1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Kim YL, Plank JT, Li B, Lippert AR. Kinetics-Based Quantification of Peroxynitrite Using the Oxidative Decarbonylation of Isatin. Anal Chem 2022; 94:17803-17809. [PMID: 36520991 DOI: 10.1021/acs.analchem.2c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxynitrite and its radical decomposition products are highly reactive nitrogen and oxygen species that can influence the balance between health and disease in multiple organ systems. Despite vigorous research activity, real-time quantitative monitoring of peroxynitrite generated by donor compounds remains challenging. Here, we report a kinetics-based fluorescence method for quantitative tracking of peroxynitrite generation using the oxidative decarbonylation of isatin to form anthranilic acid as a fluorescent probe. This method relies on knowledge of the rate of the reaction of peroxynitrite with the probe, which we measure using stopped-flow fluorescence techniques. To the best of our knowledge, this is the first optical method capable of providing real-time quantitative measures of peroxynitrite concentrations generated from donor compounds, as demonstrated herein for SIN-1 and Angeli's salt.
Collapse
Affiliation(s)
- Yujin L Kim
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Joshua T Plank
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Bo Li
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas75275-0314, United States
| |
Collapse
|
3
|
Chakraborty S, Mukherjee P, Sengupta R. Ribonucleotide reductase: Implications of thiol S-nitrosylation and tyrosine nitration for different subunits. Nitric Oxide 2022; 127:26-43. [PMID: 35850377 DOI: 10.1016/j.niox.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Ribonucleotide reductase (RNR) is a multi-subunit enzyme responsible for catalyzing the rate-limiting step in the production of deoxyribonucleotides essential for DNA synthesis and repair. The active RNR complex is composed of multimeric R1 and R2 subunits. The RNR catalysis involves the formation of tyrosyl radicals in R2 subunits and thiyl radicals in R1 subunits. Despite the quaternary structure and cofactor diversity, all the three classes of RNR have a conserved cysteine residue at the active site which is converted into a thiyl radical that initiates the substrate turnover, suggesting that the catalytic mechanism is somewhat similar for all three classes of the RNR enzyme. Increased RNR activity has been associated with malignant transformation, cancer cell growth, and tumorigenesis. Efforts concerning the understanding of RNR inhibition in designing potent RNR inhibitors/drugs as well as developing novel approaches for antibacterial, antiviral treatments, and cancer therapeutics with improved radiosensitization have been made in clinical research. This review highlights the precise and potent roles of NO in RNR inhibition by targeting both the subunits. Under nitrosative stress, the thiols of the R1 subunits have been found to be modified by S-nitrosylation and the tyrosyl radicals of the R2 subunits have been modified by nitration. In view of the recent advances and progresses in the field of nitrosative modifications and its fundamental role in signaling with implications in health and diseases, the present article focuses on the regulations of RNR activity by S-nitrosylation of thiols (R1 subunits) and nitration of tyrosyl residues (R2 subunits) which will further help in designing new drugs and therapies.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Prerona Mukherjee
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
4
|
AGEomics Biomarkers and Machine Learning-Realizing the Potential of Protein Glycation in Clinical Diagnostics. Int J Mol Sci 2022; 23:ijms23094584. [PMID: 35562975 PMCID: PMC9099912 DOI: 10.3390/ijms23094584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Protein damage by glycation, oxidation and nitration is a continuous process in the physiological system caused by reactive metabolites associated with dicarbonyl stress, oxidative stress and nitrative stress, respectively. The term AGEomics is defined as multiplexed quantitation of spontaneous modification of proteins damage and other usually low-level modifications associated with a change of structure and function—for example, citrullination and transglutamination. The method of quantitation is stable isotopic dilution analysis liquid chromatography—tandem mass spectrometry (LC-MS/MS). This provides robust quantitation of normal and damaged or modified amino acids concurrently. AGEomics biomarkers have been used in diagnostic algorithms using machine learning methods. In this review, I describe the utility of AGEomics biomarkers and provide evidence why these are close to the phenotype of a condition or disease compared to other metabolites and metabolomic approaches and how to train and test algorithms for clinical diagnostic and screening applications with high accuracy, sensitivity and specificity using machine learning approaches.
