1
|
Maruta Y, Fukuda M. Large Rab GTPase Rab44 regulates microtubule-dependent retrograde melanosome transport in melanocytes. J Biol Chem 2022; 298:102508. [PMID: 36126775 PMCID: PMC9586991 DOI: 10.1016/j.jbc.2022.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Melanosomes are melanin-containing organelles in melanocytes, and they are responsible for skin and hair pigmentation in mammals. The intracellular distribution of melanosomes is mainly determined by the balance between their anterograde transport on actin filaments and retrograde transport on microtubules. Although we have shown previously that melanoregulin and Rab36 serve as cargo receptors on melanosomes for retrograde transport, their knockdown does not completely inhibit retrograde melanosome transport, suggesting the existence of an additional cargo receptor(s) in melanocytes. In this study, we investigated the possible involvement of an atypical large Rab, Rab44, which also contains EF-hand domains and a coiled-coil domain, in retrograde melanosome transport in mouse melanocytes (Rab27A-deficient melan-ash cells). Our results showed that Rab44 localizes on mature melanosomes through lipidation of its C-terminal Rab-like GTPase domain, and that its knockdown results in suppression of retrograde melanosome transport. In addition, our biochemical analysis indicated that Rab44 interacts with the dynein–dynactin motor complex via its coiled-coil domain–containing middle region. Since simultaneous depletion of Rab44, melanoregulin, and Rab36 resulted in almost complete inhibition of retrograde melanosome transport, we propose that Rab44 is the third cargo receptor. We also showed that the N-terminal region of Rab44, which contains EF-hand domains, is required for both retrograde melanosome transport and its Ca2+-modulated activities. Our findings indicated that Rab44 is a third melanosomal cargo receptor, and that, unlike other cargo receptors previously described, its transport function is regulated by Ca2+.
Collapse
Affiliation(s)
- Yuto Maruta
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
2
|
Etoh K, Fukuda M. Rab10 regulates tubular endosome formation through KIF13A and KIF13B motors. J Cell Sci 2019; 132:jcs.226977. [PMID: 30700496 DOI: 10.1242/jcs.226977] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
Recycling endosomes are stations that sort endocytic cargoes to their appropriate destinations. Tubular endosomes have been characterized as a recycling endosomal compartment for clathrin-independent cargoes. However, the molecular mechanism by which tubular endosome formation is regulated is poorly understood. In this study, we identified Rab10 as a novel protein localized at tubular endosomes by using a comprehensive localization screen of EGFP-tagged Rab small GTPases. Knockout of Rab10 completely abolished tubular endosomal structures in HeLaM cells. We also identified kinesin motors KIF13A and KIF13B as novel Rab10-interacting proteins by means of in silico screening. The results of this study demonstrated that both the Rab10-binding homology domain and the motor domain of KIF13A are required for Rab10-positive tubular endosome formation. Our findings provide insight into the mechanism by which the Rab10-KIF13A (or KIF13B) complex regulates tubular endosome formation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kan Etoh
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
3
|
Oguchi ME, Noguchi K, Fukuda M. TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells. PLoS One 2017; 12:e0174883. [PMID: 28384198 PMCID: PMC5383037 DOI: 10.1371/journal.pone.0174883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/16/2017] [Indexed: 01/28/2023] Open
Abstract
Recycling endosomes are generally thought to play a central role in endocytic recycling, but recent evidence has indicated that they also participate in other cellular events, including cytokinesis, autophagy, and neurite outgrowth. Rab small GTPases are key regulators in membrane trafficking, and although several Rab isoforms, e.g., Rab11, have been shown to regulate recycling endosomal trafficking, the precise mechanism by which these Rabs regulate recycling endosomes is not fully understood. In this study, we focused on a Rab-GTPase-activating protein (Rab-GAP), one of the key regulators of Rabs, and comprehensively screened 43 mammalian Tre-2/Bub2/Cdc16 (TBC)/Rab-GAP-domain-containing proteins (TBC proteins) for proteins that specifically localize on recycling endosomes in mouse embryonic fibroblasts (MEFs). Four of the 43 mammalian TBC proteins screened, i.e., TBC1D11, TBC1D12, TBC1D14, and EVI5, were found to colocalize well with transferrin receptor, a well-known recycling endosome marker. We further investigated the biochemical properties of TBC1D12, a previously uncharacterized TBC protein. The results showed that TBC1D12 interacted with active Rab11 through its middle region and that it did not display Rab11-GAP activity in vitro. The recycling endosomal localization of TBC1D12 was found to depend on the expression of Rab11. We also found that TBC1D12 expression had no effect on common Rab11-dependent cellular events, e.g., transferrin recycling, in MEFs and that it promoted neurite outgrowth, a specialized Rab11-dependent cellular event, of PC12 cells independently of its GAP activity. These findings indicated that TBC1D12 is a novel Rab11-binding protein that modulates neurite outgrowth of PC12 cells.
Collapse
Affiliation(s)
- Mai E. Oguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
| | - Kenta Noguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
4
|
Hirano S, Uemura T, Annoh H, Fujita N, Waguri S, Itoh T, Fukuda M. Differing susceptibility to autophagic degradation of two LC3-binding proteins: SQSTM1/p62 and TBC1D25/OATL1. Autophagy 2016; 12:312-26. [PMID: 26902585 DOI: 10.1080/15548627.2015.1124223] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MAP1LC3/LC3 (a mammalian ortholog family of yeast Atg8) is a ubiquitin-like protein that is essential for autophagosome formation. LC3 is conjugated to phosphatidylethanolamine on phagophores and ends up distributed both inside and outside the autophagosome membrane. One of the well-known functions of LC3 is as a binding partner for receptor proteins, which target polyubiquitinated organelles and proteins to the phagophore through direct interaction with LC3 in selective autophagy, and their LC3-binding ability is essential for degradation of the polyubiquitinated substances. Although a number of LC3-binding proteins have been identified, it is unknown whether they are substrates of autophagy or how their interaction with LC3 is regulated. We previously showed that one LC3-binding protein, TBC1D25/OATL1, plays an inhibitory role in the maturation step of autophagosomes and that this function depends on its binding to LC3. Interestingly, TBC1D25 seems not to be a substrate of autophagy, despite being present on the phagophore. In this study we investigated the molecular basis for the escape of TBC1D25 from autophagic degradation by performing a chimeric analysis between TBC1D25 and SQSTM1/p62 (sequestosome 1), and the results showed that mutant TBC1D25 with an intact LC3-binding site can become an autophagic substrate when TBC1D25 is forcibly oligomerized. In addition, an ultrastructural analysis showed that TBC1D25 is mainly localized outside autophagosomes, whereas an oligomerized TBC1D25 mutant rather uniformly resides both inside and outside the autophagosomes. Our findings indicate that oligomerization is a key factor in the degradation of LC3-binding proteins and suggest that lack of oligomerization ability of TBC1D25 results in its asymmetric localization at the outer autophagosome membrane.
