1
|
Luebbers A, Gonzalez-Hernandez AJ, Zhou M, Eyles SJ, Levitz J, Garcia-Marcos M. Dissecting the molecular basis for the modulation of neurotransmitter GPCR signaling by GINIP. Structure 2024; 32:47-59.e7. [PMID: 37989308 PMCID: PMC10872408 DOI: 10.1016/j.str.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/23/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
It is well established that G-protein-coupled receptors (GPCRs) stimulated by neurotransmitters are critical for neuromodulation. Much less is known about how heterotrimeric G-protein (Gαβγ) regulation after receptor-mediated activation contributes to neuromodulation. Recent evidence indicates that the neuronal protein GINIP shapes GPCR inhibitory neuromodulation via a unique mechanism of G-protein regulation that controls pain and seizure susceptibility. However, the molecular basis of this mechanism remains ill-defined because the structural determinants of GINIP responsible for binding and regulating G proteins are not known. Here, we combined hydrogen-deuterium exchange mass spectrometry, computational structure predictions, biochemistry, and cell-based biophysical assays to demonstrate an effector-like binding mode of GINIP to Gαi. Specific amino acids of GINIP's PHD domain first loop are essential for G-protein binding and subsequent regulation of Gαi-GTP and Gβγ signaling upon neurotransmitter GPCR stimulation. In summary, these findings shed light onto the molecular basis for a post-receptor mechanism of G-protein regulation that fine-tunes inhibitory neuromodulation.
Collapse
Affiliation(s)
- Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | | | - Myles Zhou
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Stephen J Eyles
- Mass Spectrometry Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10064, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA; Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Singh V, Katiyar A, Malik P, Kumar S, Mohan A, Singh H, Jain D. Identification of molecular biomarkers associated with non-small-cell lung carcinoma (NSCLC) using whole-exome sequencing. Cancer Biomark 2023:CBM220211. [PMID: 37694353 DOI: 10.3233/cbm-220211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
OBJECTIVES Significant progress has been made in the treatment of patients with pulmonary adenocarcinoma (ADCA) based on molecular profiling. However, no such molecular target exists for squamous cell carcinoma (SQCC). An exome sequence may provide new markers for personalized medicine for lung cancer patients of all subtypes. The current study aims to discover new genetic markers that can be used as universal biomarkers for non-small cell lung cancer (NSCLC). METHODS WES of 19 advanced NSCLC patients (10 ADCA and 9 SQCC) was performed using Illumina HiSeq 2000. Variant calling was performed using GATK HaplotypeCaller and then the impacts of variants on protein structure or function were predicted using SnpEff and ANNOVAR. The clinical impact of somatic variants in cancer was assessed using cancer archives. Somatic variants were further prioritized using a knowledge-driven variant interpretation approach. Sanger sequencing was used to validate functionally important variants. RESULTS We identified 24 rare single-nucleotide variants (SNVs) including 17 non-synonymous SNVs, and 7 INDELs in 18 genes possibly linked to lung carcinoma. Variants were classified as known somatic (n= 10), deleterious (n= 8), and variant of uncertain significance (n= 6). We found TBP and MPRIP genes exclusively associated with ADCA subtypes, FBOX6 with SQCC subtypes and GPRIN2, KCNJ18 and TEKT4 genes mutated in all the patients. The Sanger sequencing of 10 high-confidence somatic SNVs showed 100% concordance in 7 genes, and 80% concordance in the remaining 3 genes. CONCLUSIONS Our bioinformatics analysis identified KCNJ18, GPRIN2, TEKT4, HRNR, FOLR3, ESSRA, CTBP2, MPRIP, TBP, and FBXO6 may contribute to progression in NSCLC and could be used as new biomarkers for the treatment. The mechanism by which GPRIN2, KCNJ12, and TEKT4 contribute to tumorigenesis is unclear, but our results suggest they may play an important role in NSCLC and it is worth investigating in future.