Collapse
|
5
|
Wang Y, Wu CJ, Du Y, Liu YQ, Cai JR, Wu XQ, Hu SQ. SIRT2 tyrosine nitration by peroxynitrite in response to renal ischemia/reperfusion injury. Free Radic Res 2022; 55:1104-1118. [PMID: 34979841 DOI: 10.1080/10715762.2021.2024529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are the production of renal ischemia/reperfusion (I/R). The current study is to elucidate a mechanism of SIRT2 tyrosine nitration to accelerate the cell apoptosis induced by peroxynitrite (ONOO‾), the most reactive and deleterious RNS type in renal ischemia/reperfusion (I/R) injury. Our results demonstrate that there is a significant enhancement of the 3-nitrotyrosine levels in renal tissues of Acute Kidney Injury (AKI) patients and rats that underwent renal I/R, and a positive correlation between the 3-nitrotyrosine level and renal function impairment, indicative of an accumulation of peroxynitrite. Notably, peroxynitrite-evoked nitration of SIRT2 destroyed its enzymatic activity and the capability to deacetylate FOXO3a, and enhanced expression of Bim and caspase3, facilitating renal cell apoptosis in renal ischemia/reperfusion and SIN-1(peroxynitrite donor) treatment in vitro, and these effects were reversed by FeTMPyP, a peroxynitrite decomposition scavenger. Importantly, we identified that the tyrosine 86 is responsible for SIRT2 nitration and inactivation using site-mutation assay and Mass Spectrography analysis. Altogether, these findings point to a novel protective mechanism that an inhibition of SIRT2 tyrosine nitration can be a promising strategy to prevent ischemic renal diseases involving AKI.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chun Jie Wu
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Du
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Qing Liu
- The Affiliated Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Ran Cai
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xue Qing Wu
- Department of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy of Xuzhou Medical University, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu Qun Hu
- Emergency Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Kolomaznik M, Mikolka P, Hanusrichterova J, Kosutova P, Matasova K, Mokra D, Calkovska A. N-Acetylcysteine in Mechanically Ventilated Rats with Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome: The Effect of Intravenous Dose on Oxidative Damage and Inflammation. Biomedicines 2021; 9:biomedicines9121885. [PMID: 34944701 PMCID: PMC8698392 DOI: 10.3390/biomedicines9121885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Treatment of acute respiratory distress syndrome (ARDS) is challenging due to its multifactorial aetiology. The benefit of antioxidant therapy was not consistently demonstrated by previous studies. We evaluated the effect of two different doses of intravenous (i.v.) N-acetylcysteine (NAC) on oxidative stress, inflammation and lung functions in the animal model of severe LPS-induced lung injury requiring mechanical ventilation. Adult Wistar rats with LPS (500 μg/kg; 2.2 mL/kg) were treated with i.v. NAC 10 mg/kg (NAC10) or 20 mg/kg (NAC20). Controls received saline. Lung functions, lung oedema, total white blood cell (WBC) count and neutrophils count in blood and bronchoalveolar lavage fluid, and tissue damage in homogenized lung were evaluated. NAC significantly improved ventilatory parameters and oxygenation, reduced lung oedema, WBC migration and alleviated oxidative stress and inflammation. NAC20 in comparison to NAC10 was more effective in reduction of oxidative damage of lipids and proteins, and inflammation almost to the baseline. In conclusion, LPS-instilled and mechanically ventilated rats may be a suitable model of ARDS to test the treatment effects at organ, systemic, cellular and molecular levels. The results together with literary data support the potential of NAC in ARDS.
Collapse
Affiliation(s)
- Maros Kolomaznik
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (P.K.)
| | - Pavol Mikolka
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
| | - Petra Kosutova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.K.); (P.K.)
| | - Katarina Matasova
- Clinic of Neonatology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and Martin University Hospital, 03601 Martin, Slovakia;
| | - Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (P.M.); (J.H.); (D.M.)