Collapse
Affiliation(s)
- Satoshi Hirano
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan
| | - Takefumi Uemura
- b Department of Anatomy and Histology , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Hiromichi Annoh
- b Department of Anatomy and Histology , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Naonobu Fujita
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan
| | - Satoshi Waguri
- b Department of Anatomy and Histology , Fukushima Medical University School of Medicine , Fukushima , Japan
| | - Takashi Itoh
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan.,c Center for Frontier Oral Science, Graduate School of Dentistry, Osaka University , Suita , Osaka , Japan
| | - Mitsunori Fukuda
- a Laboratory of Membrane Trafficking Mechanisms , Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University , Aobayama, Aoba-ku, Sendai , Miyagi , Japan
| |
Collapse
|
5
|
Homma Y, Fukuda M. Rabin8 regulates neurite outgrowth in both GEF activity-dependent and -independent manners. Mol Biol Cell 2016; 27:2107-18. [PMID: 27170183 PMCID: PMC4927283 DOI: 10.1091/mbc.e16-02-0091] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
Several Rab GTPases have been implicated in neurite outgrowth, but their regulatory mechanisms are poorly understood. Rab10 is a novel substrate of a Rab8-GEF, Rabin8, and Rabin8 regulates neurite outgrowth of PC12 cells by coordinating with Rab8, Rab10, and Rab11 and by a GEF activity–independent mechanism. Many aspects of membrane-trafficking events are regulated by Rab-family small GTPases. Neurite outgrowth requires massive addition of proteins and lipids to the tips of growing neurites by membrane trafficking, and although several Rabs, including Rab8, Rab10, and Rab11, have been implicated in this process, their regulatory mechanisms during neurite outgrowth are poorly understood. Here, we show that Rabin8, a Rab8-guanine nucleotide exchange factor (GEF), regulates nerve growth factor (NGF)–induced neurite outgrowth of PC12 cells. Knockdown of Rabin8 results in inhibition of neurite outgrowth, whereas overexpression promotes it. We also find that Rab10 is a novel substrate of Rabin8 and that both Rab8 and Rab10 function during neurite outgrowth downstream of Rabin8. Surprisingly, however, a GEF activity–deficient isoform of Rabin8 also promotes neurite outgrowth, indicating the existence of a GEF activity–independent role of Rabin8. The Arf6/Rab8-positive recycling endosomes (Arf6/Rab8-REs) and Rab10/Rab11-positive REs (Rab10/Rab11-REs) in NGF-stimulated PC12 cells are differently distributed. Rabin8 localizes on both RE populations and appears to activate Rab8 and Rab10 there. These localizations and functions of Rabin8 are Rab11 dependent. Thus Rabin8 regulates neurite outgrowth both by coordinating with Rab8, Rab10, and Rab11 and by a GEF activity–independent mechanism.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
6
|
Abstract
Small GTPase Rab35 functions as a molecular switch for membrane trafficking, specifically for endocytic recycling, by cycling between a GTP-bound active form and a GDP-bound inactive form. Although Rab35 has been shown to regulate various cellular processes, including cytokinesis, cell migration, and neurite outgrowth, its precise roles in these processes are not fully understood. Since a molecular tool that could be used to measure Rab35 activity would be useful for identifying the mechanisms by which Rab35 mediates membrane trafficking, we recently used a RUN domain-containing region of RUSC2 to develop an active Rab35 trapper, and we named it RBD35 (Rab-binding domain specific for Rab35). Because RBD35 specifically interacts with the GTP-bound active form of Rab35 and does not interact with any of the other 59 Rab proteins identified in humans and mice, RBD35 is a useful tool for measuring the level of active Rab35 by pull-down assays and for inhibiting the function of Rab35 by overexpression. In this chapter, we describe the assay procedures for analyzing Rab35 with RBD35.
Collapse
|
7
|
Reichhart N, Markowski M, Ishiyama S, Wagner A, Crespo-Garcia S, Schorb T, Ramalho JS, Milenkovic VM, Föckler R, Seabra MC, Strauß O. Rab27a GTPase modulates L-type Ca2+ channel function via interaction with the II-III linker of CaV1.3 subunit. Cell Signal 2015; 27:2231-40. [PMID: 26235199 DOI: 10.1016/j.cellsig.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
In a variety of cells, secretory processes require the activation of both Rab27a and L-type channels of the Ca(V)1.3 subtype. In the retinal pigment epithelium (RPE), Rab27a and Ca(V)1.3 channels regulate growth-factor secretion towards its basolateral side. Analysis of murine retina sections revealed a co-localization of both Rab27a and Ca(V)1.3 at the basolateral membrane of the RPE. Heterologously expressed Ca(V)1.3/β3/α2δ1 channels showed negatively shifted voltage-dependence and decreased current density of about 70% when co-expressed with Rab27a. However, co-localization analysis using α(5)β(1) integrin as a membrane marker revealed that Rab27a co-expression reduced the surface expression of Ca(V)1.3 only about 10%. Physical binding of heterologously expressed Rab27a with Ca(V)1.3 channels was shown by co-localization in immunocytochemistry as well as co-immunoprecipitation which was abolished after deletion of a MyRIP-homologous amino acid sequence at the II-III linker of the Ca(V)1.3 subunit. Rab27a over-expression in ARPE-19 cells positively shifted the voltage dependence, decreased current density of endogenous Ca(V)1.3 channels and reduced VEGF-A secretion. We show the first evidence of a direct functional modulation of an ion channel by Rab27a suggesting a new mechanism of Rab and ion channel interaction in the control of VEGF-A secretion in the RPE.
