 DOI: 10.1021/ja111406q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryo-TEM and NaCl-leakage experiments demonstrated that the cationic polymer polylysine induces fusion of anionic liposomes but that the cationic polymer poly(N-ethyl-4-vinylpyridinium bromide) (PEVP) does not, although both polymers bind strongly to the liposomes. The difference was traced to the thickness of the coatings at constant charge coverage. Polylysine is believed to form planar β-sheets that are sufficiently thin to allow membrane fusion. In contrast, looping and disorganization among adsorbed PEVP molecules physically prevent fusion. A similar effect is likely to be applicable to important polycation-induced fusion of cell membranes.
Collapse
Affiliation(s)
- Alexander A Yaroslavov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119992, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
11
|
Frederick TE, Chebukati JN, Mair CE, Goff PC, Fanucci GE. Bis(monoacylglycero)phosphate forms stable small lamellar vesicle structures: insights into vesicular body formation in endosomes. Biophys J 2009; 96:1847-55. [PMID: 19254543 DOI: 10.1016/j.bpj.2008.12.3892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 12/01/2008] [Indexed: 11/28/2022] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is an unusually shaped lipid found in relatively high percentage in the late endosome. Here, we report the characterization of the morphology and molecular organization of dioleoyl-BMP (DOBMP) with dynamic light scattering, transmission electron microscopy, nuclear magnetic resonance (NMR) spectroscopy, and electron paramagnetic resonance spectroscopy. The morphology of hydrated DOBMP dispersions varies with pH and ionic strength, and DOBMP vesicles are significantly smaller in diameter than phosphatidylcholine dispersions. At neutral pH, DOBMP forms highly structured, clustered dispersions 500 nm in size. On the other hand, at acidic pH, spherically shaped vesicles are formed. NMR and spin-labeled electron paramagnetic resonance demonstrate that DOBMP forms a lamellar mesophase with acyl-chain packing similar to that of other unsaturated phospholipids. (31)P NMR reveals an orientation of the phosphate group in DOBMP that differs significantly from that of other phospholipids. These macroscopic and microscopic structural characterizations suggest that the biosynthesis of BMP on the inner luminal membrane of maturing endosomes may possibly produce budded vesicles high in BMP content, which form small vesicular structures stabilized by the physical properties of the BMP lipid.
Collapse
Affiliation(s)
- Thomas E Frederick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Enveloped virus particles select their lipid-protein components and egress by budding from the host cell membranes. The matrix protein of many enveloped viruses has been proposed as a crucial element for viral budding; however, molecular mechanisms behind membrane remodeling by the matrix protein are yet to be unraveled. Here, we describe a set of in vitro functional reconstitution assays that allow quantitative evaluation of both, membrane binding and creation of membrane curvature by the matrix protein isolated from Newcastle Disease Virus. Individual budding events orchestrated by the matrix protein can be resolved in real time. The assays may be applied for direct reconstitution of the on-membrane action of cellular proteins involved in membrane curvature induction upon binding in vivo.
Collapse
|
13
|
Stengel G, Simonsson L, Campbell RA, Höök F. Determinants for Membrane Fusion Induced by Cholesterol-Modified DNA Zippers. J Phys Chem B 2008; 112:8264-74. [DOI: 10.1021/jp802005b] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gudrun Stengel
- Department of Solid State Physics, University of Lund, 22100 Lund, Sweden, and Department of Physical Chemistry, Getingevägen 60, Box 124, 22100 Lund, Sweden
| | - Lisa Simonsson
- Department of Solid State Physics, University of Lund, 22100 Lund, Sweden, and Department of Physical Chemistry, Getingevägen 60, Box 124, 22100 Lund, Sweden
| | - Richard A. Campbell
- Department of Solid State Physics, University of Lund, 22100 Lund, Sweden, and Department of Physical Chemistry, Getingevägen 60, Box 124, 22100 Lund, Sweden
| | - Fredrik Höök
- Department of Solid State Physics, University of Lund, 22100 Lund, Sweden, and Department of Physical Chemistry, Getingevägen 60, Box 124, 22100 Lund, Sweden
| |
Collapse
|
14
|
Chang MY, Seideman J, Sofou S. Enhanced loading efficiency and retention of 225Ac in rigid liposomes for potential targeted therapy of micrometastases. Bioconjug Chem 2008; 19:1274-82. [PMID: 18505278 DOI: 10.1021/bc700440a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted alpha-particle emitters are promising therapeutics for micrometastatic disease. Actinium-225 has a 10-day half-life and generates a total of four alpha-particles per parent decay rendering (225)Ac an attractive candidate for alpha-therapy. For cancer cells with low surface expression levels of molecular targets, targeting strategies of (225)Ac using radiolabeled carriers of low specific radioactivities (such as antibodies) may not deliver enough alpha-particle emitters at the targeted cancer cells to result in killing. We previously proposed and showed using passive (225)Ac entrapment that liposomes can stably retain encapsulated (225)Ac for long time periods, and that antibody-conjugated liposomes (immunoliposomes) with encapsulated (225)Ac can specifically target and become internalized by cancer cells. However, to enable therapeutic use of (225)Ac-containing liposomes, high activities of (225)Ac need to be stably encapsulated into liposomes. In this study, various conditions for active loading of (225)Ac in preformed liposomes (ionophore-type, encapsulated buffer solution, and loading time) were evaluated, and liposomes with up to 73 +/- 9% of the initial activity of (225)Ac (0.2-200 microCi) were developed. Retention of radioactive contents by liposomes was evaluated at 37 degrees C in phosphate buffer and in serum-supplemented media. The main fraction of released (225)Ac from liposomes occurs within the first two hours of incubation. Beyond this two hour point, the encapsulated radioactivity is released from liposomes slowly with an approximate half-life of the order of several days. In some cases, after 30 days, (225)Ac retention as high as 81 +/- 7% of the initially encapsulated radioactivity was achieved. The (225)Ac loading protocol was also applied to immunoliposome loading without significant loss of targeting efficacy. Liposomes with surface-conjugated antibodies that are loaded with (225)Ac overcome the limitations of low specific activity for molecular carriers and are expected to be therapeutically useful against tumor cells having a low antigen density.
