1
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
2
|
Petrukhin OV, Orlova TG, Nezvetsky AR, Orlov NY. Modeling of phototransduction processes in the photoreceptor disk membranes by the Monte Carlo method. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s000635091606021x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Garzón J, Rodríguez-Muñoz M, Vicente-Sánchez A, García-López MÁ, Martínez-Murillo R, Fischer T, Sánchez-Blázquez P. SUMO-SIM interactions regulate the activity of RGSZ2 proteins. PLoS One 2011; 6:e28557. [PMID: 22163035 PMCID: PMC3232247 DOI: 10.1371/journal.pone.0028557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
The RGSZ2 gene, a regulator of G protein signaling, has been implicated in cognition, Alzheimer's disease, panic disorder, schizophrenia and several human cancers. This 210 amino acid protein is a GTPase accelerating protein (GAP) on Gαi/o/z subunits, binds to the N terminal of neural nitric oxide synthase (nNOS) negatively regulating the production of nitric oxide, and binds to the histidine triad nucleotide-binding protein 1 at the C terminus of different G protein-coupled receptors (GPCRs). We now describe a novel regulatory mechanism of RGS GAP function through the covalent incorporation of Small Ubiquitin-like MOdifiers (SUMO) into RGSZ2 RGS box (RH) and the SUMO non covalent binding with SUMO-interacting motifs (SIM): one upstream of the RH and a second within this region. The covalent attachment of SUMO does not affect RGSZ2 binding to GPCR-activated GαGTP subunits but abolishes its GAP activity. By contrast, non-covalent binding of SUMO with RH SIM impedes RGSZ2 from interacting with GαGTP subunits. Binding of SUMO to the RGSZ2 SIM that lies outside the RH does not affect GαGTP binding or GAP activity, but it could lead to regulatory interactions with sumoylated proteins. Thus, sumoylation and SUMO-SIM interactions constitute a new regulatory mechanism of RGS GAP function and therefore of GPCR cell signaling as well.
Collapse
Affiliation(s)
- Javier Garzón
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
| | | | - Ana Vicente-Sánchez
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
| | | | | | - Thierry Fischer
- Department of Immunology and Oncology, National Centre of Biotechnology, CSIC, Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Guo LW, Ruoho AE. N-terminal half of the cGMP phosphodiesterase gamma-subunit contributes to stabilization of the GTPase-accelerating protein complex. J Biol Chem 2011; 286:15260-7. [PMID: 21393250 DOI: 10.1074/jbc.m110.210567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the visual signal terminating transition state, the cyclic GMP phosphodiesterase (PDE6) inhibitory γ-subunit (PDEγ) stimulates GTPase activity of the α-subunit of transducin (αt) by enhancing the interaction between αt and its regulator of G protein signaling (RGS9), which is constitutively bound to the type 5 G protein β-subunit (β5). Although it is known from a crystal structure of partial molecules that the PDEγ C terminus contacts with both αt and RGS9, contributions from the intrinsically disordered PDEγ N-terminal half remain unclear. In this study, we were able to investigate this issue using a photolabel transfer strategy that allows for mapping the interface of full-length proteins. We observed label transfer from PDEγ N-terminal positions 50, 30, and 16 to RGS9·β5 in the GTPase-accelerating protein (GAP) complex composed of PDEγ·αt·RGS9·β5. In support of a direct PDEγ N-terminal interaction with RGS9·β5, the PDEγ N-terminal peptide PDEγ(1-61) abolished label transfer to RGS9·β5, and another N-terminal peptide, PDEγ(10-30), disassembled the GAP complex in label transfer and pulldown experiments. Furthermore, we determined that the PDEγ C-terminal interaction with αt was enhanced whereas the N-terminal interaction was weakened upon changing the αt conformation from the signaling state to the transition state. This "rearrangement" of PDEγ domain interactions with αt appears to facilitate the interaction of the PDEγ N-terminal half with RGS9·β5 and hence its contribution to optimal stabilization of the GAP complex.