Collapse
Affiliation(s)
- Varsha Singh
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Amit Katiyar
- Bioinformatics Facility, Centralized Core Research Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prabhat Malik
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sunil Kumar
- Department of Surgical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, Ansari Nagar, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Center, Division of Biomedical Informatics, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
3
|
Malik JA, Agrewala JN. Future perspectives of emerging novel drug targets and immunotherapies to control drug addiction. Int Immunopharmacol 2023; 119:110210. [PMID: 37099943 DOI: 10.1016/j.intimp.2023.110210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Substance Use Disorder (SUD) is one of the major mental illnesses that is terrifically intensifying worldwide. It is becoming overwhelming due to limited options for treatment. The complexity of addiction disorders is the main impediment to understanding the pathophysiology of the illness. Hence, unveiling the complexity of the brain through basic research, identification of novel signaling pathways, the discovery of new drug targets, and advancement in cutting-edge technologies will help control this disorder. Additionally, there is a great hope of controlling the SUDs through immunotherapeutic measures like therapeutic antibodies and vaccines. Vaccines have played a cardinal role in eliminating many diseases like polio, measles, and smallpox. Further, vaccines have controlled many diseases like cholera, dengue, diphtheria, Haemophilus influenza type b (Hib), human papillomavirus, influenza, Japanese encephalitis, etc. Recently, COVID-19 was controlled in many countries by vaccination. Currently, continuous effort is done to develop vaccines against nicotine, cocaine, morphine, methamphetamine, and heroin. Antibody therapy against SUDs is another important area where serious attention is required. Antibodies have contributed substantially against many serious diseases like diphtheria, rabies, Crohn's disease, asthma, rheumatoid arthritis, and bladder cancer. Antibody therapy is gaining immense momentum due to its success rate in cancer treatment. Furthermore, enormous advancement has been made in antibody therapy due to the generation of high-efficiency humanized antibodies with a long half-life. The advantage of antibody therapy is its instant outcome. This article's main highlight is discussing the drug targets of SUDs and their associated mechanisms. Importantly, we have also discussed the scope of prophylactic measures to eliminate drug dependence.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Javed N Agrewala
- Immunology laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
| |
Collapse
|
4
|
Luebbers A, Zhou M, Eyles SJ, Garcia-Marcos M. Dissecting the molecular basis for the modulation of neurotransmitter GPCR signaling by GINIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537566. [PMID: 37131787 PMCID: PMC10153262 DOI: 10.1101/2023.04.20.537566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is well-established that activation of heterotrimeric G-proteins (Gαβγ) by G-protein-coupled receptors (GPCRs) stimulated by neurotransmitters is a key mechanism underlying neuromodulation. Much less is known about how G-protein regulation after receptor-mediated activation contributes to neuromodulation. Recent evidence indicates that the neuronal protein GINIP shapes GPCR inhibitory neuromodulation via a unique mechanism of G-protein regulation that controls neurological processes like pain and seizure susceptibility. However, the molecular basis of this mechanism remains ill-defined because the structural determinants of GINIP responsible for binding Gαi subunits and regulating G-protein signaling are not known. Here, we combined hydrogen-deuterium exchange mass-spectrometry, protein folding predictions, bioluminescence resonance energy transfer assays, and biochemical experiments to identify the first loop of the PHD domain of GINIP as an obligatory requirement for Gαi binding. Surprisingly, our results support a model in which GINIP undergoes a long-range conformational change to accommodate Gαi binding to this loop. Using cell-based assays, we demonstrate that specific amino acids in the first loop of the PHD domain are essential for the regulation of Gαi-GTP and free Gβγ signaling upon neurotransmitter GPCR stimulation. In summary, these findings shed light onto the molecular basis for a post-receptor mechanism of G-protein regulation that fine-tunes inhibitory neuromodulation.
Collapse
Affiliation(s)
- Alex Luebbers
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Myles Zhou
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
| | - Stephen J Eyles
- Mass Spectrometry Core Facility, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA
- Department of Biology, College of Arts & Sciences, Boston University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Wang Y, Ma L, Xue P, Qin B, Wang T, Li B, Wu L, Zhao L, Liu X. Construction and Analysis of Hepatocellular Carcinoma Prognostic Model Based on Random Forest. Can J Gastroenterol Hepatol 2023; 2023:6707698. [PMID: 36685007 PMCID: PMC9851787 DOI: 10.1155/2023/6707698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Methods Transcriptome data and clinical data of HCC were downloaded from the TCGA database. Screen important genes based on the random forest method, combined with differential expression genes (DEGs) to screen out important DEGs. The Kaplan‒Meier curve was used to evaluate its prognostic significance. Cox regression analysis was used to construct a survival prognosis prediction model, and the ROC curve was used to verify it. Finally, the mechanism of action was explored through GO and KEGG pathway enrichment and GeneMANIA coexpression analyses. Results Seven important DEGs were identified, three were highly expressed and four were lowly expressed. Among them, GPRIN1, MYBL2, and GSTM5 were closely related to prognosis (P < 0.05). After the survival prognosis prediction model was established, the survival analysis showed that the survival time of the high-risk group was significantly shortened (P < 0.001), but the ROC analysis indicated that the model was not superior to staging. Twenty coexpressed genes were screened, and enrichment analysis indicated that glutathione metabolism was an important mechanism for these genes to regulate HCC progression. Conclusion This study revealed the important DEGs affecting HCC progression and provided references for clinical assessment of patient prognosis and exploration of HCC progression mechanisms through the construction of predictive models and gene enrichment analysis.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Le Ma
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Pengjun Xue
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Bianni Qin
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ting Wang
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Bo Li
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Lina Wu
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Liyan Zhao
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Xiongtao Liu
- Department of Operating Room, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
6
|
Cheron J, Kerchove d'Exaerde AD. Drug addiction: from bench to bedside. Transl Psychiatry 2021; 11:424. [PMID: 34385417 PMCID: PMC8361217 DOI: 10.1038/s41398-021-01542-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is responsible for millions of deaths per year around the world. Still, its management as a chronic disease is shadowed by misconceptions from the general public. Indeed, drug consumers are often labelled as "weak", "immoral" or "depraved". Consequently, drug addiction is often perceived as an individual problem and not societal. In technical terms, drug addiction is defined as a chronic, relapsing disease resulting from sustained effects of drugs on the brain. Through a better characterisation of the cerebral circuits involved, and the long-term modifications of the brain induced by addictive drugs administrations, first, we might be able to change the way the general public see the patient who is suffering from drug addiction, and second, we might be able to find new treatments to normalise the altered brain homeostasis. In this review, we synthetise the contribution of fundamental research to the understanding drug addiction and its contribution to potential novel therapeutics. Mostly based on drug-induced modifications of synaptic plasticity and epigenetic mechanisms (and their behavioural correlates) and after demonstration of their reversibility, we tried to highlight promising therapeutics. We also underline the specific temporal dynamics and psychosocial aspects of this complex psychiatric disease adding parameters to be considered in clinical trials and paving the way to test new therapeutic venues.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium.
