1
|
Liu Y, Zhang J, Gao B. Proteomic mechanisms for the stimulatory effects of antibiotics on Microcystis aeruginosa during hydrogen peroxide treatment. CHEMOSPHERE 2020; 247:125837. [PMID: 31927185 DOI: 10.1016/j.chemosphere.2020.125837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Application of low dosage of H2O2 at early stage of cyanobacterial life cycle is a promising route for cyanobacterial bloom mitigation, which could minimize adverse effects on non-target organisms. Besides, influence of co-existing contaminants on cyanobacterial bloom mitigation under combined pollution conditions remains unclear. This study assessed the influence of a mixture of four frequently detected antibiotics (tetracycline, sulfamethoxazole, ciprofloxacin and amoxicillin) during H2O2 treatment of Microcystis aeruginosa at early growth stage. H2O2 significantly (p < 0.05) inhibited growth rate, chlorophyll a content, Fv/Fm and rETRmax in a dose-dependent manner at low doses of 0.25-1 mg L-1, through downregulating proteins involved in cell division, cellular component organization, gene expression and photosynthesis. Although H2O2 increased microcystin content in each cyanobacterial cell through the upregulation of microcystin synthetases (mcyC and mcyF), total microcystin concentration in H2O2 treated groups was significantly (p < 0.05) reduced due to the decrease of cell density. Existence of 80 and 200 ng L-1 mixed antibiotics during H2O2 treatment facilitated the scavenging of ROS by antioxidant enzymes and significantly (p < 0.05) stimulated growth, photosynthesis, microcystin synthesis and microcystin release in H2O2 treated cells, through the upregulation of proteins involved in photosynthesis, oxidation-reduction process, biosynthesis, gene expression and transport. Mixed antibiotics increased the hazard of M. aeruginosa during H2O2 treatment, through the stimulation of microcystin synthesis and release at the proteomic level. Each target antibiotic should be controlled below 5 ng L-1 before the application of H2O2 for eliminating the interference of antibiotics on cyanobacterial bloom mitigation.
Collapse
Affiliation(s)
- Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Baoyu Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
2
|
Heyno E, Alkan N, Fluhr R. A dual role for plant quinone reductases in host-fungus interaction. PHYSIOLOGIA PLANTARUM 2013; 149:340-53. [PMID: 23464356 DOI: 10.1111/ppl.12042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
Quinone reductases (QR, EC 1.5.6.2) are flavoproteins that protect organisms from oxidative stress. The function of plant QRs has not as yet been addressed in vivo despite biochemical evidence for their involvement in redox reactions. Here, using knock-out (KO) and overexpressing lines, we studied the protective role of two groups of Arabidopsis thaliana cytosolic QRs, Nqr (NAD(P)H:quinone oxidoreductase) and Fqr (flavodoxin-like quinone reductase), in response to infection by necrotrophic fungi. The KO lines nqr(-) and fqr1(-) displayed significantly slower development of lesions of Botrytis cinerea and Sclerotinia sclerotium in comparison to the wild type (WT). Consistent with this observation, the overexpressing line FQR1(+) was hypersensitive to the pathogens. Both the nqr(-) and fqr1(-) displayed increased fluorescence of 2',7'-dichlorofluorescein, a reporter for reactive oxygen species in response to B. cinerea. Infection by B. cinerea was accompanied with increased Nqr and Fqr1 protein levels in the WT as revealed by western blotting. In addition, a marked stimulation of salicylic acid-sensitive transcripts and suppression of jasmonate-sensitive transcripts was observed in moderately wounded QR KO mutant leaves, a condition mimicking the early stage of infection. In contrast to the above observations, germination of conidia was accelerated on leaves of QR KO mutants in comparison with the WT and FQR1(+). The same effect was observed in water-soluble leaf surface extracts. It is proposed that the altered interaction between B. cinerea and the QR mutants is a consequence of subtly altered redox state of the host, which perturbs host gene expression in response to environmental stress such as fungal growth.
