1
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Chlubek D, Baranowska-Bosiacka I. Bioinformatic Analysis of the CXCR2 Ligands in Cancer Processes. Int J Mol Sci 2023; 24:13287. [PMID: 37686093 PMCID: PMC10487711 DOI: 10.3390/ijms241713287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Human CXCR2 has seven ligands, i.e., CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8/IL-8-chemokines with nearly identical properties. However, no available study has compared the contribution of all CXCR2 ligands to cancer progression. That is why, in this study, we conducted a bioinformatic analysis using the GEPIA, UALCAN, and TIMER2.0 databases to investigate the role of CXCR2 ligands in 31 different types of cancer, including glioblastoma, melanoma, and colon, esophageal, gastric, kidney, liver, lung, ovarian, pancreatic, and prostate cancer. We focused on the differences in the regulation of expression (using the Tfsitescan and miRDB databases) and analyzed mutation types in CXCR2 ligand genes in cancers (using the cBioPortal). The data showed that the effect of CXCR2 ligands on prognosis depends on the type of cancer. CXCR2 ligands were associated with EMT, angiogenesis, recruiting neutrophils to the tumor microenvironment, and the count of M1 macrophages. The regulation of the expression of each CXCR2 ligand was different and, thus, each analyzed chemokine may have a different function in cancer processes. Our findings suggest that each type of cancer has a unique pattern of CXCR2 ligand involvement in cancer progression, with each ligand having a unique regulation of expression.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska Str. 54, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24087262. [PMID: 37108425 PMCID: PMC10139049 DOI: 10.3390/ijms24087262] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
C-X-C motif chemokine ligand 1 (CXCL1) is a member of the CXC chemokine subfamily and a ligand for CXCR2. Its main function in the immune system is the chemoattraction of neutrophils. However, there is a lack of comprehensive reviews summarizing the significance of CXCL1 in cancer processes. To fill this gap, this work describes the clinical significance and participation of CXCL1 in cancer processes in the most important reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer, and prostate cancer. The focus is on both clinical aspects and the significance of CXCL1 in molecular cancer processes. We describe the association of CXCL1 with clinical features of tumors, including prognosis, ER, PR and HER2 status, and TNM stage. We present the molecular contribution of CXCL1 to chemoresistance and radioresistance in selected tumors and its influence on the proliferation, migration, and invasion of tumor cells. Additionally, we present the impact of CXCL1 on the microenvironment of reproductive cancers, including its effect on angiogenesis, recruitment, and function of cancer-associated cells (macrophages, neutrophils, MDSC, and Treg). The article concludes by summarizing the significance of introducing drugs targeting CXCL1. This paper also discusses the significance of ACKR1/DARC in reproductive cancers.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
The Potential Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Cardiovascular System, Respiratory System and Skin. Int J Mol Sci 2022; 24:ijms24010205. [PMID: 36613652 PMCID: PMC9820720 DOI: 10.3390/ijms24010205] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, we present a literature review of the role of CXC motif chemokine ligand 1 (CXCL1) in physiology, and in selected major non-cancer diseases of the cardiovascular system, respiratory system and skin. CXCL1, a cytokine belonging to the CXC sub-family of chemokines with CXC motif chemokine receptor 2 (CXCR2) as its main receptor, causes the migration and infiltration of neutrophils to the sites of high expression. This implicates CXCL1 in many adverse conditions associated with inflammation and the accumulation of neutrophils. The aim of this study was to describe the significance of CXCL1 in selected diseases of the cardiovascular system (atherosclerosis, atrial fibrillation, chronic ischemic heart disease, hypertension, sepsis including sepsis-associated encephalopathy and sepsis-associated acute kidney injury), the respiratory system (asthma, chronic obstructive pulmonary disease (COPD), chronic rhinosinusitis, coronavirus disease 2019 (COVID-19), influenza, lung transplantation and ischemic-reperfusion injury and tuberculosis) and the skin (wound healing, psoriasis, sunburn and xeroderma pigmentosum). Additionally, the significance of CXCL1 is described in vascular physiology, such as the effects of CXCL1 on angiogenesis and arteriogenesis.
