1
|
Biswas S, Das R, Ray Banerjee E. Role of free radicals in human inflammatory diseases. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.596] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
2
|
Smith DG, Magwere T, Burchill SA. Oxidative stress and therapeutic opportunities: focus on the Ewing's sarcoma family of tumors. Expert Rev Anticancer Ther 2011; 11:229-49. [PMID: 21342042 DOI: 10.1586/era.10.224] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are highly reactive by-products of energy production that can have detrimental as well as beneficial effects. Unchecked, high levels of ROS result in an imbalance of cellular redox state and oxidative stress. High levels of ROS have been detected in most cancers, where they promote tumor development and progression. Many anticancer agents work by further increasing cellular levels of ROS, to overcome the antioxidant detoxification capacity of the cancer cell and induce cell death. However, adaptation of the level of cellular antioxidants can lead to drug resistance. The challenge for the design of effective cancer therapeutics exploiting oxidative stress is to tip the cellular redox balance to induce ROS-dependent cell death but without increasing the antioxidant activity of the cancer cell or inducing toxicity in normal cells.
Collapse
Affiliation(s)
- Danielle G Smith
- Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | | | | |
Collapse
|
3
|
Transglutaminase 2 suppresses apoptosis by modulating caspase 3 and NF-kappaB activity in hypoxic tumor cells. Oncogene 2009; 29:356-67. [PMID: 19838207 DOI: 10.1038/onc.2009.342] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The expression of hypoxia-inducible factor-1 (HIF-1) correlates with poor clinical outcomes and confers resistance to the apoptosis of the tumor cells that are exposed to hypoxia. Presently, the mechanism underlying this phenomenon is poorly understood. In this study we provide evidence that transglutaminase 2 (TG2), an enzyme that catalyses protein crosslinking reactions, is a transcriptional target of HIF-1 to enhance the survival of hypoxic cells. We found that hypoxia induces TG2 expression through an HIF-1 dependent pathway and concurrently activates intracellular TG2. The hypoxic cells overexpressing TG2 showed resistance to apoptosis. Conversely, the hypoxic cells treated with either TG2 inhibitor or small interfering RNA (siRNA) became sensitive to apoptosis. Activation of TG2 in response to hypoxic stress inhibited caspase-3 activity by forming crosslinked multimer, resulting in insoluble aggregates. TG2 also activates nuclear factor (NF)-kappaB pathway after hypoxic stress, and thereby induces the expression of cellular inhibitor of apoptosis 2. The anti-apoptotic role of TG2 was further confirmed in vivo using xenografts in athymic mice. Our results indicate that TG2 is an anti-apoptotic mediator of HIF-1 through modulating both apoptosis and survival pathways and may confer a selective growth advantage to tumor cells. These findings suggest that the inhibition of TG2 may offer a novel strategy for anticancer therapy.
Collapse
|
4
|
Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab 2009; 20:332-40. [PMID: 19733481 DOI: 10.1016/j.tem.2009.04.001] [Citation(s) in RCA: 349] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/17/2022]
Abstract
Most reactive oxygen species (ROS) are generated in cells by the mitochondrial respiratory chain. Mitochondrial ROS production is modulated largely by the rate of electron flow through respiratory chain complexes. Recently, it has become clear that under hypoxic conditions, the mitochondrial respiratory chain also produces nitric oxide (NO), which can generate other reactive nitrogen species (RNS). Although excess ROS and RNS can lead to oxidative and nitrosative stress, moderate to low levels of both function in cellular signaling pathways. Especially important are the roles of these mitochondrially generated free radicals in hypoxic signaling pathways, which have important implications for cancer, inflammation and a variety of other diseases.
Collapse
Affiliation(s)
- Robert O Poyton
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | |
Collapse
|
5
|
Woo DK, Poyton RO. The absence of a mitochondrial genome in rho0 yeast cells extends lifespan independently of retrograde regulation. Exp Gerontol 2009; 44:390-7. [PMID: 19285548 DOI: 10.1016/j.exger.2009.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/26/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
The absence of mtDNA in rho0 yeast cells affects both respiration and mitochondrial-nuclear communication (e.g., retrograde regulation, intergenomic signaling, or pleiotropic drug resistance). Previously, it has been reported that some rho0 strains have increased replicative lifespans, attributable to the lack of respiration and retrograde regulation. Here, we have been able to confirm that rho0 cells exhibit increased replicative lifespans but have found that this is not associated with the lack of respiration or reduced oxidative stress but instead, is related to the lack of mtDNA per se in rho0 cells. Also, we find no correlation between the strength of retrograde regulation and lifespan. Furthermore, we find that pdr3- or rtg2- mutations are not responsible for lifespan extension in rho0 cells, ruling out a specific role for PDR3-pleiotropic drug resistance or RGT2-retrograde regulation pathways in the extended lifespans of rho0 cells. Surprisingly, Rtg3p, which acts downstream of Rtg2p, is required for lifespan increase in rho0 cells. Together, these findings indicate that the loss of mtDNA per se and not the lack of respiration lead to extended longevity in rho0 cells. They also suggest that Rtg3p, acting independently of retrograde regulation, mediates this effect, possibly via intergenomic signaling.