Collapse
Affiliation(s)
- Nadine Reichhart
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Magdalena Markowski
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Shimpei Ishiyama
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Andrea Wagner
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Sergio Crespo-Garcia
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Talitha Schorb
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - José S Ramalho
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vladimir M Milenkovic
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Department of Psychiatry and Psychotherapy, Molecular Neuroscience, University of Regensburg, Germany
| | - Renate Föckler
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olaf Strauß
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany.
| |
Collapse
|
8
|
Imai A, Tsujimura M, Yoshie S, Fukuda M. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells. Biochem Biophys Res Commun 2015; 461:469-74. [PMID: 25871792 DOI: 10.1016/j.bbrc.2015.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/20/2023]
Abstract
Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells.
Collapse
Affiliation(s)
- Akane Imai
- Department of Dental Hygiene, College at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan; Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | - Maiko Tsujimura
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan; Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| | - Sumio Yoshie
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
9
|
Schafer JC, Baetz NW, Lapierre LA, McRae RE, Roland JT, Goldenring JR. Rab11-FIP2 interaction with MYO5B regulates movement of Rab11a-containing recycling vesicles. Traffic 2014; 15:292-308. [PMID: 24372966 DOI: 10.1111/tra.12146] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 12/28/2022]
Abstract
A tripartite association of Rab11a with both Rab11-FIP2 and MYO5B regulates recycling endosome trafficking. We sought to define the intermolecular interactions required between Rab11-FIP2 and MYO5B. Using a random mutagenesis strategy, we identified point mutations at S229P or G233E in Rab11-FIP2 that caused loss of interaction with MYO5B in yeast two-hybrid assays as well as loss of interaction of Rab11-FIP2(129-356) with MYO5B tail when expressed in HeLa cells. Single mutations or the double S229P/G233E mutation failed to alter the association of full-length Rab11-FIP2 with MYO5B tail in HeLa cells. While EGFP-Rab11-FIP2 wild type colocalized with endogenous MYO5B staining in MDCK cells, EGFP-Rab11-FIP2(S229P/G233E) showed a significant decrease in localization with endogenous MYO5B. Analysis of Rab11a-containing vesicle movement in live HeLa cells demonstrated that when the MYO5B/Rab11-FIP2 association is perturbed by mutation or by Rab11-FIP2 knockdown, vesicle movement is increased in both speed and track length, consistent with an impairment of MYO5B tethering at the cytoskeleton. These results support a critical role for the interaction of MYO5B with Rab11-FIP2 in stabilizing the functional complex with Rab11a, which regulates dynamic movements of membrane recycling vesicles.
Collapse
Affiliation(s)
- Jenny C Schafer
- Section of Surgical Sciences and the Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
10
|
Imai A, Ishida M, Fukuda M, Nashida T, Shimomura H. MADD/DENN/Rab3GEP functions as a guanine nucleotide exchange factor for Rab27 during granule exocytosis of rat parotid acinar cells. Arch Biochem Biophys 2013; 536:31-7. [PMID: 23702376 DOI: 10.1016/j.abb.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 05/07/2013] [Indexed: 11/29/2022]
Abstract
We previously reported that the small GTPase Rab27 and its effectors regulate isoproterenol (IPR)-stimulated amylase release from rat parotid acinar cells. Although activation of Rab27 by a specific guanine nucleotide exchange factor (GEF) is thought to be required for amylase release, its activation mechanism is poorly understood, because GEF for Rab27 has not been reported in parotid acinar cells. In the present study, we investigated the possible involvement of MADD/DENN/Rab3GEP, which was recently described as a Rab27-GEF in melanocytes, in amylase release from rat parotid acinar cells. Reverse transcription-PCR analyses indicated that mRNA of DENND family members, including MADD, was expressed in parotid acinar cells. MADD protein was also expressed in the cytosolic fraction of parotid acinar cells. Incubation of an antibody against the C-terminal 150 amino acids of MADD (anti-MADD-C antibody) with streptolysin O-permeabilized parotid acinar cells caused not only inhibition of IPR-induced amylase release but also reduction in the amount of GTP-Rab27. Our findings indicated that MADD functions as a GEF for Rab27 in parotid acinar cells and that its GEF activity for Rab27, i.e., GDP/GTP cycling, is required for IPR-induced amylase release.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, The Nippon Dental University, School of Life Dentistry at Niigata, 1-8 Hamaura-cho, Chuo-ku, Niigata 951 8580, Japan.
| | | | | | | | | |
Collapse
|
11
|
Small GTPase Rab39A interacts with UACA and regulates the retinoic acid-induced neurite morphology of Neuro2A cells. Biochem Biophys Res Commun 2013; 435:113-9. [DOI: 10.1016/j.bbrc.2013.04.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/11/2013] [Indexed: 01/05/2023]
|
12
|
Shono M, Yoshioka R, Chatani Y, Hirai Y. Ectopic Expression of Syntaxin3 Affects Behaviors of B16 Melanoma by Controlling Actin Dynamics. Cell Struct Funct 2013; 38:97-107. [DOI: 10.1247/csf.12032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Michiko Shono
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Ryosuke Yoshioka
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Yoshimitsu Chatani
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| | - Yohei Hirai
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
13
|
Brozzi F, Lajus S, Diraison F, Rajatileka S, Hayward K, Regazzi R, Molnár E, Váradi A. MyRIP interaction with MyoVa on secretory granules is controlled by the cAMP-PKA pathway. Mol Biol Cell 2012; 23:4444-55. [PMID: 22993210 PMCID: PMC3496617 DOI: 10.1091/mbc.e12-05-0369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Myosin- and Rab-interacting protein is not a classic receptor for MyoVa on large, dense-core secretory granules (SGs), but it aids in PKA-dependent phosphorylation of MyoVa-associated proteins on SGs in endocrine and neuroendocrine cells. Myosin- and Rab-interacting protein (MyRIP), which belongs to the protein kinase A (PKA)–anchoring family, is implicated in hormone secretion. However, its mechanism of action is not fully elucidated. Here we investigate the role of MyRIP in myosin Va (MyoVa)-dependent secretory granule (SG) transport and secretion in pancreatic beta cells. These cells solely express the brain isoform of MyoVa (BR-MyoVa), which is a key motor protein in SG transport. In vitro pull-down, coimmunoprecipitation, and colocalization studies revealed that MyRIP does not interact with BR-MyoVa in glucose-stimulated pancreatic beta cells, suggesting that, contrary to previous notions, MyRIP does not link this motor protein to SGs. Glucose-stimulated insulin secretion is augmented by incretin hormones, which increase cAMP levels and leads to MyRIP phosphorylation, its interaction with BR-MyoVa, and phosphorylation of the BR-MyoVa receptor rabphilin-3A (Rph-3A). Rph-3A phosphorylation on Ser-234 was inhibited by small interfering RNA knockdown of MyRIP, which also reduced cAMP-mediated hormone secretion. Demonstrating the importance of this phosphorylation, nonphosphorylatable and phosphomimic Rph-3A mutants significantly altered hormone release when PKA was activated. These data suggest that MyRIP only forms a functional protein complex with BR-MyoVa on SGs when cAMP is elevated and under this condition facilitates phosphorylation of SG-associated proteins, which in turn can enhance secretion.