| |
Collapse
|
7
|
Zhou W, Ding X, Jin P, Li P. miR-6838-5p Affects Cell Growth, Migration, and Invasion by Targeting GPRIN3 via the Wnt/β-Catenin Signaling Pathway in Gastric Cancer. Pathobiology 2020; 87:327-337. [PMID: 33254176 DOI: 10.1159/000511691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is a highly prevalent digestive malignant tumor, ranking second in the tumor-related mortality globally. The microRNAs have been confirmed to be connected with GC progression. Accumulative evidence has suggested that miR-6838-5p exerts a suppressive effect on human cancers. Nonetheless, whether miR-6838-5p is involved in the regulation of GC remains to be investigated. During our research, miR-6838-5p was downregulated in GC cells. Upregulated miR-6838-5p repressed GC cell cycle progression, proliferation, migration, and invasion. Furthermore, miR-6838-5p overexpression repressed the nuclear import of β-catenin, thus inactivating Wnt/β-catenin pathway. Moreover, we observed that GPRIN3 was targeted by miR-6838-5p in GC with luciferase reporter and RIP assays. GPRIN3 upregulation reversed the suppression of miR-6838-5p in GC cellular processes. These findings suggest miR-6838-5p restrains the malignant behaviors of GC cells via targeting GPRIN3 to repress Wnt/β-catenin signaling pathway, which may provide novel targets for GC treatment.
Collapse
Affiliation(s)
- Weidong Zhou
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
| | - Xiaoyun Ding
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Peihua Jin
- Department of Gastroenterology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No. 2 Hospital), Ningbo, China
| | - Peifei Li
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China,
| |
Collapse
|
8
|
Hussein D, Dallol A, Quintas R, Schulten HJ, Alomari M, Baeesa S, Bangash M, Alghamdi F, Khan I, ElAssouli MZM, Saka M, Carracedo A, Chaudhary A, Abuzenadah A. Overlapping variants in the blood, tissues and cell lines for patients with intracranial meningiomas are predominant in stem cell-related genes. Heliyon 2020; 6:e05632. [PMID: 33305042 PMCID: PMC7710648 DOI: 10.1016/j.heliyon.2020.e05632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Bulk tissue genomic analysis of meningiomas identified common somatic mutations, however, it often excluded blood-related variants. In contrast, genomic characterisation of primary cell lines that can provide critical information regarding growth and proliferation, have been rare. In our work, we identified the variants that are present in the blood, tissues and corresponding cell lines that are likely to be predictive, tumorigenic and progressive. METHOD Whole-exome sequencing was used to identify variants and distinguish related pathways that exist in 42 blood, tissues and corresponding cell lines (BTCs) samples for patients with intracranial meningiomas. Conventional sequencing was used for the confirmation of variants. Integrative analysis of the gene expression for the corresponding samples was utilised for further interpretations. RESULTS In total, 926 BTC variants were detected, implicating 845 genes. A pathway analysis of all BTC genes with damaging variants indicated the 'cell morphogenesis involved in differentiation' stem cell-related pathway to be the most frequently affected pathway. Concordantly, five stem cell-related genes, GPRIN2, ALDH3B2, ASPN, THSD7A and SIGLEC6, showed BTC variants in at least five of the patients. Variants that were heterozygous in the blood and homozygous in the tissues or the corresponding cell lines were rare (average: 1.3 ± 0.3%), and included variants in the RUNX2 and CCDC114 genes. An analysis comparing the variants detected only in tumours with aggressive features indicated a total of 240 BTC genes, implicating the 'homophilic cell adhesion via plasma membrane adhesion molecules' pathway, and identifying the stem cell-related transcription coactivator NCOA3/AIB1/SRC3 as the most frequent BTC gene. Further analysis of the possible impact of the poly-Q mutation present in the NCOA3 gene indicated associated deregulation of 15 genes, including the up-regulation of the stem cell related SEMA3D gene and the angiogenesis related VEGFA gene. CONCLUSION Stem cell-related pathways and genes showed high prevalence in the BTC variants, and novel variants in stem cell-related genes were identified for meningioma. These variants can potentially be used as predictive, tumorigenic and progressive biomarkers for meningioma.
Collapse
Affiliation(s)
- Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Ashraf Dallol
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rita Quintas
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Alomari
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Bangash
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alghamdi
- Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ishaq Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - M-Zaki Mustafa ElAssouli
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Mohamad Saka
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
| | - Angel Carracedo
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Galician Foundation of Genomic Medicine-SERGAS, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Adeel Chaudhary
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel Abuzenadah
- Neurooncology Translational Group, King Fahd Medical Research Center, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia
- Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Pujol CN, Dupuy V, Séveno M, Runtz L, Bockaert J, Marin P, Chaumont-Dubel S. Dynamic interactions of the 5-HT 6 receptor with protein partners control dendritic tree morphogenesis. Sci Signal 2020; 13:13/618/eaax9520. [PMID: 32047117 DOI: 10.1126/scisignal.aax9520] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The serotonin (5-hydroxytrypatmine) receptor 5-HT6 (5-HT6R) has emerged as a promising target to alleviate the cognitive symptoms of neurodevelopmental diseases. We previously demonstrated that 5-HT6R finely controls key neurodevelopmental steps, including neuronal migration and the initiation of neurite growth, through its interaction with cyclin-dependent kinase 5 (Cdk5). Here, we showed that 5-HT6R recruited G protein-regulated inducer of neurite outgrowth 1 (GPRIN1) through a Gs-dependent mechanism. Interactions between the receptor and either Cdk5 or GPRIN1 occurred sequentially during neuronal differentiation. The 5-HT6R-GPRIN1 interaction enhanced agonist-independent, receptor-stimulated cAMP production without altering the agonist-dependent response in NG108-15 neuroblastoma cells. This interaction also promoted neurite extension and branching in NG108-15 cells and primary mouse striatal neurons through a cAMP-dependent protein kinase A (PKA)-dependent mechanism. This study highlights the complex allosteric modulation of GPCRs by protein partners and demonstrates how dynamic interactions between GPCRs and their protein partners can control the different steps of highly coordinated cellular processes, such as dendritic tree morphogenesis.