Collapse
Affiliation(s)
- Dong Kyun Woo
- The Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
6
|
Woo DK, Phang TL, Trawick JD, Poyton RO. Multiple pathways of mitochondrial-nuclear communication in yeast: Intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:135-45. [DOI: 10.1016/j.bbagrm.2008.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/14/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
|
7
|
Chen S, He Q, Greenberg ML. Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth. Mol Microbiol 2008; 68:1061-72. [PMID: 18430085 DOI: 10.1111/j.1365-2958.2008.06216.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tafazzin (TAZ) gene is highly conserved from yeast to humans, and the yeast taz1 null mutant shows alterations in cardiolipin (CL) metabolism, mitochondrial dysfunction and stabilization of supercomplexes similar to those found in Barth syndrome, a human disorder resulting from loss of tafazzin. We have previously shown that the yeast tafazzin mutant taz1Delta, which cannot remodel CL, is ethanol-sensitive at elevated temperature. In the current report, we show that in response to ethanol, CL mutants taz1Delta as well as crd1Delta, which cannot synthesize CL, exhibited increased protein carbonylation, an indicator of reactive oxygen species (ROS). The increase in ROS is most likely not due to defective oxidant defence systems, as the CL mutants do not display sensitivity to paraquat, menadione or hydrogen peroxide (H2O2). Ethanol sensitivity and increased protein carbonylation in the taz1Delta mutant but not in crd1Delta can be rescued by supplementation with oleic acid, suggesting that oleoyl-CL and/or oleoyl-monolyso-CL enables growth of taz1Delta in ethanol by decreasing oxidative stress. Our findings of increased oxidative stress in the taz1Delta mutant during respiratory growth may have important implications for understanding the pathogenesis of Barth syndrome.
Collapse
Affiliation(s)
- Shuliang Chen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
8
|
Tarrío N, García-Leiro A, Cerdán ME, González-Siso MI. The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 2008; 8:597-606. [PMID: 18318708 DOI: 10.1111/j.1567-1364.2008.00366.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The phosphoglucose isomerase mutant of the respiratory yeast Kluyveromyces lactis (rag2) is forced to metabolize glucose through the oxidative pentose phosphate pathway and shows an increased respiratory chain activity and reactive oxygen species production. We have proved that the K. lactis rag2 mutant is more resistant to oxidative stress (OS) than the wild type, and higher activities of glutathione reductase (GLR) and catalase contribute to this phenotype. Resistance to OS of the rag2 mutant is reduced when the gene encoding GLR is deleted. The reduction is higher when, in addition, catalase activity is inhibited. In K. lactis, catalase activity is induced by peroxide-mediated OS but GLR is not. We have found that the increase of GLR activity is correlated with that of glucose-6-phosphate dehydrogenase (G6PDH) activity that produces NADPH. G6PDH is positively regulated by an active respiratory chain and GLR plays a role in the reoxidation of the NADPH from the pentose phosphate pathway in these conditions. Cytosolic NADPH is also used by mitochondrial external alternative dehydrogenases. Neither GLR overexpression nor induction of the OS response restores growth on glucose of the rag2 mutant when the mitochondrial reoxidation of cytosolic NADPH is blocked.