Collapse
Affiliation(s)
- Flora Brozzi
- Centre for Research in Biomedicine, Faculty of Health and Life Sciences, University of the West of England, Bristol BS16 1QY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ishibashi K, Fujita N, Kanno E, Omori H, Yoshimori T, Itoh T, Fukuda M. Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy 2012; 7:1500-13. [PMID: 22082872 DOI: 10.4161/auto.7.12.18025] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A large protein complex consisting of Atg5, Atg12 and Atg16L1 has recently been shown to be essential for the elongation of isolation membranes (also called phagophores) during mammalian autophagy. However, the precise function and regulation of the Atg12–5-16L1 complex has largely remained unknown. In this study we identified a novel isoform of mammalian Atg16L, termed Atg16L2, that consists of the same domain structures as Atg16L1. Biochemical analysis revealed that Atg16L2 interacts with Atg5 and self-oligomerizes to form an ~800-kDa complex, the same as Atg16L1 does. A subcellular distribution analysis indicated that, despite forming the Atg12–5-16L2 complex, Atg16L2 is not recruited to phagophores and is mostly present in the cytosol. The results also showed that Atg16L2 is unable to compensate for the function of Atg16L1 in autophagosome formation, and knockdown of endogenous Atg16L2 did not affect autophagosome formation, indicating that Atg16L2 does not possess the ability to mediate canonical autophagy. Moreover, a chimeric analysis between Atg16L1 and Atg16L2 revealed that their difference in function in regard to autophagy is entirely attributable to the difference between their middle regions that contain a coiled-coil domain. Based on the above findings, we propose that formation of the Atg12–5-16L complex is necessary but insufficient to mediate mammalian autophagy and that an additional function of the middle region (especially around amino acid residues 229–242) of Atg16L1 (e.g., interaction with an unidentified binding partner on phagophores) is required for autophagosome formation.
Collapse
Affiliation(s)
- Koutaro Ishibashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Ohbayashi N, Maruta Y, Ishida M, Fukuda M. Melanoregulin regulates retrograde melanosome transport through interaction with the RILP-p150Glued complex in melanocytes. J Cell Sci 2012; 125:1508-18. [PMID: 22275436 DOI: 10.1242/jcs.094185] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melanoregulin (Mreg), a product of the dilute suppressor gene, has been implicated in the regulation of melanosome transport in mammalian epidermal melanocytes, given that Mreg deficiency was found to restore peripheral melanosome distribution from perinuclear melanosome aggregation in Rab27A-deficient melanocytes. However, the function of Mreg in melanosome transport has remained unclear. Here, we show that Mreg regulates microtubule-dependent retrograde melanosome transport through the dynein-dynactin motor complex. Mreg interacted with the C-terminal domain of Rab-interacting lysosomal protein (RILP) and formed a complex with RILP and p150(Glued) (also known as dynactin subunit 1, DCTN1), a component of the dynein-dynactin motor complex, in cultured cells. Overexpression of Mreg, RILP or both, in normal melanocytes induced perinuclear melanosome aggregation, whereas knockdown of Mreg or functional disruption of the dynein-dynactin motor complex restored peripheral melanosome distribution in Rab27A-deficient melanocytes. These findings reveal a new mechanism by which the dynein-dynactin motor complex recognizes Mreg on mature melanosomes through interaction with RILP and is involved in the centripetal movement of melanosomes.
Collapse
Affiliation(s)
- Norihiko Ohbayashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | | | | | | |
Collapse
|
16
|
Kopplin LJ, Igo RP, Wang Y, Sivakumaran TA, Hagstrom SA, Peachey NS, Francis PJ, Klein ML, SanGiovanni JP, Chew EY, Pauer GJT, Sturgill GM, Joshi T, Tian L, Xi Q, Henning AK, Lee KE, Klein R, Klein BEK, Iyengar SK. Genome-wide association identifies SKIV2L and MYRIP as protective factors for age-related macular degeneration. Genes Immun 2010; 11:609-21. [PMID: 20861866 PMCID: PMC3375062 DOI: 10.1038/gene.2010.39] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 01/11/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly in the developed world. We conducted a genome-wide association study in a series of families enriched for AMD and completed a meta-analysis of this new data with results from reanalysis of an existing study of a late-stage case-control cohort. We tested the top findings for replication in 1896 cases and 1866 controls and identified two novel genetic protective factors for AMD. In addition to the complement factor H (CFH) (P=2.3 × 10⁻⁶⁴) and age-related maculopathy susceptibility 2 (ARMS2) (P=1.2 × 10⁻⁶⁰) loci, we observed a protective effect at rs429608, an intronic SNP in SKIV2L (P=5.3 × 10⁻¹⁵), a gene near the complement component 2 (C2)/complement factor B (BF) locus, that indicates the protective effect may be mediated by variants other than the C2/BF variants previously studied. Haplotype analysis at this locus identified three protective haplotypes defined by the rs429608 protective allele. We also identified a new potentially protective effect at rs2679798 in MYRIP (P=2.9 × 10⁻⁴), a gene involved in retinal pigment epithelium melanosome trafficking. Interestingly, MYRIP was initially identified in the family-based scan and was confirmed in the case-control set. From these efforts, we report the identification of two novel protective factors for AMD and confirm the previously known associations at CFH, ARMS2 and C3.