Collapse
Affiliation(s)
- Eiri Heyno
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
3
|
Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 2011; 51:942-50. [PMID: 21167935 DOI: 10.1016/j.freeradbiomed.2010.12.009] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/01/2010] [Accepted: 12/06/2010] [Indexed: 01/02/2023]
Abstract
The observation that muscular exercise is associated with oxidative stress in humans was first reported over 30 years ago. Since this initial report, numerous studies have confirmed that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle. Although the primary tissue(s) responsible for reactive oxygen species (ROS) production during exercise remains a topic of debate, compelling evidence indicates that muscular activity promotes oxidant production in contracting skeletal muscle fibers. Mitochondria, NADPH oxidase, PLA₂-dependent processes, and xanthine oxidase have all been postulated to contribute to contraction-induced ROS production in muscle but the primary site of contraction-induced ROS production in muscle fibers remains unclear. Nonetheless, contraction-induced ROS generation has been shown to play an important physiological function in the regulation of both muscle force production and contraction-induced adaptive responses of muscle fibers to exercise training. Although knowledge in the field of exercise and oxidative stress has grown markedly during the past 30 years, this area continues to expand and there is much more to be learned about the role of ROS as signaling molecules in skeletal muscle.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
4
|
Abstract
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox regulation of muscle adaptation and oxidant-mediated muscle fatigue.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
5
|
Savini I, Arnone R, Rossi A, Catani MV, Del Principe D, Avigliano L. Redox modulation of Ecto-NOX1 in human platelets. Mol Membr Biol 2010; 27:160-9. [PMID: 20462348 DOI: 10.3109/09687688.2010.485936] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By modulating the cellular redox state, the plasma membrane electron transport (PMET) is important in platelet biology; indeed, the oxidant/antioxidant balance plays a central role during activation of the coagulation pathway. None the less, in human platelets, the PMET system has not yet been fully characterized and the molecular identities of most components are unknown. Here, for the first time, the presence of the plasma membrane hydroquinone (NADH) oxidase Ecto-NOX1 in human platelets has been described. We found that Ecto-NOX1 expression is modulated by capsaicin: Indeed, it is positively regulated through a mechanism requiring binding of capsaicin to its receptor, namely the transient receptor potential vanilloid subtype 1 (TRPV1). Ligand-receptor interaction triggers a signalling cascade leading to ROS production, which in turn enhances expression and activity of Ecto-NOX1. Redox regulation of Ecto-NOX1 may be important to platelet recruitment and activation during inflammatory diseases.
Collapse
Affiliation(s)
- Isabella Savini
- Department of Experimental Medicine & Biochemical Sciences, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Geng L, Rachakonda G, Morré DJ, Morré DM, Crooks PA, Sonar VN, Roti JLR, Rogers BE, Greco S, Ye F, Salleng KJ, Sasi S, Freeman ML, Sekhar KR. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature. FASEB J 2009; 23:2986-95. [PMID: 19395476 DOI: 10.1096/fj.09-130005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(+/-)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(+/-)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by > or =70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC(50) = 10 microM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.
