1
|
Boram TJ, Benjamin AB, de Sousa AS, Stunkard LM, Stewart TA, Adams TJ, Craft NA, Velázquez-Marrero KG, Ling J, Nice JN, Lohman JR. Activity of Fatty Acid Biosynthesis Initiating Ketosynthase FabH with Acetyl/Malonyl-oxa/aza(dethia)CoAs. ACS Chem Biol 2023; 18:49-58. [PMID: 36626717 PMCID: PMC10311946 DOI: 10.1021/acschembio.2c00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fatty acid and polyketide biosynthetic enzymes exploit the reactivity of acyl- and malonyl-thioesters for catalysis. A prime example is FabH, which initiates fatty acid biosynthesis in many bacteria and plants. FabH performs an acyltransferase reaction with acetyl-CoA to generate an acetyl-S-FabH acyl-enzyme intermediate and subsequent decarboxylative Claisen-condensation with a malonyl-thioester carried by an acyl carrier protein (ACP). We envision that crystal structures of FabH with substrate analogues can provide insight into the conformational changes and enzyme/substrate interactions underpinning the distinct reactions. Here, we synthesize acetyl/malonyl-CoA analogues with esters or amides in place of the thioester and characterize their stability and behavior as Escherichia coli FabH substrates or inhibitors to inform structural studies. We also characterize the analogues with mutant FabH C112Q that mimics the acyl-enzyme intermediate allowing dissection of the decarboxylation reaction. The acetyl- and malonyl-oxa(dethia)CoA analogues undergo extremely slow hydrolysis in the presence of FabH or the C112Q mutant. Decarboxylation of malonyl-oxa(dethia)CoA by FabH or C112Q mutant was not detected. The amide analogues were completely stable to enzyme activity. In enzyme assays with acetyl-CoA and malonyl-CoA (rather than malonyl-ACP) as substrates, acetyl-oxa(dethia)CoA is surprisingly slightly activating, while acetyl-aza(dethia)CoA is a moderate inhibitor. The malonyl-oxa/aza(dethia)CoAs are inhibitors with Ki's near the Km of malonyl-CoA. For comparison, we determine the FabH catalyzed decomposition rates for acetyl/malonyl-CoA, revealing some fundamental catalytic traits of FabH, including hysteresis for malonyl-CoA decarboxylation. The stability and inhibitory properties of the substrate analogues make them promising for structure-function studies to reveal fatty acid and polyketide enzyme/substrate interactions.
Collapse
Affiliation(s)
- Trevor J. Boram
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Aaron B. Benjamin
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Amanda Silva de Sousa
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Lee M. Stunkard
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Taylor A. Stewart
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Timothy J. Adams
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Nicholas A. Craft
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Kevin G. Velázquez-Marrero
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jianheng Ling
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jaelen N. Nice
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jeremy R. Lohman
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| |
Collapse
|
2
|
Chen A, Mindrebo JT, Davis TD, Kim WE, Katsuyama Y, Jiang Z, Ohnishi Y, Noel JP, Burkart MD. Mechanism-based cross-linking probes capture the Escherichia coli ketosynthase FabB in conformationally distinct catalytic states. Acta Crystallogr D Struct Biol 2022; 78:1171-1179. [PMID: 36048156 PMCID: PMC9435599 DOI: 10.1107/s2059798322007434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/10/2022] Open
Abstract
Ketosynthases (KSs) catalyse essential carbon-carbon bond-forming reactions in fatty-acid biosynthesis using a two-step, ping-pong reaction mechanism. In Escherichia coli, there are two homodimeric elongating KSs, FabB and FabF, which possess overlapping substrate selectivity. However, FabB is essential for the biosynthesis of the unsaturated fatty acids (UFAs) required for cell survival in the absence of exogenous UFAs. Additionally, FabB has reduced activity towards substrates longer than 12 C atoms, whereas FabF efficiently catalyses the elongation of saturated C14 and unsaturated C16:1 acyl-acyl carrier protein (ACP) complexes. In this study, two cross-linked crystal structures of FabB in complex with ACPs functionalized with long-chain fatty-acid cross-linking probes that approximate catalytic steps were solved. Both homodimeric structures possess asymmetric substrate-binding pockets suggestive of cooperative relationships between the two FabB monomers when engaged with C14 and C16 acyl chains. In addition, these structures capture an unusual rotamer of the active-site gating residue, Phe392, which is potentially representative of the catalytic state prior to substrate release. These structures demonstrate the utility of mechanism-based cross-linking methods to capture and elucidate conformational transitions accompanying KS-mediated catalysis at near-atomic resolution.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeffrey T. Mindrebo