Collapse
Affiliation(s)
- L J Kopplin
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schubert S, Knoch KP, Ouwendijk J, Mohammed S, Bodrov Y, Jäger M, Altkrüger A, Wegbrod C, Adams ME, Kim Y, Froehner SC, Jensen ON, Kalaidzidis Y, Solimena M. β2-Syntrophin is a Cdk5 substrate that restrains the motility of insulin secretory granules. PLoS One 2010; 5:e12929. [PMID: 20886068 PMCID: PMC2944849 DOI: 10.1371/journal.pone.0012929] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 08/23/2010] [Indexed: 11/18/2022] Open
Abstract
The molecular basis for the interaction of insulin granules with the cortical cytoskeleton of pancreatic β-cells remains unknown. We have proposed that binding of the granule protein ICA512 to the PDZ domain of β2-syntrophin anchors granules to actin filaments and that the phosphorylation/dephosphorylation of β2-syntrophin regulates this association. Here we tested this hypothesis by analyzing INS-1 cells expressing GFP-β2-syntrophin through the combined use of biochemical approaches, imaging studies by confocal and total internal reflection fluorescence microscopy as well as electron microscopy. Our results support the notion that β2-syntrophin restrains the mobility of cortical granules in insulinoma INS-1 cells, thereby reducing insulin secretion and increasing insulin stores in resting cells, while increasing insulin release upon stimulation. Using mass spectrometry, in vitro phosphorylation assays and β2-syntrophin phosphomutants we found that phosphorylation of β2-syntrophin on S75 near the PDZ domain decreases its binding to ICA512 and correlates with increased granule motility, while phosphorylation of S90 has opposite effects. We further show that Cdk5, which regulates insulin secretion, phosphorylates S75. These findings provide mechanistic insight into how stimulation displaces insulin granules from cortical actin, thus promoting their motility and exocytosis.
Collapse
Affiliation(s)
- Sandra Schubert
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus at Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus at Dresden University of Technology, Dresden, Germany
| | - Joke Ouwendijk
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus at Dresden University of Technology, Dresden, Germany
| | - Shabaz Mohammed
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Yury Bodrov
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Melanie Jäger
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus at Dresden University of Technology, Dresden, Germany
| | - Anke Altkrüger
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus at Dresden University of Technology, Dresden, Germany
| | - Carolin Wegbrod
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus at Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marvin E. Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Yong Kim
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, United States of America
| | - Stanley C. Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Michele Solimena
- Molecular Diabetology, Paul Langerhans Institute Dresden, Uniklinikum Carl Gustav Carus at Dresden University of Technology, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
18
|
Sato M, Mori Y, Matsui T, Aoki R, Oya M, Yanagihara Y, Fukuda M, Tsuboi T. Role of the polybasic sequence in the Doc2alpha C2B domain in dense-core vesicle exocytosis in PC12 cells. J Neurochem 2010; 114:171-81. [PMID: 20403080 DOI: 10.1111/j.1471-4159.2010.06739.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The double C2 (Doc2) family is characterized by an N-terminal Munc13-1-interacting domain and C-terminal tandem C2 domains, and it comprises three isoforms, Doc2alpha, Doc2beta, and Doc2gamma, in humans and mice. Doc2alpha, the best-characterized, brain-specific isoform, exhibits Ca(2+)-dependent phospholipid-binding activity through its C2A domain, and the Ca(2+)-binding activity is thought to be important for the regulation of Ca(2+)-dependent exocytosis. In contrast to the C2A domain, however, nothing is known about the physiological functions of the C2B domain in regulated exocytosis. In this study, we demonstrated by a mutation analysis that the polybasic sequence in the C2B domain of Doc2alpha (306 KKSKHKTCVKKK 317) is required for binding of syntaxin-1a/synaptosome-associated protein of 25 kDa (SNAP-25) heterodimer. We also investigated the effect of Lys-to-Gln (named KQ) mutations in the polybasic sequence of the C2B domain on vesicle dynamics by total internal reflection fluorescence microscopy in PC12 cells. A Doc2alpha(KQ) mutant, which lacks binding activity toward syntaxin-1a/SNAP-25 heterodimer, significantly decreased the number of plasma membrane-docked vesicles before stimulation and strongly inhibited high-KCl-induced exocytosis from the plasma membrane-docked vesicles. These results indicate that the polybasic sequence in the C2B domain functions as a binding site for syntaxin-1a/SNAP-25 heterodimer and controls the number of 'readily releasable' vesicles in neuroendocrine cells.
Collapse
Affiliation(s)
- Mai Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kanno E, Ishibashi K, Kobayashi H, Matsui T, Ohbayashi N, Fukuda M. Comprehensive screening for novel rab-binding proteins by GST pull-down assay using 60 different mammalian Rabs. Traffic 2010; 11:491-507. [PMID: 20070612 DOI: 10.1111/j.1600-0854.2010.01038.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Rab family belongs to the Ras-like small GTPase superfamily and is implicated in membrane trafficking through interaction with specific effector molecules. Because of the large number of Rab isoforms in mammals, however, the effectors of most of the mammalian Rabs are yet to be identified. In this study, we systematically screened five different cell or tissue lysates for novel Rab effectors by a combination of glutathione S-transferase (GST) pull-down assay with 60 different mammalian Rabs and mass spectroscopic analysis. Three of the 21 Rab-binding proteins we identified, mKIAA1055/TBC1D2B (Rab22-binding protein), GAPCenA/TBC1D11 (Rab36-binding protein) and centaurin beta2/ACAP2 (Rab35-binding protein), are GTPase-activating proteins (GAPs) for Rab or Arf. Although it has recently been proposed that the Rab-GAP (Tre-2 /Bub2/Cdc16) domain physically interacts with its substrate Rab, these three GAPs interacted with specific Rabs via a domain other than a GAP domain, e.g. centaurin beta2 binds GTP-Rab35 via the ankyrin repeat (ANKR) domain. Although centaurin beta2 did not exhibit any Rab35-GAP activity in vitro, the Rab35-binding ANKR domain of centaurin beta2 was found to be required for its plasma membrane localization and regulation of Rab35-dependent neurite outgrowth of PC12 cells through inactivation of Arf6. These findings suggest a novel mode of interaction between Rab and GAP.