Collapse
|
6
|
Artinger M, Gerken OJ, Purvanov V, Legler DF. Distinct Fates of Chemokine and Surrogate Molecule Gradients: Consequences for CCR7-Guided Dendritic Cell Migration. Front Immunol 2022; 13:913366. [PMID: 35769489 PMCID: PMC9234131 DOI: 10.3389/fimmu.2022.913366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Chemokine-guided leukocyte migration is a hallmark of the immune system to cope with invading pathogens. Intruder confronted dendritic cells (DCs) induce the expression of the chemokine receptor CCR7, which enables them to sense and migrate along chemokine gradients to home to draining lymph nodes, where they launch an adaptive immune response. Chemokine-mediated DC migration is recapitulated and intensively studied in 3D matrix migration chambers. A major caveat in the field is that chemokine gradient formation and maintenance in such 3D environments is generally not assessed. Instead, fluorescent probes, mostly labelled dextran, are used as surrogate molecules, thereby neglecting important electrochemical properties of the chemokines. Here, we used site-specifically, fluorescently labelled CCL19 and CCL21 to study the establishment and shape of the chemokine gradients over time in the 3D collagen matrix. We demonstrate that CCL19 and particularly CCL21 establish stable, but short-distance spanning gradients with an exponential decay-like shape. By contrast, dextran with its neutral surface charge forms a nearly linear gradient across the entire matrix. We show that the charged C-terminal tail of CCL21, known to interact with extracellular matrix proteins, is determinant for shaping the chemokine gradient. Importantly, DCs sense differences in the shape of CCL19 and CCL21 gradients, resulting in distinct spatial migratory responses.
Collapse
Affiliation(s)
- Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Oliver J. Gerken
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, Konstanz, Germany
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
- *Correspondence: Daniel F. Legler,
| |
Collapse
|
7
|
CXCR2 Receptor: Regulation of Expression, Signal Transduction, and Involvement in Cancer. Int J Mol Sci 2022; 23:ijms23042168. [PMID: 35216283 PMCID: PMC8878198 DOI: 10.3390/ijms23042168] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/25/2023] Open
Abstract
Chemokines are a group of about 50 chemotactic cytokines crucial for the migration of immune system cells and tumor cells, as well as for metastasis. One of the 20 chemokine receptors identified to date is CXCR2, a G-protein-coupled receptor (GPCR) whose most known ligands are CXCL8 (IL-8) and CXCL1 (GRO-α). In this article we present a comprehensive review of literature concerning the role of CXCR2 in cancer. We start with regulation of its expression at the transcriptional level and how this regulation involves microRNAs. We show the mechanism of CXCR2 signal transduction, in particular the action of heterotrimeric G proteins, phosphorylation, internalization, intracellular trafficking, sequestration, recycling, and degradation of CXCR2. We discuss in detail the mechanism of the effects of activated CXCR2 on the actin cytoskeleton. Finally, we describe the involvement of CXCR2 in cancer. We focused on the importance of CXCR2 in tumor processes such as proliferation, migration, and invasion of tumor cells as well as the effects of CXCR2 activation on angiogenesis, lymphangiogenesis, and cellular senescence. We also discuss the importance of CXCR2 in cell recruitment to the tumor niche including tumor-associated neutrophils (TAN), tumor-associated macrophages (TAM), myeloid-derived suppressor cells (MDSC), and regulatory T (Treg) cells.
Collapse
|
8
|
The CXCR4-Dependent LASP1-Ago2 Interaction in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092455. [PMID: 32872485 PMCID: PMC7564666 DOI: 10.3390/cancers12092455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
The CXCR4-LASP1 axis is an emerging target in the field of breast cancer metastasis. C-X-C chemokine receptor type 4 (CXCR4) mediates directed cell migration when activated by its cognate ligand CXCL12. LIM and SH3 Protein 1 (LASP1) is a critical node in the CXCR4 signaling pathway, as its deficiency blocks CXCR4-dependent Matrigel invasion. The mechanism by which LASP1 facilitates this invasive ability of tumor cells when CXCR4 is activated is unknown. Our previous proteomics work had revealed several components of the RNA interference (RNAi) machinery as being potential LASP1 interacting proteins. Here we report that argonaute 2 (Ago2), a protein with central involvement in RNAi, associates with LASP1 in triple-negative breast cancer (TNBC) cells. We demonstrate that LASP1 co-immunoprecipitates with Ago2 endogenously in a CXCL12-dependent manner, with further confirmation of this interaction by proximity ligation assay. Furthermore, this association is specific to CXCR4 as it can be abrogated by the CXCR4 antagonist, AMD3465. By GST-pulldown approach, we identify that LASP1 directly binds to Ago2 through its LIM and SH3 domains, and that this binding is dictated by the S146 and Y171 phosphorylation sites of LASP1. Additionally, the phosphorylation status of LASP1 affected tumor suppressor microRNA (miRNA) Let-7a-guided Ago2 activity. Levels of several endogenous targets of Let-7a were found to be altered including C-C chemokine receptor type 7 (CCR7), which is another critical chemokine receptor involved in metastasis to lymph nodes. Our results suggest a novel role for the LASP1-Ago2 module in shaping the RNAi landscape, functionally impacting the invasive ability of cancer cells.