Collapse
Affiliation(s)
- Ling Geng
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li X, Bard AJ. Scanning electrochemical microscopy of HeLa cells – Effects of ferrocene methanol and silver ion. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88:1243-76. [PMID: 18923182 DOI: 10.1152/physrev.00031.2007] [Citation(s) in RCA: 1478] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
9
|
Lee S, Li R, Kim B, Palvolgyi R, Ho T, Yang QZ, Xu J, Szeto WL, Honda H, Berliner JA. Ox-PAPC activation of PMET system increases expression of heme oxygenase-1 in human aortic endothelial cell. J Lipid Res 2008; 50:265-74. [PMID: 18757839 DOI: 10.1194/jlr.m800317-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidized-1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine (Ox-PAPC) has been demonstrated to accumulate in atherosclerotic lesions and regulates expression of more than 1,000 genes in human aortic endothelial cell (HAEC). Among the most highly induced is heme oxygenase-1 (HO-1), a cell-protective antioxidant enzyme, which is sensitively induced by oxidative stress. To identify the pathway by which Ox-PAPC induces HO-1, we focused on the plasma membrane electron transport (PMET) complex, which contains ecto-NADH oxidase 1 (eNOX1) and NADPH:quinone oxidoreductase 1 (NQO1) and affects cellular redox status by regulating levels of NAD(P)H. We demonstrated that Ox-PAPC and its active components stimulated electron transfer through the PMET complex in HAECs from inside to outside [as determined by extracellular 2-(4-iodophenyl)-3-(44-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) reduction] and from outside to inside of the cell (as determined by intracellular NBT reduction). Chemical inhibitors of PMET system and siRNAs to PMET components (NQO1 and eNOX1) significantly decreased HO-1 induction by Ox-PAPC. We present evidence that Ox-PAPC activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in HAEC plays an important role in the induction of HO-1 and PMET inhibitors blocked Nrf2 activation by Ox-PAPC. We hypothesized that PMET activation by Ox-PAPC causes intracellular NAD(P)H depletion, which leads to the increased oxidative stress and HO-1 induction. Supporting this hypothesis, cotreatment of cells with exogenous NAD(P)H and Ox-PAPC significantly decreased oxidative stress and HO-1 induction by Ox-PAPC. Taken together, we demonstrated that the PMET system in HAEC plays an important role in the regulation of cellular redox status and HO-1 expression by Ox-PAPC.
Collapse
Affiliation(s)
- Sangderk Lee
- Department of Pathology and Laboratory Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Homocysteine is a potent modulator of plasma membrane electron transport systems. J Bioenerg Biomembr 2008; 40:45-51. [DOI: 10.1007/s10863-008-9127-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/12/2007] [Indexed: 12/22/2022]
|
11
|
Bourdeau-Heller J, Oberley TD. Prostate carcinoma cells selected by long-term exposure to reduced oxygen tension show remarkable biochemical plasticity via modulation of superoxide, HIF-1alpha levels, and energy metabolism. J Cell Physiol 2007; 212:744-52. [PMID: 17458899 DOI: 10.1002/jcp.21069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cancer cells are able to tolerate levels of O(2) that are damaging or lethal to normal cells; we hypothesize that this tolerance is the result of biochemical plasticity which maintains cellular homeostasis of both energy levels and oxidation state. In order to examine this hypothesis, we used different O(2) levels as a selective agent during long-term culture of DU145 prostate cancer cells to develop three isogenic cell lines that grow in normoxic (4%), hyperoxic (21%), or hypoxic (1%) O(2) conditions. Growth characteristics and O(2) consumption differed significantly between these cell lines without changes in ATP levels or altered sensitivity to 2-deoxy-D-glucose, an inhibitor of glycolysis. O(2) consumption was significantly higher in the hyperoxic line as was the level of endogenous superoxide. The hypoxic cell line regulated the chemical gradient of the proton motive force (PMF) independent of the electrical component without O(2)-dependent changes in Hif-1alpha levels. In contrast, the normoxic line regulated Hif-1alpha without tight regulation of the chemical component of the PMF noted in the hypoxic cell line. From these studies, we conclude that selection of prostate cancer cells by long-term exposure to low ambient levels of O(2) resulted in cells with unique biochemical properties in which energy metabolism, reactive oxygen species (ROS), and HIF-1alpha levels are modulated to allow cell survival and growth. Thus, cancer cells exhibit remarkable biochemical plasticity in response to various O(2) levels.
Collapse
Affiliation(s)
- Jeanne Bourdeau-Heller
- University of Wisconsin School of Medicine and Public Health, Department of Pathology, Madison, WI 53705, USA
| | | |
Collapse
|
12
|
Wolfová J, Mesters JR, Brynda J, Grandori R, Natalello A, Carey J, Kutá Smatanová I. Crystallization and preliminary diffraction analysis of Escherichia coli WrbA in complex with its cofactor flavin mononucleotide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:571-5. [PMID: 17620713 PMCID: PMC2335133 DOI: 10.1107/s1744309107026103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/28/2007] [Indexed: 11/10/2022]
Abstract
The flavoprotein WrbA from Escherichia coli is considered to be the prototype of a new family of multimeric flavodoxin-like proteins that are implicated in cell protection against oxidative stress. The present study is aimed at structural characterization of the E. coli protein with respect to its recently revealed oxidoreductase activity. Crystals of WrbA holoprotein in complex with the oxidized flavin cofactor (FMN) were obtained using standard vapour-diffusion techniques. Deep yellow tetragonal crystals obtained from differing crystallization conditions display different space groups and unit-cell parameters. X-ray crystal structures of the WrbA holoprotein have been determined to resolutions of 2.0 and 2.6 A.