Collapse
Affiliation(s)
- Camille N Pujol
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Martial Séveno
- BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Leonie Runtz
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.,Department of Psychiatry, McGill University, Douglas Hospital Research Center, Montreal, Canada
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
10
|
Stahel P, Nahmias A, Sud SK, Lee SJ, Pucci A, Yousseif A, Youseff A, Jackson T, Urbach DR, Okrainec A, Allard JP, Sockalingam S, Yao T, Barua M, Jiao H, Magi R, Bassett AS, Paterson AD, Dahlman I, Batterham RL, Dash S. Evaluation of the Genetic Association Between Adult Obesity and Neuropsychiatric Disease. Diabetes 2019; 68:2235-2246. [PMID: 31506345 DOI: 10.2337/db18-1254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/27/2019] [Indexed: 11/13/2022]
Abstract
Extreme obesity (EO) (BMI >50 kg/m2) is frequently associated with neuropsychiatric disease (NPD). As both EO and NPD are heritable central nervous system disorders, we assessed the prevalence of protein-truncating variants (PTVs) and copy number variants (CNVs) in genes/regions previously implicated in NPD in adults with EO (n = 149) referred for weight loss/bariatric surgery. We also assessed the prevalence of CNVs in patients referred to University College London Hospital (UCLH) with EO (n = 218) and obesity (O) (BMI 35-50 kg/m2; n = 374) and a Swedish cohort of participants from the community with predominantly O (n = 161). The prevalence of variants was compared with control subjects in the Exome Aggregation Consortium/Genome Aggregation Database. In the discovery cohort (high NPD prevalence: 77%), the cumulative PTV/CNV allele frequency (AF) was 7.7% vs. 2.6% in control subjects (odds ratio [OR] 3.1 [95% CI 2-4.1]; P < 0.0001). In the UCLH EO cohort (intermediate NPD prevalence: 47%), CNV AF (1.8% vs. 0.9% in control subjects; OR 1.95 [95% CI 0.96-3.93]; P = 0.06) was lower than the discovery cohort. CNV AF was not increased in the UCLH O cohort (0.8%). No CNVs were identified in the Swedish cohort with no NPD. These findings suggest that PTV/CNVs, in genes/regions previously associated with NPD, may contribute to NPD in patients with EO.
Collapse
Affiliation(s)
- Priska Stahel
- Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Avital Nahmias
- Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shawn K Sud
- Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - So Jeong Lee
- Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Pucci
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London, U.K
- UCLH Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital, London, U.K
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London, London, U.K
| | - Ahmed Yousseif
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London, U.K
- UCLH Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital, London, U.K
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London, London, U.K
| | - Alaa Youseff
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Timothy Jackson
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of General Surgery, University Health Network, Toronto, Ontario, Canada
| | - David R Urbach
- Division of General Surgery, University Health Network, Toronto, Ontario, Canada
| | - Allan Okrainec
- Division of General Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Johane P Allard
- Bariatric Surgery Department, Toronto Western Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sanjeev Sockalingam
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Centre for Mental Health, University Health Network, Toronto, Ontario, Canada
| | - Tony Yao
- Division of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Moumita Barua
- Division of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hong Jiao
- Division of Nephrology, Department of Medicine, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Reedik Magi
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anne S Bassett
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- The Dalglish Family 22q Clinic, University Health Network, Toronto, Ontario, Canada
- Clinical Genetics Research Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University Health Network, Toronto, Ontario, Canada
- Division of Cardiology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Andrew D Paterson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ingrid Dahlman
- Division of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Rachel L Batterham
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London, U.K
- UCLH Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital, London, U.K
- NIHR Biomedical Research Centre at University College London Hospitals NHS Foundation Trust and University College London, London, U.K
| | - Satya Dash
- Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
The 5-HT 6 receptor interactome: New insight in receptor signaling and its impact on brain physiology and pathologies. Neuropharmacology 2019; 172:107839. [PMID: 31682856 DOI: 10.1016/j.neuropharm.2019.107839] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023]
Abstract