- Correspondence: ; Tel.: +421-43-2633-411
| |
Collapse
|
7
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
8
|
Coello K, Bøgh HL, Stanislaus S, Kjærstad HL, Melbye SA, Ormstrup Sletved KS, Poulsen HE, Vinberg M, Kessing LV. Higher systemic oxidatively generated DNA and RNA damage in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Free Radic Biol Med 2021; 168:226-233. [PMID: 33798615 DOI: 10.1016/j.freeradbiomed.2021.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND Prior studies in bipolar disorders (BD) have suggested that oxidative stress and cellular ageing play a key role in the pathophysiology of BD. Nevertheless, oxidative stress has not been investigated in patients with newly diagnosed BD and in their unaffected first-degree relatives (UR), compared with healthy control individuals (HC). METHODS We investigated the level of systemic oxidative damage to DNA and RNA measured by urinary excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo) levels, respectively, in 360 patients with newly diagnosed BD, 92 of their UR and 197 HC. RESULTS Independent of lifestyle and demographic variables, levels of both 8-oxoGuo and 8-oxodG was 17.1% (B = 1.171, 95%CI = 1.125-1.219, p < 0.001) and 21.2% (B = 1.212, 95%CI = 1.145-1.283, p < 0.001) higher, respectively, in patients with BD compared with HC and 13.3% (B = 1.133, 95%CI = 1.069-1.200, p < 0.001) and 26.6% (B = 1.266, 95%CI = 1.167-1.374, p < 0.001) higher, respectively, in UR compared with HC. Neither 8-oxoGuo nor 8-oxodG levels differed between patients with BD and UR. These findings were replicated in patients in full or partial remission and were consistent both in BD type I and II. CONCLUSION Overall, the findings of higher oxidative stress in patients with newly diagnosed BD and their UR suggest that systemic nucleoside damage by oxidative stress is present prior to onset and in the early stages of BD thereby potentially representing trait markers of BD.
Collapse
Affiliation(s)
- Klara Coello
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Helena Lykke Bøgh
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sharleny Stanislaus
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Lie Kjærstad
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Sigurd A Melbye
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kimie Stefanie Ormstrup Sletved
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg Frederiksberg, Denmark; Research Unit, Nordsjaellands Hospital Hilleroed, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Psychiatric Research Unit, Psychiatric Centre North Zealand, Copenhagen University Hospital, Hillerød, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
9
|
Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6501046. [PMID: 28698768 PMCID: PMC5494111 DOI: 10.1155/2017/6501046] [Citation(s) in RCA: 444] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen species (ROS) formation and enzymatic and nonenzymatic antioxidants. Biomarkers of oxidative stress are relevant in the evaluation of the disease status and of the health-enhancing effects of antioxidants. We aim to discuss the major methodological bias of methods used for the evaluation of oxidative stress in humans. There is a lack of consensus concerning the validation, standardization, and reproducibility of methods for the measurement of the following: (1) ROS in leukocytes and platelets by flow cytometry, (2) markers based on ROS-induced modifications of lipids, DNA, and proteins, (3) enzymatic players of redox status, and (4) total antioxidant capacity of human body fluids. It has been suggested that the bias of each method could be overcome by using indexes of oxidative stress that include more than one marker. However, the choice of the markers considered in the global index should be dictated by the aim of the study and its design, as well as by the clinical relevance in the selected subjects. In conclusion, the clinical significance of biomarkers of oxidative stress in humans must come from a critical analysis of the markers that should give an overall index of redox status in particular conditions.
Collapse
|
10
|
Ashraf JM, Ahmad S, Choi I, Ahmad N, Farhan M, Tatyana G, Shahab U. Recent advances in detection of AGEs: Immunochemical, bioanalytical and biochemical approaches. IUBMB Life 2015; 67:897-913. [PMID: 26597014 DOI: 10.1002/iub.1450] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022]
Abstract
Advanced glycation end products (AGEs) are a cohort of heterogeneous compounds that are formed after the nonenzymatic glycation of proteins, lipids and nucleic acids. Accumulation of AGEs in the body is implicated in various pathophysiological conditions like diabetes, cardiovascular diseases and atherosclerosis. Numerous studies have reported the connecting link between AGEs and the various complications associated with diseases. Hence, detection and measurement of AGEs becomes centrally important to understand and manage the menace created by AGEs inside the body. In recent years, an increasing number of immunotechniques as well as bioanalytical techniques have been developed to efficiently measure the levels of AGEs, but most of them are still far away from being clinically consistent, as relative disparity and ambiguity masks their standardization. This article is designed to critically review the recent advances and the emerging techniques for detection of AGEs. It is an attempt to summarize the major techniques that exist currently for the detection of AGEs both qualitatively and quantitatively. This review primarily focuses on the detection and quantification of AGEs which are formed in vivo. Immunochemical approach though costly but most effective and accurate method to measure the level of AGEs. Literature review suggests that detection of autoantibody targeting AGEs is a promising way that can be utilized for detection of AGEs. Future research efforts should be dedicated to develop this method in order to push forward the clinical applications of detection of AGEs.