Collapse
Affiliation(s)
- Lian-Wang Guo
- Department of Pharmacology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
5
|
Membrane anchoring subunits specify selective regulation of RGS9·Gbeta5 GAP complex in photoreceptor neurons. J Neurosci 2010; 30:13784-93. [PMID: 20943919 DOI: 10.1523/jneurosci.1191-10.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The RGS9·Gβ5 complex is the key regulator of neuronal G-protein signaling and shows remarkable selectivity of subunit composition. In retinal photoreceptors, RGS9·Gβ5 is bound to the membrane anchor R9AP and the complex regulates visual signaling. In the basal ganglia neurons, RGS9·Gβ5 is instead associated with a homologous protein, R7BP, and regulates reward circuit. Switching this selective subunit composition of the complex in rod photoreceptors allowed us to study the molecular underpinning of signaling specificity in diverse G-protein pathways. We have found that both membrane anchoring subunits play a conserved role in regulating protein levels of RGS9·Gβ5 and enhancing the ability of RGS·Gβ5 complexes to stimulate GTPase activity of G proteins. However, notable differences exist in the subcellular targeting of alternatively configured complexes. Unlike R9AP, which relies on passive targeting mechanisms for the delivery to the outer segments of the photoreceptors, R7BP is excluded from this location and is instead specifically targeted to the plasma membrane. R7BP-containing complexes could be rerouted to the outer segments, where they are capable of regulating the phototransduction cascade by the active targeting signals derived from rhodopsin. These findings illustrate the diversity of the G-protein signaling regulation by RGS·Gβ5 complexes achieved by differential recruitment of the membrane anchors.
Collapse
|
6
|
Masuho I, Celver J, Kovoor A, Martemyanov KA. Membrane anchor R9AP potentiates GTPase-accelerating protein activity of RGS11 x Gbeta5 complex and accelerates inactivation of the mGluR6-G(o) signaling. J Biol Chem 2009; 285:4781-7. [PMID: 20007977 DOI: 10.1074/jbc.m109.058511] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R7 subfamily of RGS proteins critically regulates neuronal G protein-signaling pathways that are essential for vision, nociception, motor coordination, and reward processing. A member of the R7 RGS family, RGS11, is a GTPase-accelerating protein specifically expressed in retinal ON-bipolar cells where it forms complexes with the atypical G protein beta subunit, Gbeta(5), and transmembrane protein R9AP. Association with R9AP has been shown to be critical for the proteolytic stability of the complex in the retina. In this study we report that R9AP can in addition stimulate the GTPase-accelerating protein activity of the RGS11 x Gbeta(5) complex at Galpha(o). Single turnover GTPase assays reveal that R9AP co-localizes RGS11 x Gbeta(5) and Galpha(o) on the membrane and allosterically potentiates the GTPase-accelerating function of RGS11 x Gbeta(5). Reconstitution of mGluR6-Galpha(o) signaling in Xenopus oocytes indicates that RGS11 x Gbeta(5)-mediated GTPase acceleration in this system requires co-expression of R9AP. The results provide new insight into the regulation of mGluR6-Galpha(o) signaling by the RGS11 x Gbeta(5) x R9AP complex and establish R9AP as a general GTPase-accelerating protein activity regulator of R7 RGS complexes.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
7
|
The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem Biophys 2009; 54:33-46. [PMID: 19521673 DOI: 10.1007/s12013-009-9052-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 05/27/2009] [Indexed: 01/09/2023]
Abstract
G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits G beta(5), an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein-protein interactions, and physiological roles.
Collapse
|
8
|
Johnston CA, Lobanova ES, Shavkunov AS, Low J, Ramer JK, Blaesius R, Fredericks Z, Willard FS, Kuhlman B, Arshavsky VY, Siderovski DP. Minimal determinants for binding activated G alpha from the structure of a G alpha(i1)-peptide dimer. Biochemistry 2006; 45:11390-400. [PMID: 16981699 PMCID: PMC2597383 DOI: 10.1021/bi0613832] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-proteins cycle between an inactive GDP-bound state and an active GTP-bound state, serving as molecular switches that coordinate cellular signaling. We recently used phage display to identify a series of peptides that bind G alpha subunits in a nucleotide-dependent manner [Johnston, C. A., Willard, F. S., Jezyk, M. R., Fredericks, Z., Bodor, E. T., Jones, M. B., Blaesius, R., Watts, V. J., Harden, T. K., Sondek, J., Ramer, J. K., and Siderovski, D. P. (2005) Structure 13, 1069-1080]. Here we describe the structural features and functions of KB-1753, a peptide that binds selectively to GDP x AlF4(-)- and GTPgammaS-bound states of G alpha(i) subunits. KB-1753 blocks interaction of G alpha(transducin) with its effector, cGMP phosphodiesterase, and inhibits transducin-mediated activation of cGMP degradation. Additionally, KB-1753 interferes with RGS protein binding and resultant GAP activity. A fluorescent KB-1753 variant was found to act as a sensor for activated G alpha in vitro. The crystal structure of KB-1753 bound to G alpha(i1) x GDP x AlF4(-) reveals binding to a conserved hydrophobic groove between switch II and alpha3 helices and, along with supporting biochemical data and previous structural analyses, supports the notion that this is the site of effector interactions for G alpha(i) subunits.