The serotonin (5-HT)6 receptor is a Gs-coupled receptor exclusively expressed in the central nervous system. Highest receptor densities are found in brain regions implicated in mnemonic functions where the receptor is primarily but not exclusively located in the primary cilium of neurons. The 5-HT6 receptor continues to raise particular interest for neuropharmacologists, given the pro-cognitive effects of antagonists in a wide range of cognitive impairment paradigms in rodents and human. The 5-HT6 receptor also finely controls key neuro-developmental processes including neuron migration and differentiation. However, its influence upon neurodevelopment and cognition is not solely mediated by its coupling to the Gs-adenylyl cyclase pathway, suggesting alternative signal transduction mechanisms. This prompted studies aimed at characterizing the receptor interactome that identified 125 candidate receptor partners, making the 5-HT6 receptor one of the G protein-coupled receptors with the most extensively characterized interactome. These studies showed that the receptor localization at the plasma membrane and, consequently, its signal transduction, are finely modulated by several receptor partners. They demonstrated that prefrontal 5-HT6 receptors engage the mTOR pathway to compromise cognition in neurodevelopmental models of schizophrenia, and a role of the 5-HT6-mTOR pathway in temporal epilepsy. Finally, they revealed that the receptor activates Cdk5 signaling in an agonist-independent manner through a mechanism involving receptor phosphorylation by the associated Cdk5 and highlighted its key role in the migration of neurons and neurite growth. These new receptor-operated signaling mechanisms should be considered in the future development of drugs acting on 5-HT6 receptors. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
|
12
|
GPRIN3 Controls Neuronal Excitability, Morphology, and Striatal-Dependent Behaviors in the Indirect Pathway of the Striatum. J Neurosci 2019; 39:7513-7528. [PMID: 31363062 DOI: 10.1523/jneurosci.2454-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The regulation of the striatum by the GPCR signaling through neuromodulators is essential for its physiology and physiopathology, so it is necessary to know all the compounds of these pathways. In this study, we identified a new important partner of the dopaminergic pathway: GPRIN3 (a member of the GPRIN family). GPRIN3 is highly expressed in the striatum but with undefined function. Cell sorting of medium spiny neurons (MSNs) in indirect MSNs and direct MSNs indicated the presence of the GPRIN3 gene in both populations with a preferential expression in indirect MSNs. This led us to generate GPRIN3 KO mice by CRISPR/Cas9 and test male animals to access possible alterations in morphological, electrophysiological, and behavioral parameters following its absence. 3D reconstruction analysis of MSNs revealed increased neuronal arborization in GPRIN3 KO and modified passive and active electrophysiological properties. These cellular alterations were coupled with increased motivation and cocaine-induced hyperlocomotion. Additionally, using a specific indirect MSN knockdown, we showed a preferential role for GPRIN3 in indirect MSNs related to the D2R signaling. Together, these results show that GPRIN3 is a mediator of D2R function in the striatum playing a major role in striatal physiology.SIGNIFICANCE STATEMENT The striatum is the main input of the basal ganglia processing information from different brain regions through the combined actions of direct pathway neurons and indirect pathway neurons. Both neuronal populations are defined by the expression of dopamine D1R or D2R GPCRs, respectively. How these neurons signal to the respective G-protein is still debatable. Here we identified GPRIN3 as a putative selective controller of D2R function in the striatum playing a critical role in striatal-associated behaviors and cellular functions. This study represents the identification of a new target to tackle striatal dysfunction associated with the D2R, such as schizophrenia, Parkinson's disease, and drug addiction.
Collapse
|
13
|
Hernández-Plata E, Velázquez-Wong AC, Jiménez-Ramírez C, Fernández-Ramírez F, Galicia-Sánchez LM, Flores-García CA, Hernández-Hernández JM, Rosas-Vargas H, Huicochea-Montiel JC, Espinosa-Poblano E. Identification of genomic copy number variations in lung benign metastasizing leiomyomatosis. CLINICAL RESPIRATORY JOURNAL 2019; 13:105-113. [PMID: 30597752 DOI: 10.1111/crj.12987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/01/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Lung metastasizing leiomyomatosis (LML) is an infrequently diagnosed pathology developed after sexual maturation, commonly preceded by uterine myomas. Symptoms can include difficulties to breathe, cough, dyspnea and pain, because of mechanical obstruction exerted by expanding local growing leiomyomas. Lung leiomyomas are normally detected by imaging studies, but nowadays the precise diagnosis demands histological characterization of biopsies obtained from the affected tissues. The purpose of the present study was to determine the presence of genomic alterations in circulating cells of LML. METHODS Immunohistochemical characterization of a lung biopsy extracted by thoracoscopy was performed. Pathologic proliferative smooth muscle cells were observed in a major lung metastasizing nodule, with a growing pattern similar to a uterine myoma. The presence of cellular linages different to smooth muscle cells was discarded by testing the presence of a battery of molecular markers. Also, a normal karyotype was determine by GTG-banding cytogenetic study, but a high density microarray analysis revealed six submicroscopic chromosomal regions displaying genomic abnormalities: microduplications were detected on chromosomes 4, 14, 17 and 22; and microdeletions on chromosomes 8 and 10. CONCLUSION This study remarks the relevance of submicroscopic chromosomal analysis of unusual pathologic conditions such as Benign Metastasizing Leiomyomatosis. This propitiate a better understanding of the molecular basis on the development of the pathology, in order to reckon on minimally invasive diagnostic methods, and to design appropriate treatments.