Collapse
Affiliation(s)
- Julie Wolfová
- Institute of Physical Biology, University of South Bohemia České Budějovice, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
- Institute of Systems Biology and Ecology, v.v.i., Academy of Science of the Czech Republic, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
| | - Jeroen R. Mesters
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Jiří Brynda
- Institute of Physical Biology, University of South Bohemia České Budějovice, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-16637 Prague 6, Czech Republic
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Jannette Carey
- Chemistry Department, Princeton University, Washington Road and William Street, Princeton, NJ 08544-1009, USA
| | - Ivana Kutá Smatanová
- Institute of Physical Biology, University of South Bohemia České Budějovice, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
- Institute of Systems Biology and Ecology, v.v.i., Academy of Science of the Czech Republic, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
| |
Collapse
|
13
|
Jackson MJ, Pye D, Palomero J. The production of reactive oxygen and nitrogen species by skeletal muscle. J Appl Physiol (1985) 2006; 102:1664-70. [PMID: 17082364 DOI: 10.1152/japplphysiol.01102.2006] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle has been recognized as a potential source for generation of reactive oxygen and nitrogen species for more than 20 years. Initial investigations concentrated on the potential role of mitochondria as a major source for generation of superoxide as a "by-product" of normal oxidative metabolism, but recent studies have identified multiple subcellular sites, where superoxide or nitric oxide are generated in regulated and controlled systems in response to cellular stimuli. Full evaluation of the factors regulating these processes and the functions of the reactive oxygen species generated are important in understanding the redox biology of skeletal muscle.
Collapse
Affiliation(s)
- Malcolm J Jackson
- Division of Metabolic and Cellular Medicine, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | | | | |
Collapse
|
14
|
Knight SAB, Dancis A. Reduction of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) is dependent on CaFRE10 ferric reductase for Candida albicans grown in unbuffered media. MICROBIOLOGY-SGM 2006; 152:2301-2308. [PMID: 16849796 DOI: 10.1099/mic.0.28843-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The reduction of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (XTT) and other tetrazolium salts is widely used as an assay for bacterial, fungal and mammalian cell viability, but the genes encoding the reductase activities have not been defined. Here, it was shown that XTT and plasma membrane ferric reductase activities were 10-40-fold greater in Candida albicans than in Saccharomyces cerevisiae. XTT reductase activity was induced fivefold in C. albicans grown in low-iron conditions compared with iron-replete conditions, and for cells grown in unbuffered (pH 4.0-4.4) medium, XTT reductase activity was largely dependent on CaFRE10. XTT reductase activity of C. albicans grown in medium buffered to pH 6.8 was independent of CaFRE10 but, nonetheless, was upregulated in cells deprived of iron. Reduction of 2-(4,5-dimethyl-2-thiazolyl)-3,5-diphenyl-2H-tetrazolium bromide (MTT), a membrane-permeable tetrazolium salt, occurred at an intracellular location and was independent of CaFRE10. However, MTT activity was induced by iron deprivation in C. albicans but not in S. cerevisiae. C. albicans possessed multiple iron- and pH-regulated reductase activities capable of reducing tetrazolium salts, but, when grown in unbuffered medium, CaFRE10 was required for XTT reductase activity.