Collapse
Affiliation(s)
- Christopher A. Johnston
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
| | - Ekaterina S. Lobanova
- Department of Ophthalmology and Neurobiology, Duke University, Durham, North Carolina 27710
| | - Alexander S. Shavkunov
- Department of Ophthalmology and Neurobiology, Duke University, Durham, North Carolina 27710
| | - Justin Low
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
| | - J. Kevin Ramer
- Department of Karo Bio USA, Durham, North Carolina 27703
| | | | | | - Francis S. Willard
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
| | - Brian Kuhlman
- Department of Biochemistry & Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
| | - Vadim Y. Arshavsky
- Department of Ophthalmology and Neurobiology, Duke University, Durham, North Carolina 27710
| | - David P. Siderovski
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365
- To whom correspondence should be addressed: UNC Pharmacology, 1106 M.E. Jones Bldg., Chapel Hill, NC 27599-7365. Telephone: 919-843-9363. Fax: 919-966-5640. E-mail:
| |
Collapse
|
9
|
Guo LW, Assadi-Porter FM, Grant JE, Wu H, Markley JL, Ruoho AE. One-step purification of bacterially expressed recombinant transducin alpha-subunit and isotopically labeled PDE6 gamma-subunit for NMR analysis. Protein Expr Purif 2006; 51:187-97. [PMID: 16938469 DOI: 10.1016/j.pep.2006.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 06/22/2006] [Accepted: 07/03/2006] [Indexed: 11/23/2022]
Abstract
Interactions between the transducin alpha-subunit (Galpha(t)) and the cGMP phosphodiesterase gamma-subunit (PDEgamma) are critical not only for turn-on but also turn-off of vertebrate visual signal transduction. Elucidation of the signaling mechanisms dominated by these interactions has been restrained by the lack of atomic structures for full-length Galpha(t)/PDEgamma complexes, in particular, the signaling-state complex represented by Galpha(t).GTPgammaS/PDEgamma. As a preliminary step in our effort for NMR structural analysis of Galpha(t)/PDEgamma interactions, we have developed efficient protocols for the large-scale production of recombinant Galpha(t) (rGalpha(t)) and homogeneous and functional isotopically labeled PDEgamma from Escherichia coli cells. One-step purification of rGalpha(t) was achieved through cobalt affinity chromatography in the presence of glycerol, which effectively removed the molecular chaperone DnaK that otherwise persistently co-purified with rGalpha(t). The purified rGalpha(t) was found to be functional in GTPgammaS/GDP exchange upon activation of rhodopsin and was used to form a signaling-state complex with labeled PDEgamma, rGalpha(t). GTPgammaS/[U-13C,15N]PDEgamma. The labeled PDEgamma sample yielded a well-resolved 1H-15N HSQC spectrum. The methods described here for large-scale production of homogeneous and functional rGalpha(t) and isotope-labeled PDEgamma should support further NMR structural analysis of the rGalpha(t)/PDEgamma complexes. In addition, our protocol for removing the co-purifying DnaK contaminant may be of general utility in purifying E. coli-expressed recombinant proteins.