Collapse
Affiliation(s)
- Everardo Hernández-Plata
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social IMSS, Ciudad de México, México.,Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, UNAM, Ciudad de México, México
| | - Ana Claudia Velázquez-Wong
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social IMSS, Ciudad de México, México
| | - Carmina Jiménez-Ramírez
- Unidad Médica de Alta Especialidad, Hospital de traumatología, Dr. Victorio de la Fuente Narváez Instituto Mexicano del Seguro Social IMSS, Ciudad de México, México
| | | | - Luz María Galicia-Sánchez
- Servicio de Neumología, Hospital de Cardiología, Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - César Antonio Flores-García
- Departamento de Patología, Unidad Médica de Alta Especialidad, Hospital de Cardiología del Centro Médico Nacional, Siglo XXI, IMSS, Ciudad de México, México
| | - José Manuel Hernández-Hernández
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social IMSS, Ciudad de México, México
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social IMSS, Ciudad de México, México
| | - Juan Carlos Huicochea-Montiel
- Departamento Clínico de Genética Médica, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Eliseo Espinosa-Poblano
- Servicio de Neumología, Unidad Médica de Alta Especialidad, Hospital de Especialidades del Centro Médico Nacional, Siglo XXI, IMSS, Ciudad de México, México
| |
Collapse
|
14
|
Mototani Y, Okamura T, Goto M, Shimizu Y, Yanobu-Takanashi R, Ito A, Kawamura N, Yagisawa Y, Umeki D, Nariyama M, Suita K, Ohnuki Y, Shiozawa K, Sahara Y, Kozasa T, Saeki Y, Okumura S. Role of G protein-regulated inducer of neurite outgrowth 3 (GRIN3) in β-arrestin 2-Akt signaling and dopaminergic behaviors. Pflugers Arch 2018; 470:937-947. [PMID: 29500670 DOI: 10.1007/s00424-018-2124-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/21/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
The G protein-regulated inducer of neurite growth (GRIN) family has three isoforms (GRIN1-3), which bind to the Gαi/o subfamily of G protein that mediate signal processing via G protein-coupled receptors (GPCRs). Here, we show that GRIN3 is involved in regulation of dopamine-dependent behaviors and is essential for activation of the dopamine receptors (DAR)-β-arrestin signaling cascade. Analysis of functional regions of GRIN3 showed that a di-cysteine motif (Cys751/752) is required for plasma membrane localization. GRIN3 was co-immunoprecipitated with GPCR kinases 2/6 and β-arrestins 1/2. Among GRINs, only GRIN3, which is highly expressed in striatum, strongly interacted with β-arrestin 2. We also generated GRIN3-knockout mice (GRIN3KO). GRIN3KO exhibited reduced locomotor activity and increased anxiety-like behavior in the elevated maze test, as well as a reduced locomoter response to dopamine stimulation. We also examined the phosphorylation of Akt at threonine 308 (phospho308-Akt), which is dephosphorylated via a β-arrestin 2-mediated pathway. Dephosphorylation of phospho308-Akt via the D2R-β-arrestin 2 signaling pathway was completely abolished in striatum of GRIN3KO. Our results suggest that GRIN3 has a role in recruitment and assembly of proteins involved in β-arrestin-dependent, G protein-independent signaling.
Collapse
Affiliation(s)
- Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Tadashi Okamura
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Motohito Goto
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yukiko Shimizu
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Rieko Yanobu-Takanashi
- Division of Animal Model, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Aiko Ito
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Yuka Yagisawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Daisuke Umeki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Megumi Nariyama
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.,Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, 230-8501, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Kouichi Shiozawa
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Yoshinori Sahara
- Department of Physiology, Iwate Medical University School of Dentistry, Morioka, 020-8505, Japan
| | - Tohru Kozasa
- Center for Drug Development, Yokohama University of Pharmacy, Yokohama, 245-0066, Japan
| | - Yasutake Saeki
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan.
| |
Collapse
|
15
|
Khalilipour N, Baranova A, Jebelli A, Heravi-Moussavi A, Bruskin S, Abbaszadegan MR. Familial Esophageal Squamous Cell Carcinoma with damaging rare/germline mutations in KCNJ12/KCNJ18 and GPRIN2 genes. Cancer Genet 2017; 221:46-52. [PMID: 29405996 DOI: 10.1016/j.cancergen.2017.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 11/12/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
In Iran, esophageal cancer is the fourth common cancers in women and sixth common cancers in men. Here we evaluated the importance of familial risk factors and the role of genetic predisposition in Esophageal Squamous Cell Carcinoma (ESCC) using Whole-Exome Sequencing (WES). Germline damaging mutations were identified in WES data from 9 probands of 9 unrelated ESCC pedigrees. Mutations were confirmed with Sanger sequencing and evaluated amplification-refractory mutation system-Polymerase Chain Reaction (ARMS-PCR) in 50 non-related ethnically matched samples and in complete genomics database. Sixteen candidate variants were detected in ESCC 9 probands. Four of these 16 variants were rare damaging mutations including novel mutations in KCNJ12/KCNJ18, and GPRIN2 genes. This WES study in Iranian patients with ESCC, provides insight into the identification of novel germline mutations in familial ESCC. Our data suggest an association between specific mutations and increased risk of ESCC.
Collapse
Affiliation(s)
- Narjes Khalilipour
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ancha Baranova
- Research Center for Medical Genetics RAMS, Moscow, Russia
| | - Amir Jebelli
- Stem Cell and Regenerative Medicine Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Mashhad, Iran
| | | | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Dennis MY, Harshman L, Nelson BJ, Penn O, Cantsilieris S, Huddleston J, Antonacci F, Penewit K, Denman L, Raja A, Baker C, Mark K, Malig M, Janke N, Espinoza C, Stessman HAF, Nuttle X, Hoekzema K, Lindsay-Graves TA, Wilson RK, Eichler EE. The evolution and population diversity of human-specific segmental duplications. Nat Ecol Evol 2017; 1:69. [PMID: 28580430 PMCID: PMC5450946 DOI: 10.1038/s41559-016-0069] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Segmental duplications contribute to human evolution, adaptation and genomic instability but are often poorly characterized. We investigate the evolution, genetic variation and coding potential of human-specific segmental duplications (HSDs). We identify 218 HSDs based on analysis of 322 deeply sequenced archaic and contemporary hominid genomes. We sequence 550 human and nonhuman primate genomic clones to reconstruct the evolution of the largest, most complex regions with protein-coding potential (n=80 genes/33 gene families). We show that HSDs are non-randomly organized, associate preferentially with ancestral ape duplications termed “core duplicons”, and evolved primarily in an interspersed inverted orientation. In addition to Homo sapiens-specific gene expansions (e.g., TCAF1/2), we highlight ten gene families (e.g., ARHGAP11B and SRGAP2C) where copy number never returns to the ancestral state, there is evidence of mRNA splicing, and no common gene-disruptive mutations are observed in the general population. Such duplicates are candidates for the evolution of human-specific adaptive traits.