Collapse
Affiliation(s)
- Simon A B Knight
- University of Pennsylvania School of Medicine, Department of Medicine, Division of Hematology/Oncology, 730 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | - Andrew Dancis
- University of Pennsylvania School of Medicine, Department of Medicine, Division of Hematology/Oncology, 730 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
15
|
Patridge EV, Ferry JG. WrbA from Escherichia coli and Archaeoglobus fulgidus is an NAD(P)H:quinone oxidoreductase. J Bacteriol 2006; 188:3498-506. [PMID: 16672604 PMCID: PMC1482846 DOI: 10.1128/jb.188.10.3498-3506.2006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
WrbA (tryptophan [W] repressor-binding protein) was discovered in Escherichia coli, where it was proposed to play a role in regulation of the tryptophan operon; however, this has been put in question, leaving the function unknown. Here we report a phylogenetic analysis of 30 sequences which indicated that WrbA is the prototype of a distinct family of flavoproteins which exists in a diversity of cell types across all three domains of life and includes documented NAD(P)H:quinone oxidoreductases (NQOs) from the Fungi and Viridiplantae kingdoms. Biochemical characterization of the prototypic WrbA protein from E. coli and WrbA from Archaeoglobus fulgidus, a hyperthermophilic species from the Archaea domain, shows that these enzymes have NQO activity, suggesting that this activity is a defining characteristic of the WrbA family that we designate a new type of NQO (type IV). For E. coli WrbA, the K(m)(NADH) was 14 +/- 0.43 microM and the K(m)(benzoquinone) was 5.8 +/- 0.12 microM. For A. fulgidus WrbA, the K(m)(NADH) was 19 +/- 1.7 microM and the K(m)(benzoquinone) was 37 +/- 3.6 microM. Both enzymes were found to be homodimeric by gel filtration chromatography and homotetrameric by dynamic light scattering and to contain one flavin mononucleotide molecule per monomer. The NQO activity of each enzyme is retained over a broad pH range, and apparent initial velocities indicate that maximal activities are comparable to the optimum growth temperature for the respective organisms. The results are discussed and implicate WrbA in the two-electron reduction of quinones, protecting against oxidative stress.
Collapse
Affiliation(s)
- Eric V Patridge
- Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, 16802-4500, USA
| | | |
Collapse
|
16
|
Galati G, Lin A, Sultan AM, O'Brien PJ. Cellular and in vivo hepatotoxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med 2006; 40:570-80. [PMID: 16458187 DOI: 10.1016/j.freeradbiomed.2005.09.014] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 08/23/2005] [Accepted: 09/08/2005] [Indexed: 02/07/2023]
Abstract
Tea phenolic acids and catechins containing gallic acid moieties are most abundant in green tea, and various medical benefits have been proposed from their consumption. In the following, the cytotoxicities of these major tea phenolics toward isolated rat hepatocytes have been ranked and the mechanisms of cytotoxicity evaluated. The order of cytotoxic effectiveness found was epigallocatechin-3-gallate>propyl gallate>epicatechin-3-gallate>gallic acid, epigallocatechin>epicatechin. Using gallic acid as a model tea phenolic and comparing it with the tea catechins and gallic acid-derivative food supplements, the major cytotoxic mechanism found with hepatocytes was mitochondrial membrane potential collapse and ROS formation. Epigallocatechin-3-gallate was also the most effective at collapsing the mitochondrial membrane potential and inducing ROS formation. Liver injury was also observed in vivo when these tea phenolics were administered ip to mice, as plasma alanine aminotransferase levels were significantly increased. In contrast, GSH conjugation, methylation, metabolism by NAD(P)H:quinone oxidoreductase 1, and formation of an iron complex were important in detoxifying the gallic acid. In addition, for the first time, the GSH conjugates of gallic acid and epigallocatechin-3-gallate have been identified using mass spectrometry. These results add insight into the cytotoxic and cytoprotective mechanisms of the simple tea phenolic acids and the more complex tea catechins.