Collapse
Affiliation(s)
| | - Saheem Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Nashrah Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Mohd Farhan
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-Sciences, Integral University, Lucknow, UP, India
| | - Godovikova Tatyana
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| |
Collapse
|
11
|
A novel mixed-mode solid phase extraction coupled with LC–MS/MS for the re-evaluation of free 3-nitrotyrosine in human plasma as an oxidative stress biomarker. Talanta 2015; 140:45-51. [DOI: 10.1016/j.talanta.2015.02.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 01/20/2023]
|
12
|
Abstract
Glyoxalase- and methylglyoxal-related research has required the development of quantitative and reliable techniques for the measurement of methylglyoxal-derived glycation adducts of protein and DNA. There are also other glycation adducts, oxidation adducts and nitration adducts of proteins and oxidation adducts of DNA. Proteolysis of protein releases glycation, oxidation and nitration free adducts (glycated, oxidized and nitrated amino acids) in plasma and nuclease digestion of DNA releases glycated and oxidized nucleosides into plasma and other body fluids for excretion in urine. The gold standard method for quantifying these adducts is stable isotopic dilution analysis LC-MS/MS. Protein and DNA adduct residues are determined by assay of enzymatic hydrolysates of protein and DNA extracts prepared using cocktails of proteases and nucleases respectively. Free adducts are determined by analysis of ultrafiltrates of plasma, urine and other physiological fluids. Protein damage markers (13 glycation adducts, five oxidation adducts and 3-nitrotyrosine) and DNA damage markers (three glycation adducts and one oxidation adduct) are quantified using 25 μg of protein, 10 μg of DNA or 5 μl of physiological fluid. Protein and nucleotide AGE (advanced glycation end-product) assay protocols resistant to interferences is described.
Collapse
|
13
|
Tsikas D, Duncan MW. Mass spectrometry and 3-nitrotyrosine: strategies, controversies, and our current perspective. MASS SPECTROMETRY REVIEWS 2014; 33:237-76. [PMID: 24167057 DOI: 10.1002/mas.21396] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 05/11/2023]
Abstract
Reactive-nitrogen species (RNS) such as peroxynitrite (ONOO(-)), that is, the reaction product of nitric oxide ((•)NO) and superoxide (O2(-•)), nitryl chloride (NO2Cl) and (•)NO2 react with the activated aromatic ring of tyrosine to form 3-nitrotyrosine. This modification, which has been known for more than a century, occurs to both the free form of the amino acid (i.e., soluble/free tyrosine) and to tyrosine residues covalently bound within the backbone of peptides and proteins. Nitration of tyrosine is thought to be of biological significance and has been linked to health and disease, but determining its role has proved challenging. Several key questions have been the focus of much of the research activity: (a) to what extent is free/soluble tyrosine nitrated in biological tissues and fluids, and (b) are there specific site(s) of nitration within peptides/proteins and to what extent (i.e., stoichiometry) does this modification occur? These issues have been addressed in a wide range of sample types (e.g., blood, urine, CSF, exhaled breath condensate and various tissues) and a diverse array of physiological/pathophysiological scenarios. The accurate determination of nitrated tyrosine is, however, a stumbling block. Despite extensive study, the extent to which nitration occurs in vivo, the specificity of the nitration reaction, and its importance in health and disease, remain unclear. In this review, we highlight the analytical challenges and discuss the approaches adopted to address them. Mass spectrometry, in combination with either gas chromatography (GC-MS, GC-MS/MS) or liquid chromatography (LC-MS/MS), has played the central role in the analysis of 3-nitrotyrosine and tyrosine-nitrated biological macromolecules. We discuss its unique attributes and highlight the role of stable-isotope labeled 3-nitrotyrosine analogs in both accurate quantification, and in helping to define the biological relevance of tyrosine nitration. We show that the application of sophisticated mass spectrometric techniques is advantageous if not essential, but that this alone is by no means a guarantee of accurate findings. We discuss the important analytical challenges in quantifying 3-nitrotyrosine, possible workarounds, and we attempt to make sense of the disparate findings that have been reported so far.