Collapse
Affiliation(s)
- Eiko Kanno
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Tamura K, Ohbayashi N, Maruta Y, Kanno E, Itoh T, Fukuda M. Varp is a novel Rab32/38-binding protein that regulates Tyrp1 trafficking in melanocytes. Mol Biol Cell 2009; 20:2900-8. [PMID: 19403694 DOI: 10.1091/mbc.e08-12-1161] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Two small GTPase Rabs, Rab32 and Rab38, have recently been proposed to regulate trafficking of melanogenic enzymes to melanosomes in mammalian epidermal melanocytes; however, the exact molecular mechanism of Rab32/38-mediated transport of melanogenic enzymes has never been clarified, because no Rab32/38-specific effector has ever been identified. In this study, we screened for a Rab32/38-specific effector by a yeast two-hybrid assay using a guanosine triphosphate (GTP)-locked Rab32/38 as bait and found that VPS9-ankyrin-repeat protein (Varp)/Ankrd27, characterized previously as a guanine nucleotide exchange factor (GEF) for Rab21, functions as a specific Rab32/38-binding protein in mouse melanocyte cell line melan-a. Deletion analysis showed that the first ankyrin-repeat (ANKR1) domain functions as a GTP-dependent Rab32/38-binding domain, but that the N-terminal VPS9 domain (i.e., Rab21-GEF domain) does not. Small interfering RNA-mediated knockdown of endogenous Varp in melan-a cells caused a dramatic reduction in Tyrp1 (tyrosinase-related protein 1) signals from melanosomes but did not cause any reduction in Pmel17 signals. Furthermore, expression of the ANKR1 domain in melan-a cells also caused a dramatic reduction of Tyrp1 signals, whereas the VPS9 domain had no effect. Based on these findings, we propose that Varp functions as the Rab32/38 effector that controls trafficking of Tyrp1 in melanocytes.
Collapse
Affiliation(s)
- Kanako Tamura
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Ishibashi K, Kanno E, Itoh T, Fukuda M. Identification and characterization of a novel Tre-2/Bub2/Cdc16 (TBC) protein that possesses Rab3A-GAP activity. Genes Cells 2008; 14:41-52. [PMID: 19077034 DOI: 10.1111/j.1365-2443.2008.01251.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Tre-2/Bub2/Cdc16 (TBC) domain is a conserved protein motif that consists of approximately 200 amino acids and is thought to function as a specific Rab-GAP domain. Although more than 40 distinct TBC domain-containing proteins have been identified in humans, the GAP activity and specificity of most TBC proteins have never been determined. In this study we developed a novel method of screening for Rab3A-GAP and identified two TBC proteins (FLJ13130 and RN-tre) whose expression in PC12 cells was associated with exclusion of endogenous Rab3A molecules from dense-core vesicles. As expression of RN-tre caused fragmentation of the Golgi, which presumably resulted in the loss of dense-core vesicles themselves, we further characterized FLJ13130 as a candidate Rab3A-GAP. The results showed that expression of FLJ13130, but not of its catalytically inactive R134K mutant, greatly reduced the amount of GTP-Rab3A in living cells and promoted the GTPase activity of Rab3A in vitro. Unexpectedly, however, FLJ13130 also promoted the GTPase activity of Rab22A, Rab27A, and Rab35, but not of Rab2A or Rab6A. Based on these results, we propose that FLJ13130 is a novel type of Rab-GAP that exhibits broad GAP specificity and inactivates several distinct Rab isoforms, including Rab3A, just near the plasma membrane.
Collapse
Affiliation(s)
- Koutaro Ishibashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | | | | | |
Collapse
|
22
|
Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res 2008; 6:372-82. [PMID: 18337447 DOI: 10.1158/1541-7786.mcr-07-0162] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to the functions of transporting melanosome in melanocytes and releasing contents of lytic granules in CTLs, Rab27A was recently shown to be involved in exocytosis of insulin and chromaffin granules in endocrine cells; it was also reported to be expressed in an exceptionally broad range of specialized secretory cells. As autocrine and paracrine cytokines are essential for invasion and metastasis in some solid tumors, blocking them may be an effective strategy to prevent tumor dissemination. In the present study, we show that Rab27A is associated with invasive and metastatic potentials of human breast cancer cells. The overexpression of Rab27A protein redistributed the cell cycle and increased the invasive and metastatic abilities in breast cancer cells both in vitro and in vivo. We also certified that Rab27A conferred the invasive and metastatic phenotypes on breast cancer cells by promoting the secretion of insulin-like growth factor-II (IGF-II), which regulates the expression of p16, vascular endothelial growth factor, matrix metalloproteinase-9, cathepsin D, cyclin D1, and urokinase-type plasminogen activator. These data provide functional evidence that Rab27A acts as a novel mediator of invasion and metastasis promotion in human breast cancer cells, at least in part, through regulating the secretion of IGF-II, suggesting that synergistic suppression of Rab27A and IGF-II activities holds a promise for preventing breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Jin-Song Wang
- Department of Oncology, Breast Cancer Institute, Cancer Hospital, Fudan University, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
23
|
Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 2008; 19:2916-25. [PMID: 18448665 DOI: 10.1091/mbc.e07-12-1231] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy is a mechanism of degradation of cytoplasmic components in all eukaryotic cells. In macroautophagy, cytoplasmic components are wrapped by double-membrane structures called autophagosomes, whose formation involves unique membrane dynamics, i.e., de novo formation of a double-membrane sac called the isolation membrane and its elongation. However, the precise regulatory mechanism of isolation membrane formation and elongation remains unknown. In this study, we showed that Golgi-resident small GTPase Rab33B (and Rab33A) specifically interacts with Atg16L, an essential factor in isolation membrane formation, in a guanosine triphosphate-dependent manner. Expression of a GTPase-deficient mutant Rab33B (Rab33B-Q92L) induced the lipidation of LC3, which is an essential process in autophagosome formation, even under nutrient-rich conditions, and attenuated macroautophagy, as judged by the degradation of p62/sequestosome 1. In addition, overexpression of the Rab33B binding domain of Atg16L suppressed autophagosome formation. Our findings suggest that Rab33 modulates autophagosome formation through interaction with Atg16L.