Collapse
Affiliation(s)
- Giuseppe Galati
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
17
|
Kasparová S, Sumbalová Z, Bystrický P, Kucharská J, Liptaj T, Mlynárik V, Gvozdjáková A. Effect of coenzyme Q10 and vitamin E on brain energy metabolism in the animal model of Huntington's disease. Neurochem Int 2005; 48:93-9. [PMID: 16290265 DOI: 10.1016/j.neuint.2005.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 09/15/2005] [Indexed: 11/24/2022]
Abstract
The neuropathological and clinical symptoms of Huntington's disease (HD) can be simulated in animal model with systemic administration of 3-nitropropionic acid (3-NP). Energy defects in HD could be ameliorated by administration of coenzyme Q(10) (CoQ(10)), creatine, or nicotinamid. We studied the activity of creatine kinase (CK) and the function of mitochondrial respiratory chain in the brain of aged rats administered with 3-NP with and without previous application of antioxidants CoQ(10)+vitamin E. We used dynamic and steady-state methods of in vivo phosphorus magnetic resonance spectroscopy ((31)P MRS) for determination of the pseudo-first order rate constant (k(for)) of the forward CK reaction, the phosphocreatine (PCr) to adenosinetriphosphate (ATP) ratio, intracellular pH(i) and Mg(i)(2+) content in the brain. The respiratory chain function of isolated mitochondria was assessed polarographically; the concentration of CoQ(10) and alpha-tocopherol by HPLC. We found significant elevation of k(for) in brains of 3-NP rats, reflecting increased rate of CK reaction in cytosol. The function of respiratory chain in the presence of succinate was severely diminished. The activity of cytochromeoxidase and mitochondrial concentration of CoQ(10) was unaltered; tissue content of CoQ(10) was decreased in 3-NP rats. Antioxidants CoQ(10)+vitamin E prevented increase of k(for) and the decrease of CoQ(10) content in brain tissue, but were ineffective to prevent the decline of respiratory chain function. We suppose that increased activity of CK system could be compensatory to decreased mitochondrial ATP production, and CoQ(10)+vitamin E could prevent the increase of k(for) after 3-NP treatment likely by activity of CoQ(10) outside the mitochondria. Results of our experiments contributed to elucidation of mechanism of beneficial effect of CoQ(10) administration in HD and showed that the rate constant of CK is a sensitive indicator of brain energy disorder reflecting therapeutic effect of drugs that could be used as a new in vivo biomarker of neurodegenerative diseases.
Collapse
Affiliation(s)
- Svatava Kasparová
- Central Laboratory of NMR Spectroscopy, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Orczyk J, Morré DM, Morré DJ. Periodic fluctuations in oxygen consumption comparing HeLa (cancer) and CHO (non-cancer) cells and response to external NAD(P)+/NAD(P)H. Mol Cell Biochem 2005; 273:161-7. [PMID: 16013451 DOI: 10.1007/s11010-005-0326-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oxygen consumption in the presence of cyanide was utilized as a measure of plasma membrane electron transport in Chinese hamster ovary (CHO) and human cervical carcinoma (HeLa) cell lines. Both intact cells and isolated plasma membranes carry cyanide-insensitive NADH(P)H oxidases at their external membrane surfaces (designated ECTO-NOX proteins). Regular oscillatory patterns of oxygen consumption with period lengths characteristic of those observed for rates of NADH oxidation by ECTO-NOX proteins were observed to provide evidence for transfer of protons and electrons to reduce oxygen to water. The oscillations plus the resistance to inhibition by cyanide identify the bulk of the oxygen consumption as due to ECTO-NOX proteins. With intact CHO cells, oxygen consumption was enhanced by but not dependent upon external NAD(P)H addition. With intact HeLa cells, oxygen consumption was inhibited by both NADH and NAD+ as was growth. The results suggest that plasma membrane electron transport from internal donors to oxygen as an external acceptor is mediated through ECTO-NOX proteins and that electron transport to molecular oxygen may be differentially affected by external pyridine nucleotides depending on cell type.