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Woojoo E. Kim
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yohei Katsuyama
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yasuo Ohnishi
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Joseph P. Noel
- Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Chisuga T, Nagai A, Miyanaga A, Goto E, Kishikawa K, Kudo F, Eguchi T. Structural Insight into the Reaction Mechanism of Ketosynthase-Like Decarboxylase in a Loading Module of Modular Polyketide Synthases. ACS Chem Biol 2022; 17:198-206. [PMID: 34985877 DOI: 10.1021/acschembio.1c00856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ketosynthase-like decarboxylase (KSQ) domains are widely distributed in the loading modules of modular polyketide synthases (PKSs) and are proposed to catalyze the decarboxylation of a malonyl or methylmalonyl unit for the construction of the PKS starter unit. KSQ domains have high sequence similarity to ketosynthase (KS) domains, which catalyze transacylation and decarboxylative condensation in polyketide and fatty acid biosynthesis, except that the catalytic Cys residue of KS domains is replaced by Gln in KSQ domains. Here, we present biochemical analyses of GfsA KSQ and CmiP4 KSQ, which are involved in the biosynthesis of FD-891 and cremimycin, respectively. In vitro analysis showed that these KSQ domains catalyze the decarboxylation of malonyl and methylmalonyl units. Furthermore, we determined the crystal structure of GfsA KSQ in complex with a malonyl thioester substrate analogue, which enabled identification of key amino acid residues involved in the decarboxylation reaction. The importance of these residues was confirmed by mutational analysis. On the basis of these findings, we propose a mechanism of the decarboxylation reaction catalyzed by GfsA KSQ. GfsA KSQ initiates decarboxylation by fixing the substrate in a suitable conformation for decarboxylation. The formation of enolate upon decarboxylation is assisted by two conserved threonine residues. Comparison of the structure of GfsA KSQ with those of KS domains suggests that the Gln residue in the active site of the KSQ domain mimics the acylated Cys residue in the active site of KS domains.
Collapse
Affiliation(s)
- Taichi Chisuga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Akira Nagai
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Ena Goto
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Kosuke Kishikawa
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O̅okayama, Meguro-ku, Tokyo 152-8851, Japan
| |
Collapse
|
4
|
Sulpizio A, Crawford CEW, Koweek RS, Charkoudian LK. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. J Biol Chem 2021; 296:100328. [PMID: 33493513 PMCID: PMC7949117 DOI: 10.1016/j.jbc.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.
Collapse
Affiliation(s)
- Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | | - Rebecca S Koweek
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | |
Collapse
|
5
|
Vickery CR, McCulloch IP, Sonnenschein EC, Beld J, Noel JP, Burkart MD. Dissecting modular synthases through inhibition: A complementary chemical and genetic approach. Bioorg Med Chem Lett 2020; 30:126820. [PMID: 31812466 DOI: 10.1016/j.bmcl.2019.126820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/23/2023]
Abstract
Modular synthases, such as fatty acid, polyketide, and non-ribosomal peptide synthases (NRPSs), are sophisticated machineries essential in both primary and secondary metabolism. Various techniques have been developed to understand their genetic background and enzymatic abilities. However, uncovering the actual biosynthetic pathways remains challenging. Herein, we demonstrate a pipeline to study an assembly line synthase by interrogating the enzymatic function of each individual enzymatic domain of BpsA, a NRPS that produces the blue 3,3'-bipyridyl pigment indigoidine. Specific inhibitors for each biosynthetic domain of BpsA were obtained or synthesized, and the enzymatic performance of BpsA upon addition of each inhibitor was monitored by pigment development in vitro and in living bacteria. The results were verified using genetic mutants to inactivate each domain. Finally, the results complemented the currently proposed biosynthetic pathway of BpsA.