Collapse
Affiliation(s)
- Takashi Itoh
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Patino-Lopez G, Dong X, Ben-Aissa K, Bernot KM, Itoh T, Fukuda M, Kruhlak MJ, Samelson LE, Shaw S. Rab35 and its GAP EPI64C in T cells regulate receptor recycling and immunological synapse formation. J Biol Chem 2008; 283:18323-30. [PMID: 18450757 DOI: 10.1074/jbc.m800056200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Upon antigen recognition, T-cell receptor (TCR/CD3) and other signaling molecules become enriched in a specialized contact site between the T cell and antigen-presenting cell, i.e. the immunological synapse (IS). Enrichment occurs via mechanisms that include polarized secretion from recycling endosomes, but the Rabs and RabGAPs that regulate this are unknown. EPI64C (TBC1D10C) is an uncharacterized candidate RabGAP we identified by mass spectrometry as abundant in human peripheral blood T cells that is preferentially expressed in hematopoietic cells. EPI64C is a Rab35-GAP based both on in vitro Rab35-specific GAP activity and findings in transfection assays. EPI64C and Rab35 dominant negative (DN) constructs each impaired transferrin export from a recycling pathway in Jurkat T-cells and induced large vacuoles marked by transferrin receptor, TCR, and SNAREs implicated in TCR-polarized secretion. Rab35 localized to the plasma membrane and to intracellular vesicles where it substantially colocalized with TfR and with TCR. Rab35 was strongly recruited to the IS. Conjugate formation was impaired by transfection with Rab35-DN or EPI64C and by EPI64C knock down. TCR enrichment at the IS was impaired by Rab35-DN. Thus, EPI64C and Rab35 regulate a recycling pathway in T cells and contribute to IS formation, most likely by participating in TCR transport to the IS.
Collapse
Affiliation(s)
- Genaro Patino-Lopez
- Experimental Immunology Branch and Laboratory of Cellular and Molecular Biology, NCI, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Desnos C, Huet S, Fanget I, Chapuis C, Böttiger C, Racine V, Sibarita JB, Henry JP, Darchen F. Myosin va mediates docking of secretory granules at the plasma membrane. J Neurosci 2007; 27:10636-45. [PMID: 17898234 PMCID: PMC6673143 DOI: 10.1523/jneurosci.1228-07.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myosin Va (MyoVa) is a prime candidate for controlling actin-based organelle motion in neurons and neuroendocrine cells. Its function in secretory granule (SG) trafficking was investigated in enterochromaffin cells by wide-field and total internal reflection fluorescence microscopy. The distribution of endogenous MyoVa partially overlapped with SGs and microtubules. Impairing MyoVa function by means of a truncated construct (MyoVa tail) or RNA interference prevented the formation of SG-rich regions at the cell periphery and reduced SG density in the subplasmalemmal region. Individual SG trajectories were tracked to analyze SG mobility. A wide distribution of their diffusion coefficient, D(xy), was observed. Almost immobile SGs (D(xy) < 5 x 10(-4) microm2 x s(-1)) were considered as docked at the plasma membrane based on two properties: (1) SGs that undergo exocytosis have a D(xy) below this threshold value for at least 2 s before fusion; (2) a negative autocorrelation of the vertical motion was found in subtrajectories with a D(xy) below the threshold. Using this criterion of docking, we found that the main effect of MyoVa inhibition was to reduce the number of docked granules, leading to reduced secretory responses. Surprisingly, this reduction was not attributable to a decreased transport of SGs toward release sites. In contrast, MyoVa silencing reduced the occurrence of long-lasting, but not short-lasting, docking periods. We thus propose that, despite its known motor activity, MyoVa directly mediates stable attachment of SGs at the plasma membrane.
Collapse
Affiliation(s)
- Claire Desnos
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Sébastien Huet
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Isabelle Fanget
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Catherine Chapuis
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Caroline Böttiger
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - Victor Racine
- Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
| | - Jean-Baptiste Sibarita
- Institut Curie, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, 75248 Paris Cedex 05, France
| | - Jean-Pierre Henry
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| | - François Darchen
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1929, Université Paris 7 Denis Diderot, 75005 Paris, France, and
| |
Collapse
|
26
|
Desnos C, Huet S, Darchen F. 'Should I stay or should I go?': myosin V function in organelle trafficking. Biol Cell 2007; 99:411-23. [PMID: 17635110 DOI: 10.1042/bc20070021] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Actin- and microtubule-based motors can propel different cargos along filaments. Within cells, they control the distribution of membrane-bound compartments by performing complementary tasks. Organelles make long journeys along microtubules, with class V myosins ensuring their capture and their dispersal in actin-rich regions. Myosin Va is recruited on to diverse organelles, such as melanosomes and secretory vesicles, by a mechanism involving Rab GTPases. The role of myosin Va in the recruitment of secretory vesicles at the plasma membrane reveals that the cortical actin network cannot merely be seen as a physical barrier hindering vesicle access to release sites. In neurons, myosin Va controls the targeting of IP(3) (inositol 1,4,5-trisphosphate)-sensitive Ca(2+) stores to dendritic spines and the transport of mRNAs. These defects probably account for the severe neurological symptoms observed in Griscelli syndrome due to mutations in the MYO5A gene.
Collapse
Affiliation(s)
- Claire Desnos
- Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique, UPR 1929, Université Paris 7 Denis Diderot, Paris, France.
| | | | | |
Collapse
|
27
|
Abstract
The actin network has been implicated in the intracellular transport and positioning of the melanosomes, organelles that are specialized in the biosynthesis and the storage of melanin. It contributes also to molecular mechanisms that underlie the intracellular membrane dynamics and thereby can control the biogenesis of melanosomes. Two mechanisms for actin-based movements have been identified: one is dependent on the motors associated to actin namely the myosins; the other is dependent on actin polymerization. This review will focus on to the role of the actin cytoskeleton and myosins in the transport and in the biogenesis of melanosomes. Myosins involved in membrane traffic are largely seen as transporters of organelles or membrane vesicles containing cargos along the actin networks. Yet increasing evidence suggests that some of the myosins contribute to the dynamics of internal membrane by using other mechanisms. The role of the myosins and the different molecular mechanisms by which they contribute or may contribute to the distribution, the movement and the biogenesis of the melanosomes in epidermal melanocytes and retinal pigmented epithelial (RPE) cells will be discussed.