Collapse
Affiliation(s)
- John Orczyk
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907-2064, USA
| | | | | |
Collapse
|
19
|
Scarlett DJG, Herst PM, Berridge MV. Multiple proteins with single activities or a single protein with multiple activities: the conundrum of cell surface NADH oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:108-19. [PMID: 15882838 DOI: 10.1016/j.bbabio.2005.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Revised: 03/13/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Reduction of the cell-impermeable tetrazolium salt WST-1 has been used to characterise two plasma membrane NADH oxidoreductase activities in human cells. The trans activity, measured with WST-1 and the intermediate electron acceptor mPMS, utilises reducing equivalents from intracellular sources, while the surface activity, measured with WST-1 and extracellular NADH, is independent of intracellular metabolism. Whether these two activities involve distinct proteins or are inherent to a single protein is unclear. In this work, we have attempted to address this question by examining the relationship between the trans and surface WST-1-reducing activities and a third well-characterised family of cell surface oxidases, the ECTO-NOX proteins. Using blue native-polyacrylamide gel electrophoresis, we have identified a complex in the plasma membranes of human 143B osteosarcoma cells responsible for the NADH-dependent reduction of WST-1. The dye-reducing activity of the 300 kDa complex was attributed to a 70 kDa NADH oxidoreductase activity that cross-reacted with antisera against the ECTO-NOX protein CNOX. Differences in enzyme activities and inhibitor profiles between the WST-1-reducing NADH oxidoreductase enzyme in the presence of NADH or mPMS and the ECTO-NOX family are reconciled in terms of the different purification methods and assay systems used to study these proteins.
Collapse
|
20
|
Markert C, Morré DM, Morré DJ. Human amyloid peptides Abeta1-40 and Abeta1-42 exhibit NADH oxidase activity with copper-induced oscillations and a period length of 24 min. Biofactors 2004; 20:207-21. [PMID: 15706058 DOI: 10.1002/biof.5520200405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human amyloid beta peptides Abeta1-40 and Abeta1-42 exhibit NADH oxidase activity with regular oscillations at intervals of ca 6 min. In the presence of copper, the oscillations in Abeta1-40 and Abeta1-42 become more pronounced and now assume a period length of 24 min. In the presence of copper, the oscillations are similar to those observed with NADH oxidase activities of cell surface ECTO-NOX proteins in general including a period length of 24 min. Solutions of copper sulphate in the presence of all the reagents except for the peptides did not exhibit the oscillatory behavior. NOX proteins have been reported previously to have properties of prions and to form amyloid rods of indeterminant length similar to those formed by the 39-43 residue amyloid beta proteins (Abeta). In this report, we demonstrate a second similarity between ECTO-NOX proteins and amyloid beta, that of an oscillating NADH oxidase activity with a period length of 24 min when assayed in the presence of copper.
Collapse
Affiliation(s)
- Claudia Markert
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
21
|
Deleonardi G, Biondi A, D'Aurelio M, Pich MM, Stankov K, Falasca A, Formiggini G, Bovina C, Romeo G, Lenaz G. Plasma membrane oxidoreductase activity in cultured cells in relation to mitochondrial function and oxidative stress. Biofactors 2004; 20:251-8. [PMID: 15706061 DOI: 10.1002/biof.5520200408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dichlorophenol indophenol (DCIP) reduction by intracellualr pyridine nucleotides was investigated in two different lines of cultured cells characterized by enhanced production of reacive oxygen species (ROS) with respect to suitable controls. The first line denominated XTC-UC1 was derived from a metastasis of an oxyphilic thyroid tumor characterized by mitochondrial hyperplasia and compared with a line (B-CPAP) derived from a papillary thyroid carcinoma with normal mitochondrial mass. The second line (170 MN) was a cybrid line derived from rho0 cells from an osteosarcoma line (143B) fused with platelets from a patient with a nucleotide 9957 mutation in mitochondrial DNA (encoding for cytochrome c oxidase subunit III) in comparison with the parent 143B line. The experimental lines had no major decreases of electron transfer activities with respect to the controls; both of them, however, exhibited an increased peroxide production. The XTC-UC1 cell line exhibited enhanced activity with respect to control of dicoumarol-sensitive DCIP reduction, identified with membrane bound DT-diaphorase, whereas dicoumarol insensitive DCIP reduction was not significantly changed. On the other hand the mtDNA mutated cybrids exhibited a strong increase of both dicoumarol sensitive and insensitive DCIP reduction. The results suggest that enhanced oxidative stress and not deficient respiratory activity per se is the stimulus triggering over-expression of plasma membrane oxidative enzymes.
Collapse
Affiliation(s)
- Giulia Deleonardi
- Dipartimento di Biochimica, Università di Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|