Collapse
Affiliation(s)
- Christopher R Vickery
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ian P McCulloch
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Eva C Sonnenschein
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA
| | - Joseph P Noel
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| |
Collapse
|
6
|
Miyanaga A, Ouchi R, Ishikawa F, Goto E, Tanabe G, Kudo F, Eguchi T. Structural Basis of Protein–Protein Interactions between a trans-Acting Acyltransferase and Acyl Carrier Protein in Polyketide Disorazole Biosynthesis. J Am Chem Soc 2018; 140:7970-7978. [DOI: 10.1021/jacs.8b04162] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Risako Ouchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Ena Goto
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
7
|
Dhivya S, Baskar V, Kumar SR, Sathishkumar R. An immunoinformatics approach to define T cell epitopes from polyketide and non-ribosomal peptide synthesis proteins ofMycobacterium tuberculosisas potential vaccine candidates. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/08/2017] [Accepted: 10/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- S. Dhivya
- Plant Genetic Engineering Laboratory, Department of Biotechnology; Bharathiar University; Coimbatore India
| | - V. Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology; Bharathiar University; Coimbatore India
| | - S. R. Kumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology; Bharathiar University; Coimbatore India
| | - R. Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology; Bharathiar University; Coimbatore India
| |
Collapse
|
8
|
The Catalytic Mechanism of the Class C Radical S
-Adenosylmethionine Methyltransferase NosN. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Ding W, Li Y, Zhao J, Ji X, Mo T, Qianzhu H, Tu T, Deng Z, Yu Y, Chen F, Zhang Q. The Catalytic Mechanism of the Class C Radical S-Adenosylmethionine Methyltransferase NosN. Angew Chem Int Ed Engl 2017; 56:3857-3861. [PMID: 28112859 DOI: 10.1002/anie.201609948] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Indexed: 12/23/2022]
Abstract
S-Adenosylmethionine (SAM) is one of the most common co-substrates in enzyme-catalyzed methylation reactions. Most SAM-dependent reactions proceed through an SN 2 mechanism, whereas a subset of them involves radical intermediates for methylating non-nucleophilic substrates. Herein, we report the characterization and mechanistic investigation of NosN, a class C radical SAM methyltransferase involved in the biosynthesis of the thiopeptide antibiotic nosiheptide. We show that, in contrast to all known SAM-dependent methyltransferases, NosN does not produce S-adenosylhomocysteine (SAH) as a co-product. Instead, NosN converts SAM into 5'-methylthioadenosine as a direct methyl donor, employing a radical-based mechanism for methylation and releasing 5'-thioadenosine as a co-product. A series of biochemical and computational studies allowed us to propose a comprehensive mechanism for NosN catalysis, which represents a new paradigm for enzyme-catalyzed methylation reactions.