Collapse
Affiliation(s)
- Dimitrios Tsikas
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
14
|
Khan I, Batinic-Haberle I, Benov LT. Effect of potent redox-modulating manganese porphyrin, MnTM-2-PyP, on the Na+/H+exchangers NHE-1 and NHE-3 in the diabetic rat. Redox Rep 2013; 14:236-42. [DOI: 10.1179/135100009x12525712409698] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
15
|
Mergola L, Scorrano S, Del Sole R, Lazzoi MR, Vasapollo G. Developments in the synthesis of a water compatible molecularly imprinted polymer as artificial receptor for detection of 3-nitro-l-tyrosine in neurological diseases. Biosens Bioelectron 2013; 40:336-41. [DOI: 10.1016/j.bios.2012.07.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
|
16
|
Turhan N, Celik H, Duvan Cİ, Onaran Y, Aydın M, Armutcu F. Investigation of oxidative balance in patients with dysmenorrhea by multiple serum markers. J Turk Ger Gynecol Assoc 2012; 13:233-6. [PMID: 24592048 DOI: 10.5152/jtgga.2012.36] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the level of oxidative stress in patients with dysmenorrhea by multiple serum markers including malondialdehyde (MDA), nitrotyrosine (3-NT), deoxyguanosine (8-OHdG) and superoxide dismutase (SOD). MATERIAL AND METHODS Fifty-eight women, aged between 20 and 34, who had had regular menses for at least six previous cycles, were involved. The women were divided into two groups. The study group consisted of 33 patients with primary dysmenorrhea, and the control group consisted of 25 healthy women. RESULTS Demographic characteristics of patients were similar between the two groups. The serum MDA levels were 1.32±0.46 and 0.91±0.26 nmol/mL for the dysmenorrhea and control groups, respectively (p<0.001). The differences in plasma levels of 3-NT, SOD and serum 8-OhdG were similar in both groups (p>0.05). Also, no correlation was found between the severity of dysmenorrhea and the levels of oxidative markers. CONCLUSION Oxidative stress is slightly aggravated in patients with dysmenorrhea.
Collapse
Affiliation(s)
- Nilgün Turhan
- Department of Gynecology and Obstetrics, Faculty of Medicine, Fatih University, Ankara, Turkey
| | - Havva Celik
- Department of Gynecology and Obstetrics, Faculty of Medicine, Fatih University, Ankara, Turkey
| | - Candan İltemir Duvan
- Department of Gynecology and Obstetrics, Faculty of Medicine, Fatih University, Ankara, Turkey
| | - Yüksel Onaran
- Department of Gynecology and Obstetrics, Faculty of Medicine, Fatih University, Ankara, Turkey
| | - Murat Aydın
- Department of Biochemistry, Faculty of Medicine, Fatih University, Ankara, Turkey
| | - Ferah Armutcu
- Department of Biochemistry, Faculty of Medicine, Fatih University, Ankara, Turkey
| |
Collapse
|
17
|
Slominski A, Zmijewski MA, Pawelek J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 2012; 25:14-27. [PMID: 21834848 PMCID: PMC3242935 DOI: 10.1111/j.1755-148x.2011.00898.x] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is evidence that L-tyrosine and L-dihydroxyphenylalanine (L-DOPA), besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor-mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as regulate the melanocyte functions through the activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate-induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate an older theory proposing that receptors for amino acid-derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, TN, USA.