Collapse
Affiliation(s)
- Min-Yuan Chang
- Othmer-Jacobs Department of Chemical and Biological Engineering, Polytechnic University, 6 MetroTech Center, Brooklyn, New York 11201, USA
| | | | | |
Collapse
|
15
|
Simões SI, Tapadas JM, Marques CM, Cruz MEM, Martins MBF, Cevc G. Permeabilisation and solubilisation of soybean phosphatidylcholine bilayer vesicles, as membrane models, by polysorbate, Tween 80. Eur J Pharm Sci 2005; 26:307-17. [PMID: 16129587 DOI: 10.1016/j.ejps.2005.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 06/01/2005] [Accepted: 07/01/2005] [Indexed: 11/28/2022]
Abstract
To understand better the wide-spread pharmaceutical use of non-ionic surfactant Tween 80 (TW), the colloidal properties of the surfactant alone and in combinations with the common phospholipid, phosphatidylcholine (PC), were studied. Static and dynamic light scattering revealed that TW solubilises PC at TW/PC approximately 2.75/1 mol/mol and that TW micelle disintegration occurs on time-scale of 2.5 min, independent of amphipath concentration. This is up to nearly 300-times faster than the TW caused dissolution of PC containing unilamellar vesicles. The apparent dissolution time of TW/PC mixed aggregates, in contrast, decelerates from >700 min to <5 min upon increasing starting total amphipath concentration, with thermal activation energy > or =24 (< or =80) kJ mol(-1). The aggregate dissolution rate in highly concentrated TW/PC suspensions reflects the dissolved polysorbate-aggregate exchange rate (approximately 6.7 x 10(-3)s(-1)) rather than TW flip-flop rate across a bilayer (>0.2 min(-1)). PC solubilisation proceeds linearly with the square-root of time, and is kinetically governed by the speed of surfactant diffusion through the bulk (D approximately 2.8 x 10(-11)m2 s(-1)). Creation of small Tween-phosphatidylcholine mixed micelles is typically preceded by pre-solubilisation structures, first in the form of deformable, strongly fluctuating, bilayer vesicles and then of elongated, presumably thread-like, mixed micelles. TW/PC mixed micelles become smaller with growing surfactant/lipid molar ratio, whereas TW/PC mixed vesicles become more and more leaky with increasing surfactant concentration. Our results highlight the molecular and kinetic aspects of polysorbate-membrane interactions and provide a rationale for the popularity of Tween surfactants in pharmaceutical products: such surfactants can solubilise fatty molecules and bilayer membranes but need quite a long time for this, which is available in pharmaceutical preparations but normally not in vivo; this makes Tweens relatively efficient and safe. Furthermore, our data could help design better ultra-deformable mixed lipid-surfactant vesicles for the non-invasive transdermal drug delivery across the skin.
Collapse
Affiliation(s)
- S I Simões
- INETI, Departamento de Biotecnologia, UNFAB, Estada do Paço do Lumiar, 22, Edifício F, 1649-038 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Ismail M Hafez
- Department of Biopharmceutical Sciences and Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
17
|
Chang JS, Choi MJ. pH-Sensitive Liposomes as Adjuvants for Peptide Antigens. Methods Enzymol 2003; 373:127-36. [PMID: 14714401 DOI: 10.1016/s0076-6879(03)73009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Jin-Soo Chang
- Morgan Biotechnology Research Institute, 341 Pojung-Ri, Koonsung-Myon, Youngin City, Kyonggi-Do 449-910, South Korea
| | | |
Collapse
|