Collapse
Affiliation(s)
- Megan Y Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA.,Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Lana Harshman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Bradley J Nelson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Osnat Penn
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - John Huddleston
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Francesca Antonacci
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", Bari 70125, Italy
| | - Kelsi Penewit
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Laura Denman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Archana Raja
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kenneth Mark
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Maika Malig
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Nicolette Janke
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Claudia Espinoza
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Holly A F Stessman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Xander Nuttle
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tina A Lindsay-Graves
- McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Richard K Wilson
- McDonnell Genome Institute at Washington University, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Kuemmerle JM, Theiss F, Okoniewski MJ, Weber FA, Hemmi S, Mirsaidi A, Richards PJ, Cinelli P. Identification of Novel Equine (Equus caballus) Tendon Markers Using RNA Sequencing. Genes (Basel) 2016; 7:genes7110097. [PMID: 27834918 PMCID: PMC5126783 DOI: 10.3390/genes7110097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
Although several tendon-selective genes exist, they are also expressed in other musculoskeletal tissues. As cell and tissue engineering is reliant on specific molecular markers to discriminate between cell types, tendon-specific genes need to be identified. In order to accomplish this, we have used RNA sequencing (RNA-seq) to compare gene expression between tendon, bone, cartilage and ligament from horses. We identified several tendon-selective gene markers, and established eyes absent homolog 2 (EYA2) and a G-protein regulated inducer of neurite outgrowth 3 (GPRIN3) as specific tendon markers using RT-qPCR. Equine tendon cells cultured as three-dimensional spheroids expressed significantly greater levels of EYA2 than GPRIN3, and stained positively for EYA2 using immunohistochemistry. EYA2 was also found in fibroblast-like cells within the tendon tissue matrix and in cells localized to the vascular endothelium. In summary, we have identified EYA2 and GPRIN3 as specific molecular markers of equine tendon as compared to bone, cartilage and ligament, and provide evidence for the use of EYA2 as an additional marker for tendon cells in vitro.
Collapse
Affiliation(s)
- Jan M Kuemmerle
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Felix Theiss
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Equine Hospital, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Michal J Okoniewski
- Scientific IT Services, Swiss Federal Institute of Technology, CH 8092 Zurich, Switzerland.
| | - Fabienne A Weber
- Institute of Laboratory Animal Science, University of Zurich, CH-8057 Zurich, Switzerland.
| | - Sonja Hemmi
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| | - Ali Mirsaidi
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Peter J Richards
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Paolo Cinelli
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, CH-8091 Zurich, Switzerland.
| |
Collapse
|
18
|
Contreras-Vallejos E, Utreras E, Bórquez DA, Prochazkova M, Terse A, Jaffe H, Toledo A, Arruti C, Pant HC, Kulkarni AB, González-Billault C. Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice. PLoS One 2014; 9:e90363. [PMID: 24658276 PMCID: PMC3962345 DOI: 10.1371/journal.pone.0090363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/28/2014] [Indexed: 01/07/2023] Open
Abstract
Protein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others. In search for novel substrates of Cdk5 in the brain we performed quantitative phosphoproteomics analysis, isolating phosphoproteins from whole brain derived from E18.5 Cdk5+/+ and Cdk5−/− embryos, using an Immobilized Metal-Ion Affinity Chromatography (IMAC), which specifically binds to phosphorylated proteins. The isolated phosphoproteins were eluted and isotopically labeled for relative and absolute quantitation (iTRAQ) and mass spectrometry identification. We found 40 proteins that showed decreased phosphorylation at Cdk5−/− brains. In addition, out of these 40 hypophosphorylated proteins we characterized two proteins, :MARCKS (Myristoylated Alanine-Rich protein Kinase C substrate) and Grin1 (G protein regulated inducer of neurite outgrowth 1). MARCKS is known to be phosphorylated by Cdk5 in chick neural cells while Grin1 has not been reported to be phosphorylated by Cdk5. When these proteins were overexpressed in N2A neuroblastoma cell line along with p35, serine phosphorylation in their Cdk5 motifs was found to be increased. In contrast, treatments with roscovitine, the Cdk5 inhibitor, resulted in an opposite effect on serine phosphorylation in N2A cells and primary hippocampal neurons transfected with MARCKS. In summary, the results presented here identify Grin 1 as novel Cdk5 substrate and confirm previously identified MARCKS as a a bona fide Cdk5 substrate.