| | | | | |
Collapse
|
18
|
Lehner C, Gehwolf R, Tempfer H, Krizbai I, Hennig B, Bauer HC, Bauer H. Oxidative stress and blood-brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxid Redox Signal 2011; 15:1305-23. [PMID: 21294658 PMCID: PMC6464004 DOI: 10.1089/ars.2011.3923] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A cell's "redox" (oxidation and reduction) state is determined by the sum of all redox processes yielding reactive oxygen species (ROS), reactive nitrogen species (RNS), and other reactive intermediates. Low amounts of ROS/RNS are generated by different mechanisms in every cell and are important regulatory mediators in many signaling processes (redox signaling). When the physiological balance between the generation and elimination of ROS/RNS is disrupted, oxidative/nitrosative stress with persistent oxidative damage of the organism occurs. Oxidative stress has been suggested to act as initiator and/or mediator of many human diseases. The cerebral vasculature is particularly susceptible to oxidative stress, which is critical since cerebral endothelial cells play a major role in the creation and maintenance of the blood-brain barrier (BBB). This article will only contain a focused introduction on the biochemical background of redox signaling, since this has been reported already in a series of excellent recent reviews. The goal of this work is to increase the understanding of basic mechanisms underlying ROS/RNS-induced BBB disruption, with a focus on the role of matrix metalloproteinases, which, after all, appear to be a key mediator in the initiation and progression of BBB damage elicited by oxidative stress.
Collapse
Affiliation(s)
- Christine Lehner
- Department of Organismic Biology, Development Biology Group, University Hospital of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
19
|
Iwasaki Y, Mochizuki K, Nakano Y, Maruya N, Goto M, Maruyama Y, Ito R, Saito K, Nakazawa H. Comparison of fluorescence reagents for simultaneous determination of hydroxylated phenylalanine and nitrated tyrosine by high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 2011; 26:41-50. [PMID: 21387354 DOI: 10.1002/bmc.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 01/24/2011] [Accepted: 01/24/2011] [Indexed: 01/16/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well-known and important contributors to oxidative and nitrosative stress in several diseases. Hydroxylated phenylalanine and nitrated tyrosine products appear to be particularly susceptible targets of oxidative and nitrosative stress. We compared fluorescence reagents for their potential use in the analysis of hydroxylated phenylalanine and nitrated tyrosine products with a high-sensitivity and high-specificity HPLC-UV-FL technique. The analytes were extracted from serum via solid-phase extraction on Waters Oasis MCX cartridges. Chromatographic separation was achieved on an ODS column (Capcell Pak MG II; 150 × 2.0 mm) using a gradient mobile phase consisting of 20 mm sodium phosphate buffer (adjusted to pH 3.0) and acetonitrile. The method quantification limit for 4-nitrophenylalanine, m-tyrosine, and 3-nitrotyrosine was 0.1 μm. The relative standard deviation of the precision and accuracy was acceptable at the spiked concentration of 0.1 μm for 4-nitrophenylalanine, m-tyrosine and 3-nitrotyrosine. The method could be used for the in vitro analysis of serum samples.
Collapse
Affiliation(s)
- Yusuke Iwasaki
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rabbani N, Adaikalakoteswari A, Rossing K, Rossing P, Tarnow L, Parving HH, Thornalley PJ. Effect of Irbesartan treatment on plasma and urinary markers of protein damage in patients with type 2 diabetes and microalbuminuria. Amino Acids 2011; 42:1627-39. [DOI: 10.1007/s00726-011-0857-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/16/2011] [Indexed: 01/03/2023]
|
21
|
Thornalley PJ, Rabbani N. Protein damage in diabetes and uremia—identifying hotspots of proteome damage where minimal modification is amplified to marked pathophysiological effect. Free Radic Res 2010; 45:89-100. [DOI: 10.3109/10715762.2010.534162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Coppola L, Pastore A, Adamo G, Coppola A, Manzella D, Gombos I, Luongo M, Mastrolorenzo L. Circulating free nitrotyrosine and cognitive decline. Acta Neurol Scand 2010; 122:175-81. [PMID: 20003087 DOI: 10.1111/j.1600-0404.2009.01286.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine if the circulating nitrotyrosine level significantly correlates with parameters measuring cognitive abilities. MATERIALS AND METHODS One-hundred and twelve community-living subjects (ranging in age from 27 to 98 years) were evaluated for cognitive abilities [Mini Mental State Examination (MMSE) score] and circulating free nitrotyrosine plasma level, as well as for several variables that might influence cognitive abilities (age, education) and nitrotyrosine level (body mass index, haematological parameters, cardiovascular and inflammatory indices). RESULTS In the sub-group of cognitively impaired subjects (score at MMSE < 23.9), but not in that of cognitively not impaired subjects, a significant inverse correlation exists between nitrotyrosine level and MMSE score (r = -0.378; P < 0.02). CONCLUSIONS The finding, if confirmed by longitudinal studies, could play a role in the management of the subjects with Mild Cognitive Impairment, the clinical condition considered as a transitional state between the changes of cognitive ability in normal aging and dementia.