Collapse
|
28
|
Budzynski E, Lee Y, Sakamoto K, Naggert JK, Nishina PM. From vivarium to bedside: lessons learned from animal models. Ophthalmic Genet 2007; 27:123-37. [PMID: 17148039 DOI: 10.1080/13816810600977192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this review, we focus primarily on information obtained by studying mouse models of heritable ocular diseases. These models have proven to be important in advancing our understanding of disease etiology and of pathological consequences of heritable disorders. Careful phenotypic analyses of these models have lead to hypotheses regarding the function of various molecules as well as the mechanisms underlying the observed pathologies. Specific examples of the utility of mouse models in vision research are discussed.
Collapse
|
29
|
Itoh T, Fukuda M. Identification of EPI64 as a GTPase-activating Protein Specific for Rab27A. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84097-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Itoh T, Satoh M, Kanno E, Fukuda M. Screening for target Rabs of TBC (Tre-2/Bub2/Cdc16) domain-containing proteins based on their Rab-binding activity. Genes Cells 2006; 11:1023-37. [PMID: 16923123 DOI: 10.1111/j.1365-2443.2006.00997.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has recently been proposed that the TBC (Tre2/Bub2/Cdc16) domain functions as a GAP (GTPase-activating protein) domain for small GTPase Rab. Because of the large number of Rab proteins in mammals, however, most TBC domains have never been investigated for Rab-GAP activity. In this study we established panels of the GTP-fixed form of 60 different Rabs constructed in pGAD-C1, a yeast two-hybrid bait vector. We also constructed a yeast two-hybrid prey vector (pGBDU-C1) that harbors the cDNA of 40 distinct TBC proteins. Systematic investigation of 2400 combinations of 60 GTP-fixed Rabs and 40 TBC proteins by yeast two-hybrid screening revealed that seven TBC proteins specifically and differentially interact with specific Rabs (e.g. OATL1 interacts with Rab2A; FLJ12085 with Rab5A/B/C; and Evi5-like with Rab10). Measurement of in vitro Rab-GAP activity revealed that OATL1 and Evi5-like actually possess significant Rab2A- and Rab10-GAP activity, respectively, but that FLJ12085 do not display Rab5A-GAP activity at all. These results indicate that specific interaction between TBC protein and Rab would be a useful indicator for screening for the target Rabs of some TBC/Rab-GAP domains, but that there is little correlation between the Rab-binding activity and Rab-GAP activity of other TBC proteins.
Collapse
Affiliation(s)
- Takashi Itoh
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
31
|
Itoh T, Fukuda M. Identification of EPI64 as a GTPase-activating protein specific for Rab27A. J Biol Chem 2006; 281:31823-31. [PMID: 16923811 DOI: 10.1074/jbc.m603808200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Small GTPase Rab27A plays a pivotal role in melanosome transport in melanocytes and in secretion by various secreting cells. Because the GTP- or GDP-locked mutant of Rab27A causes perinuclear aggregation of melanosomes, appropriate GTP-GDP cycling of Rab27A is essential for melanosome transport, and certain guanine nucleotide exchange factors and GTPase-activating proteins (GAPs) of Rab27A must be present in melanocytes. However, no such regulators of Rab27A have ever been identified. In this study we developed novel methods of rapidly screening 40 different TBC (Tre2/Bub2/Cdc16) proteins, putative Rab-GAPs, for Rab27A-GAP by: (i) searching for TBC proteins that induce melanosome aggregation in melanocytes; (ii) trapping GTP-Rab27A with a Rab27A effector domain (i.e. the SHD of Slac2-a) in cultured cells that express both Rab27A and TBC proteins; and (iii) measuring in vitro Rab27A-GAP activity. These methods allowed us to identify EPI64, previously characterized as an EBP50-binding protein that contains an orphan TBC domain, as a specific Rab27A-GAP. We further showed that mutations in the catalytic domain of EPI64 caused complete loss of its ability to induce melanosome aggregation. This is the first report of screening for Rab27A-GAP based on functional interactions, and our screening methods can be applied for other uncharacterized TBC proteins.
Collapse
Affiliation(s)
- Takashi Itoh
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
32
|
Tsuboi T, Fukuda M. The C2B domain of rabphilin directly interacts with SNAP-25 and regulates the docking step of dense core vesicle exocytosis in PC12 cells. J Biol Chem 2005; 280:39253-9. [PMID: 16203731 DOI: 10.1074/jbc.m507173200] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rabphilin is a membrane trafficking protein on secretory vesicles that consists of an N-terminal Rab-binding domain and C-terminal tandem C2 domains. The N-terminal part of rabphilin has recently been shown to function as an effector domain for both Rab27A and Rab3A in PC12 cells (Fukuda, M., Kanno, E., and Yamamoto, A. (2004) J. Biol. Chem. 279, 13065-13075), but the function of the C2 domains of rabphilin during secretory vesicle exocytosis is largely unknown. In this study we investigated the interaction between rabphilin and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors, VAMP-2/synaptobrevin-2, syntaxin IA, and SNAP-25) and SNARE-associated proteins (Munc18-1 and Munc13-1) and found that the C2B domain of rabphilin, but not of other Rab27A-binding proteins with tandem C2 domains (i.e. Slp1-5), directly interacts with a plasma membrane protein, SNAP-25. The interaction between rabphilin and SNAP-25 occurs even in the absence of Ca(2+) (EC(50) = 0.817 microm SNAP-25), but 0.5 mm Ca(2+) increases the affinity for SNAP-25 2-fold (EC(50) = 0.405 microm SNAP-25) without changing the B(max) value (1.06 mol of SNAP-25/mol of rabphilin). Furthermore, vesicle dynamics were imaged by total internal reflection fluorescence microscopy in a single PC12 cell expressing a lumen-targeted pH-insensitive yellow fluorescent protein (Venus), neuropeptide Y-Venus. Expression of the wild-type rabphilin in PC12 cells significantly increased the number of docked vesicles to the plasma membrane without altering the kinetics of individual secretory events, whereas expression of the mutant rabphilin lacking the C2B domain, rabphilin-DeltaC2B, decreased the number of docked vesicle or fusing at the plasma membrane. These findings suggest that rabphilin is involved in the docking step of regulated exocytosis in PC12 cells, possibly through interaction between the C2B domain and SNAP-25.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Fukuda Initiative Research Unit, RIKEN (The Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|