Collapse
Affiliation(s)
- Wei Ding
- Department of Chemistry, Fudan University, Shanghai, 200433, China.,School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongzhen Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Junfeng Zhao
- Department of Chemistry, Fudan University, Shanghai, 200433, China.,Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tianlu Mo
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Haocheng Qianzhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Tao Tu
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zixin Deng
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yi Yu
- Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fener Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
10
|
Khater S, Anand S, Mohanty D. In silico methods for linking genes and secondary metabolites: The way forward. Synth Syst Biotechnol 2016; 1:80-88. [PMID: 29062931 PMCID: PMC5640692 DOI: 10.1016/j.synbio.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 11/26/2022] Open
Abstract
In silico methods for linking genomic space to chemical space have played a crucial role in genomics driven discovery of new natural products as well as biosynthesis of altered natural products by engineering of biosynthetic pathways. Here we give an overview of available computational tools and then briefly describe a novel computational framework, namely retro-biosynthetic enumeration of biosynthetic reactions, which can add to the repertoire of computational tools available for connecting natural products to their biosynthetic gene clusters. Most of the currently available bioinformatics tools for analysis of secondary metabolite biosynthetic gene clusters utilize the “Genes to Metabolites” approach. In contrast to the “Genes to Metabolites” approach, the “Metabolites to Genes” or retro-biosynthetic approach would involve enumerating the various biochemical transformations or enzymatic reactions which would generate the given chemical moiety starting from a set of precursor molecules and identifying enzymatic domains which can potentially catalyze the enumerated biochemical transformations. In this article, we first give a brief overview of the presently available in silico tools and approaches for analysis of secondary metabolite biosynthetic pathways. We also discuss our preliminary work on development of algorithms for retro-biosynthetic enumeration of biochemical transformations to formulate a novel computational method for identifying genes associated with biosynthesis of a given polyketide or nonribosomal peptide.
Collapse
Affiliation(s)
- Shradha Khater
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swadha Anand
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasisa Mohanty
- Bioinformatics Center, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
11
|
Shakya G, Rivera H, Lee DJ, Jaremko MJ, La Clair JJ, Fox DT, Haushalter RW, Schaub AJ, Bruegger J, Barajas JF, White AR, Kaur P, Gwozdziowski ER, Wong F, Tsai SC, Burkart MD. Modeling linear and cyclic PKS intermediates through atom replacement. J Am Chem Soc 2014; 136:16792-9. [PMID: 25406716 PMCID: PMC4277753 DOI: 10.1021/ja5064857] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Indexed: 11/30/2022]
Abstract
The mechanistic details of many polyketide synthases (PKSs) remain elusive due to the instability of transient intermediates that are not accessible via conventional methods. Here we report an atom replacement strategy that enables the rapid preparation of polyketone surrogates by selective atom replacement, thereby providing key substrate mimetics for detailed mechanistic evaluations. Polyketone mimetics are positioned on the actinorhodin acyl carrier protein (actACP) to probe the underpinnings of substrate association upon nascent chain elongation and processivity. Protein NMR is used to visualize substrate interaction with the actACP, where a tetraketide substrate is shown not to bind within the protein, while heptaketide and octaketide substrates show strong association between helix II and IV. To examine the later cyclization stages, we extended this strategy to prepare stabilized cyclic intermediates and evaluate their binding by the actACP. Elongated monocyclic mimics show much longer residence time within actACP than shortened analogs. Taken together, these observations suggest ACP-substrate association occurs both before and after ketoreductase action upon the fully elongated polyketone, indicating a key role played by the ACP within PKS timing and processivity. These atom replacement mimetics offer new tools to study protein and substrate interactions and are applicable to a wide variety of PKSs.