Collapse
Affiliation(s)
- L Coppola
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Analytical methods for 3-nitrotyrosine quantification in biological samples: the unique role of tandem mass spectrometry. Amino Acids 2010; 42:45-63. [DOI: 10.1007/s00726-010-0604-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 04/16/2010] [Indexed: 12/31/2022]
|
24
|
Bechtold U, Rabbani N, Mullineaux PM, Thornalley PJ. Quantitative measurement of specific biomarkers for protein oxidation, nitration and glycation in Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:661-71. [PMID: 19392687 DOI: 10.1111/j.1365-313x.2009.03898.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Higher plants are continually exposed to reactive oxygen and nitrogen species during their lives. Together with glucose and reactive dicarbonyls, these can modify proteins spontaneously, leading to protein oxidation, nitration and glycation. These reactions have the potential to damage proteins and have an impact on physiological processes. The levels of protein oxidation, nitration and glycation adducts were assayed, using liquid chromatography coupled with tandem mass spectrometry, in total leaf extracts over a diurnal cycle and when exposed to conditions that promote oxidative stress. Changes in the levels of oxidation, glycation and nitration adducts were found between the light and dark phases under non-stress conditions. A comparison between wild-type plants and a mutant lacking peptide methionine sulfoxide reductase (pmsr2-1) showed increased protein oxidation, nitration and glycation of specific amino acid residues during darkness in pmsr2-1. Short-term excess light exposure, which promoted oxidative stress, led to increased protein glycation, specifically by glyoxal. This suggested that any increased oxidative damage to proteins was within the repair capacity of the plant. The methods developed here provide the means to simultaneously detect a range of protein oxidation, nitration and glycation adducts within a single sample. Thus, these methods identify a range of biomarkers to monitor a number of distinct biochemical processes that have an impact on the proteome and therefore the physiological state of the plant.
Collapse
Affiliation(s)
- Ulrike Bechtold
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | | | | | | |
Collapse
|
25
|
Rabbani N, Thornalley PJ. Quantitation of Markers of Protein Damage by Glycation, Oxidation, and Nitration in Peritoneal Dialysis. Perit Dial Int 2009. [DOI: 10.1177/089686080902902s10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Proteolysis products of proteins damaged by glycation, oxidation, and nitration—glycated, oxidized, and nitrated amino acids (glycation, oxidation, and nitration free adducts)—are waste products normally excreted in urine and cleared in peritoneal dialysate. Glucose degradation products in peritoneal dialysis (PD) fluids may increase protein damage, giving rise to increased protein glycation, oxidation, and nitration adduct residues of proteins and increased flux of glycation, oxidation, and nitration free adducts. Increased protein damage has been linked to mortality in end-stage renal disease. Reliable quantitation of markers for adducts of protein glycation, oxidation, and nitration is required for mechanistic studies and for morbidity and mortality risk analysis in PD patients. We review the available analytical techniques for such quantitation. Stable isotopic dilution analysis with tandem mass spectrometry is the “gold standard.” This method needs to be applied further in the study of PD and to validate other techniques so that the effect of PD on the metabolism and clearance of damaged proteins and related products can be quantified, and so that best-practice fluid management can be established to minimize cardiovascular risk.
Collapse
Affiliation(s)
- Naila Rabbani
- Warwick Medical School, Clinical Sciences Research Institute, University of Warwick, University Hospital, Coventry, U.K
| | - Paul J. Thornalley
- Warwick Medical School, Clinical Sciences Research Institute, University of Warwick, University Hospital, Coventry, U.K
| |
Collapse
|