Collapse
Affiliation(s)
- Erick Contreras-Vallejos
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Elías Utreras
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Daniel A. Bórquez
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Anita Terse
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
| | - Howard Jaffe
- Protein and Peptide Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Andrea Toledo
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cristina Arruti
- Laboratorio de Cultivo de Tejidos, Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD, USA
| | - Ashok B. Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda MD, USA
- * E-mail: (CGB); (ABK)
| | - Christian González-Billault
- Laboratory of Cellular and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail: (CGB); (ABK)
| |
Collapse
|
19
|
Chilian B, Abdollahpour H, Bierhals T, Haltrich I, Fekete G, Nagel I, Rosenberger G, Kutsche K. Dysfunction of SHANK2 and CHRNA7 in a patient with intellectual disability and language impairment supports genetic epistasis of the two loci. Clin Genet 2013; 84:560-5. [PMID: 23350639 DOI: 10.1111/cge.12105] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 01/15/2023]
Abstract
Synaptopathies constitute a group of neurological diseases including autism spectrum disorders (ASD) and intellectual disability (ID). They have been associated with mutations in genes encoding proteins important for the formation and stabilization of synapses, such as SHANK1-3. Loss-of-function mutations in the SHANK genes have been identified in individuals with ASD and ID suggesting that other factors modify the neurological phenotype. We report a boy with severe ID, behavioral anomalies, and language impairment who carries a balanced de novo triple translocation 46,XY,t(11;17;19)(q13.3;q25.1;q13.42). The 11q13.3 breakpoint was found to disrupt the SHANK2 gene. The patient also carries copy number variations at 15q13.3 and 10q22.11 encompassing ARHGAP11B and two synaptic genes. The CHRNA7 gene encoding α7-nicotinic acetylcholine receptor subunit and the GPRIN2 gene encoding G-protein-regulated inducer of neurite growth 2 were duplicated. Co-occurrence of a de novo SHANK2 mutation and a CHRNA7 duplication in two reported patients with ASD and ID as well as in the patient with t(11;17;19), severe ID and behavior problems suggests convergence of these genes on a common synaptic pathway. Our results strengthen the oligogenic inheritance model and highlight the presence of a large effect mutation and modifier genes collectively determining phenotypic expression of the synaptopathy.
Collapse
Affiliation(s)
- B Chilian
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Rankinen T, Sung YJ, Sarzynski MA, Rice TK, Rao DC, Bouchard C. Heritability of submaximal exercise heart rate response to exercise training is accounted for by nine SNPs. J Appl Physiol (1985) 2011; 112:892-7. [PMID: 22174390 DOI: 10.1152/japplphysiol.01287.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Endurance training-induced changes in hemodynamic traits are heritable. However, few genes associated with heart rate training responses have been identified. The purpose of our study was to perform a genome-wide association study to uncover DNA sequence variants associated with submaximal exercise heart rate training responses in the HERITAGE Family Study. Heart rate was measured during steady-state exercise at 50 W (HR50) on 2 separate days before and after a 20-wk endurance training program in 483 white subjects from 99 families. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. After quality control procedures, 320,000 single-nucleotide polymorphisms (SNPs) were available for the genome-wide association study analyses, which were performed using the MERLIN software package (single-SNP analyses and conditional heritability tests) and standard regression models (multivariate analyses). The strongest associations for HR50 training response adjusted for age, sex, body mass index, and baseline HR50 were detected with SNPs at the YWHAQ locus on chromosome 2p25 (P = 8.1 × 10(-7)), the RBPMS locus on chromosome 8p12 (P = 3.8 × 10(-6)), and the CREB1 locus on chromosome 2q34 (P = 1.6 × 10(-5)). In addition, 37 other SNPs showed P values <9.9 × 10(-5). After removal of redundant SNPs, the 10 most significant SNPs explained 35.9% of the ΔHR50 variance in a multivariate regression model. Conditional heritability tests showed that nine of these SNPs (all intragenic) accounted for 100% of the ΔHR50 heritability. Our results indicate that SNPs in nine genes related to cardiomyocyte and neuronal functions, as well as cardiac memory formation, fully account for the heritability of the submaximal heart rate training response.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808-4124, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Artuso R, Papa FT, Grillo E, Mucciolo M, Yasui DH, Dunaway KW, Disciglio V, Mencarelli MA, Pollazzon M, Zappella M, Hayek G, Mari F, Renieri A, Lasalle JM, Ariani F. Investigation of modifier genes within copy number variations in Rett syndrome. J Hum Genet 2011; 56:508-15. [PMID: 21593744 PMCID: PMC3145144 DOI: 10.1038/jhg.2011.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether Copy Number Variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by ChIP-chip analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.
Collapse
Affiliation(s)
- Rosangela Artuso
- Biotechnology Department, Medical Genetics Section, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Masuho I, Mototani Y, Sahara Y, Asami J, Nakamura S, Kozasa T, Inoue T. Dynamic expression patterns of G protein-regulated inducer of neurite outgrowth 1 (GRIN1) and its colocalization with Galphao implicate significant roles of Galphao-GRIN1 signaling in nervous system. Dev Dyn 2009; 237:2415-29. [PMID: 18729205 DOI: 10.1002/dvdy.21686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GRIN1 (Gprin 1) is a signaling molecule coexpression of which with constitutively active form of Galphao can stimulate neurite extensions in Neuro2a cells, yet its in vivo roles remain elusive. Here, we examine expression profiles of GRIN1 during mouse development by in situ hybridization (ISH) and immunohistochemistry. ISH analysis revealed that GRIN1 expression was limited to the nervous system at all developmental stages tested: in the central nervous system, GRIN1 expression occurred within the entire embryonic mantle zones, while it became restricted to sets of nuclei at postnatal to adult stages. Immunohistochemistry using a GRIN1-specific antibody demonstrated that GRIN1 colocalized with Galphao at neuronal dendrites and axons, but it was not detected in glial cells. These results suggest that Galphao-GRIN1 pathway could mediate significant roles in neuronal migration and differentiation at embryonic stages and exert functions in wiring and/or maintenance of specific neural circuitries at postnatal to adult stages.
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|