Collapse
Affiliation(s)
- Nuria Tarrío
- Department of Molecular and Cell Biology, University of A Coruña, A Coruña, Spain
| | | | | | | |
Collapse
|
9
|
Lai LC, Kosorukoff AL, Burke PV, Kwast KE. Metabolic-state-dependent remodeling of the transcriptome in response to anoxia and subsequent reoxygenation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:1468-89. [PMID: 16963631 PMCID: PMC1563586 DOI: 10.1128/ec.00107-06] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We conducted a comprehensive genomic analysis of the temporal response of yeast to anaerobiosis (six generations) and subsequent aerobic recovery ( approximately 2 generations) to reveal metabolic-state (galactose versus glucose)-dependent differences in gene network activity and function. Analysis of variance showed that far fewer genes responded (raw P value of <or=10(-8)) to the O(2) shifts in glucose (1,603 genes) than in galactose (2,388 genes). Gene network analysis reveals that this difference is due largely to the failure of "stress"-activated networks controlled by Msn2/4, Fhl1, MCB, SCB, PAC, and RRPE to transiently respond to the shift to anaerobiosis in glucose as they did in galactose. After approximately 1 generation of anaerobiosis, the response was similar in both media, beginning with the deactivation of Hap1 and Hap2/3/4/5 networks involved in mitochondrial functions and the concomitant derepression of Rox1-regulated networks for carbohydrate catabolism and redox regulation and ending (>or=2 generations) with the activation of Upc2- and Mot3-regulated networks involved in sterol and cell wall homeostasis. The response to reoxygenation was rapid (<5 min) and similar in both media, dominated by Yap1 networks involved in oxidative stress/redox regulation and the concomitant activation of heme-regulated ones. Our analyses revealed extensive networks of genes subject to combinatorial regulation by both heme-dependent (e.g., Hap1, Hap2/3/4/5, Rox1, Mot3, and Upc2) and heme-independent (e.g., Yap1, Skn7, and Puf3) factors under these conditions. We also uncover novel functions for several cis-regulatory sites and trans-acting factors and define functional regulons involved in the physiological acclimatization to changes in oxygen availability.
Collapse
Affiliation(s)
- Liang-Chuan Lai
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 S. Goodwin Ave., Urbana, 61801, USA
| | | | | | | |
Collapse
|
10
|
David PS, Poyton RO. Effects of a transition from normoxia to anoxia on yeast cytochrome c oxidase and the mitochondrial respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:169-80. [PMID: 16084486 DOI: 10.1016/j.bbabio.2005.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 07/11/2005] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that the mitochondrial respiratory chain and cytochrome c oxidase participate in oxygen sensing and the induction of some hypoxic nuclear genes in eukaryotes. In addition, it has been proposed that mitochondrially-generated reactive oxygen and nitrogen species function as signals in a signaling pathway for the induction of hypoxic genes. To gain insight concerning this pathway, we have looked at changes in the functionality of the yeast respiratory chain as cells experience a shift from normoxia to anoxia. These studies have revealed that yeast cells retain the ability to respire at normoxic levels for up to 4 h after a shift and that the mitochondrial cytochrome levels drop rapidly to 30--50% of their normoxic levels and the turnover rate of cytochrome c oxidase (COX) increases during this shift. The increase in COX turnover rate cannot be explained by replacing the aerobic isoform, Va, of cytochrome c oxidase subunit V with the more active hypoxic isoform, Vb. We have also found that mitochondria retain the ability to respire, albeit at reduced levels, in anoxic cells, indicating that yeast cells maintain a functional mitochondrial respiratory chain in the absence of oxygen. This raises the intriguing possibility that the mitochondrial respiratory chain has a previously unexplored role in anoxic cells and may function with an alternative electron acceptor when oxygen is unavailable.
Collapse
Affiliation(s)
- Pamela S David
- The Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | |
Collapse
|
11
|
O'Brien KM, Dirmeier R, Engle M, Poyton RO. Mitochondrial Protein Oxidation in Yeast Mutants Lacking Manganese-(MnSOD) or Copper- and Zinc-containing Superoxide Dismutase (CuZnSOD). J Biol Chem 2004; 279:51817-27. [PMID: 15385544 DOI: 10.1074/jbc.m405958200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae expresses two forms of superoxide dismutase (SOD): MnSOD, encoded by SOD2, which is located within the mitochondrial matrix, and CuZnSOD, encoded by SOD1, which is located in both the cytosol and the mitochondrial intermembrane space. Because two different SOD enzymes are located in the mitochondrion, we examined the relative roles of each in protecting mitochondria against oxidative stress. Using protein carbonylation as a measure of oxidative stress, we have found no correlation between overall levels of respiration and the level of oxidative mitochondrial protein damage in either wild type or sod mutant strains. Moreover, mitochondrial protein carbonylation levels in sod1, sod2, and sod1sod2 mutants are not elevated in cells harvested from mid-logarithmic and early stationary phases, suggesting that neither MnSOD nor CuZnSOD is required for protecting the majority of mitochondrial proteins from oxidative damage during these early phases of growth. During late stationary phase, mitochondrial protein carbonylation increases in all strains, particularly in sod1 and sod1sod2 mutants. By using matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we have found that specific proteins become carbonylated in sod1 and sod2 mutants. We identified six mitochondrial protein spots representing five unique proteins that become carbonylated in a sod1 mutant and 19 mitochondrial protein spots representing 11 unique proteins that become carbonylated in a sod2 mutant. Although some of the same proteins are carbonylated in both mutants, other proteins are not. These findings indicate that MnSOD and CuZnSOD have both unique and overlapping functions in the mitochondrion.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | |
Collapse
|