Collapse
Affiliation(s)
- Lian-Wang Guo
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Grant JE, Guo LW, Vestling MM, Martemyanov KA, Arshavsky VY, Ruoho AE. The N terminus of GTP gamma S-activated transducin alpha-subunit interacts with the C terminus of the cGMP phosphodiesterase gamma-subunit. J Biol Chem 2006; 281:6194-202. [PMID: 16407279 DOI: 10.1074/jbc.m509511200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamic regulation of G-protein signaling in the phototransduction cascade ensures the high temporal resolution of vision. In a key step, the activated alpha-subunit of transducin (Galphat-GTP) activates the cGMP phosphodiesterase (PDE) by binding the inhibitory gamma-subunit (PDEgamma). Significant progress in understanding the interaction between Galphat and PDEgamma was achieved by solving the crystal structure of the PDEgamma C-terminal peptide bound to Galphat in the transition state for GTP hydrolysis (Slep, K. C., Kercher, M. A., He, W., Cowan, C. W., Wensel, T. G., and Sigler, P. B. (2001) Nature 409, 1071-1077). However, some of the structural elements of each molecule were absent in the crystal structure. We have probed the binding surface between the PDEgamma C terminus and activated Galphat bound to guanosine 5'-O-(3-thio)-triphosphate (GTPgammaS) using a series of full-length PDEgamma photoprobes generated by intein-mediated expressed protein ligation. For each of seven PDEgamma photoprobe species, expressed protein ligation allowed one benzoyl-L-phenylalaine substitution at selected hydrophobic C-terminal positions, and the addition of a biotin affinity tag at the extreme C terminus. We have detected photocross-linking from several PDEgamma C-terminal positions to the Galphat-GTPgammaS N terminus, particularly from PDEgamma residue 73. The overall percentage of cross-linking to the Galphat-GTPgammaSN terminus was analyzed using a far Western method for examining Galphat-GTPgammaS proteolytic digestion patterns. Furthermore, mass spectrometric analysis of cross-links to Galphat from a benzoyl-phenylalanine replacement at PDEgamma position 86 localized the region of photoinsertion to Galphat N-terminal residues Galphat-(22-26). This novel Galphat/PDEgamma interaction suggests that the transducin N terminus plays an active role in signal transduction.
Collapse
Affiliation(s)
- Jennifer E Grant
- Department of Pharmacology, University of Wisconsin Medical School, Madison, 53706, USA
| | | | | | | | | | | |
Collapse
|
11
|
Martemyanov KA, Yoo PJ, Skiba NP, Arshavsky VY. R7BP, a novel neuronal protein interacting with RGS proteins of the R7 family. J Biol Chem 2005; 280:5133-6. [PMID: 15632198 DOI: 10.1074/jbc.c400596200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The R7 subfamily of the regulators of G protein signaling (RGS) proteins is represented by four members broadly expressed in the mammalian nervous system. Here we report that in the brain all four R7 proteins form tight complexes with a previously unidentified protein, which we call the R7-binding protein or R7BP. We initially identified R7BP as a protein co-precipitating with the R7 protein, RGS9, from extracts obtained from the striatal region of the brain. We further showed that R7BP forms a tight complex with RGS9 in vitro and that this binding occurs via the N-terminal DEP domain of RGS9. R7BP is expressed throughout the entire central nervous system but not in any of the tested non-neuronal tissues. All four R7 RGS proteins co-precipitate with R7BP from brain extracts and recombinant R7 proteins bind recombinant R7BP with high efficiency. The closest homolog of R7BP is R9AP which was previously found to interact with RGS9 in photoreceptors. Both R7BP and R9AP are related to the syntaxin subfamily of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins involved in vesicular trafficking and exocytosis. In photoreceptors R9AP regulates several critical properties of RGS9 including its intracellular targeting, stability and catalytic activity. This suggests that R7BP interactions with R7 proteins in the brain may also bear major functional significance.
Collapse
Affiliation(s)
- Kirill A Martemyanov
- Department of Ophthalmology, Harvard Medical School and the Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA 02114, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Palmitoylation, the reversible, post-translational addition of palmitate to cysteine residues, occurs on several regulators of G-protein signaling (RGS) proteins. Palmitoylation can occur near the amino terminus, as for RGS4 and RGS16, but can also occur on a cysteine residue in the alpha4 helix of the RGS box, which is conserved in most RGS proteins. For some of the RGS proteins, palmitoylation is required to turn off G-protein signaling by accelerating GTP hydrolysis on the Galpha subunit. This article discusses the role of palmitoylation in RGS function and protocols are given for metabolic and in vitro labeling of RGS proteins with [3H]palmitate and measurement of GTP hydrolysis in membranes.
Collapse
Affiliation(s)
- Teresa L Z Jones
- Division of Diabetes, Endocrinology and Metabolism, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|