Collapse
Affiliation(s)
- Gaurav Shakya
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Heriberto Rivera
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - D. John Lee
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Matt J. Jaremko
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J. La Clair
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Daniel T. Fox
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Robert W. Haushalter
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Andrew J. Schaub
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Joel Bruegger
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Jesus F. Barajas
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Alexander R. White
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Parminder Kaur
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Emily R. Gwozdziowski
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Fiona Wong
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Shiou-Chuan Tsai
- Departments
of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical
Sciences, University of California, Irvine, California 92697, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
12
|
L. Schwan A, Gh. Shkoor M, Nikoloska I. Introducing the Diels-Alder Reactivity of 2-Furanmethanethiol with Selected Maleic Acid Derivatives. HETEROCYCLES 2014. [DOI: 10.3987/com-13-s(s)112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Beld J, Sonnenschein EC, Vickery CR, Noel JP, Burkart MD. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Nat Prod Rep 2014; 31:61-108. [PMID: 24292120 PMCID: PMC3918677 DOI: 10.1039/c3np70054b] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: up to 2013. Although holo-acyl carrier protein synthase, AcpS, a phosphopantetheinyl transferase (PPTase), was characterized in the 1960s, it was not until the publication of the landmark paper by Lambalot et al. in 1996 that PPTases garnered wide-spread attention being classified as a distinct enzyme superfamily. In the past two decades an increasing number of papers have been published on PPTases ranging from identification, characterization, structure determination, mutagenesis, inhibition, and engineering in synthetic biology. In this review, we comprehensively discuss all current knowledge on this class of enzymes that post-translationally install a 4'-phosphopantetheine arm on various carrier proteins.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | | | | | |
Collapse
|
14
|
Dunn BJ, Khosla C. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J R Soc Interface 2013; 10:20130297. [PMID: 23720536 DOI: 10.1098/rsif.2013.0297] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polyketide natural products act as a broad range of therapeutics, including antibiotics, immunosuppressants and anti-cancer agents. This therapeutic diversity stems from the structural diversity of these small molecules, many of which are produced in an assembly line manner by modular polyketide synthases. The acyltransferase (AT) domains of these megasynthases are responsible for selection and incorporation of simple monomeric building blocks, and are thus responsible for a large amount of the resulting polyketide structural diversity. The substrate specificity of these domains is often targeted for engineering in the generation of novel, therapeutically active natural products. This review outlines recent developments that can be used in the successful engineering of these domains, including AT sequence and structural data, mechanistic insights and the production of a diverse pool of extender units. It also provides an overview of previous AT domain engineering attempts, and concludes with proposed engineering approaches that take advantage of current knowledge. These approaches may lead to successful production of biologically active 'unnatural' natural products.
Collapse
Affiliation(s)
- Briana J Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
15
|
Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel) 2013; 5:717-42. [PMID: 23604065 PMCID: PMC3705289 DOI: 10.3390/toxins5040717] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/22/2013] [Accepted: 04/10/2013] [Indexed: 01/07/2023] Open
Abstract
Polyketide synthase (PKSs) and nonribosomal peptide synthetase (NRPSs) are large multimodular enzymes involved in biosynthesis of polyketide and peptide toxins produced by fungi. Furthermore, hybrid enzymes, in which a reducing PKS region is fused to a single NRPS module, are also responsible of the synthesis of peptide-polyketide metabolites in fungi. The genes encoding for PKSs and NRPSs have been exposed to complex evolutionary mechanisms, which have determined the great number and diversity of metabolites. In this study, we considered the most important polyketide and peptide mycotoxins and, for the first time, a phylogenetic analysis of both PKSs and NRPSs involved in their biosynthesis was assessed using two domains for each enzyme: β-ketosynthase (KS) and acyl-transferase (AT) for PKSs; adenylation (A) and condensation (C) for NRPSs. The analysis of both KS and AT domains confirmed the differentiation of the three classes of highly, partially and non-reducing PKSs. Hybrid PKS-NRPSs involved in mycotoxins biosynthesis grouped together in the phylogenetic trees of all the domains analyzed. For most mycotoxins, the corresponding biosynthetic enzymes from distinct fungal species grouped together, except for PKS and NRPS involved in ochratoxin A biosynthesis, for which an unlike process of evolution could be hypothesized in different species.
Collapse
Affiliation(s)
- Antonia Gallo
- Institute of Sciences of Food Production ISPA, National Research Council CNR, Bari, Italy.
| | | | | |
Collapse
|
16
|
Reyes CP, Clair JJL, Burkart MD. Metabolic probes for imaging endosymbiotic bacteria within toxic dinoflagellates. Chem Commun (Camb) 2010; 46:8151-3. [DOI: 10.1039/c0cc02876b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|