Collapse
|
9
|
Role of the CXCR4-LASP1 Axis in the Stabilization of Snail1 in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:cancers12092372. [PMID: 32825729 PMCID: PMC7563118 DOI: 10.3390/cancers12092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.
Collapse
|
10
|
Deftu AT, Ciorescu R, Gheorghe RO, Mihăilescu D, Ristoiu V. CXCL1 and CXCL2 Inhibit the Axon Outgrowth in a Time- and Cell-Type-Dependent Manner in Adult Rat Dorsal Root Ganglia Neurons. Neurochem Res 2019; 44:2215-2229. [PMID: 31422522 DOI: 10.1007/s11064-019-02861-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
The ability to regrow their axons after an injury is a hallmark of neurons in peripheral nervous system which distinguish them from central nervous system neurons. This ability is influenced by their intrinsic capacity to regrow and by the extracellular environment which needs to be supportive of regrowth. CXCL1 [Chemokine (C-X-C motif) Ligand 1] and CXCL2 [Chemokine (C-X-C motif) Ligand 2] are two low-molecular-weight chemokines which can influence neuronal proliferation, differentiation and neurogenesis, but which are also upregulated by injury or inflammation. In this study we investigated the effects of long-term incubation (24, 48 and 72 h) with different concentrations of CXCL1 (0.4, 4 or 40 nM) or CXCL2 (0.36, 3.6 or 36 nM) on the axon outgrowth of adult rat dorsal root ganglia neurons in culture. The results showed that both chemokines significantly inhibited the axon outgrowth, with large and medium NF200 (NeuroFilament 200) (+) dorsal root ganglia neurons affected quicker, compared to small IB4 (Isolectin B4) (+) dorsal root ganglia neurons which were affected after longer exposure. Blocking CXCR2 (C-X-C motif chemokine receptor 2) which mediates the effects of CXCL1 and CXCL2 prevented these effects, suggesting that CXCR2 may represent a new therapeutic target for promoting the axon outgrowth after a peripheral nerve injury.
Collapse
Affiliation(s)
- Antonia Teona Deftu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Ruxandra Ciorescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Dan Mihăilescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania.
| |
Collapse
|
11
|
Howard CM, Bearss N, Subramaniyan B, Tilley A, Sridharan S, Villa N, Fraser CS, Raman D. The CXCR4-LASP1-eIF4F Axis Promotes Translation of Oncogenic Proteins in Triple-Negative Breast Cancer Cells. Front Oncol 2019; 9:284. [PMID: 31106142 PMCID: PMC6499106 DOI: 10.3389/fonc.2019.00284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) remains clinically challenging as effective targeted therapies are lacking. In addition, patient mortality mainly results from the metastasized lesions. CXCR4 has been identified to be one of the major chemokine receptors involved in breast cancer metastasis. Previously, our lab had identified LIM and SH3 Protein 1 (LASP1) to be a key mediator in CXCR4-driven invasion. To further investigate the role of LASP1 in this process, a proteomic screen was employed and identified a novel protein-protein interaction between LASP1 and components of eukaryotic initiation 4F complex (eIF4F). We hypothesized that activation of the CXCR4-LASP1-eIF4F axis may contribute to the preferential translation of oncogenic mRNAs leading to breast cancer progression and metastasis. To test this hypothesis, we first confirmed that the gene expression of CXCR4, LASP1, and eIF4A are upregulated in invasive breast cancer. Moreover, we demonstrate that LASP1 associated with eIF4A in a CXCL12-dependent manner via a proximity ligation assay. We then confirmed this finding, and the association of LASP1 with eIF4B via co-immunoprecipitation assays. Furthermore, we show that LASP1 can interact with eIF4A and eIF4B through a GST-pulldown approach. Activation of CXCR4 signaling increased the translation of oncoproteins downstream of eIF4A. Interestingly, genetic silencing of LASP1 interrupted the ability of eIF4A to translate oncogenic mRNAs into oncoproteins. This impaired ability of eIF4A was confirmed by a previously established 5′UTR luciferase reporter assay. Finally, lack of LASP1 sensitizes 231S cells to pharmacological inhibition of eIF4A by Rocaglamide A as evident through BIRC5 expression. Overall, our work identified the CXCR4-LASP1 axis to be a novel mediator in oncogenic protein translation. Thus, our axis of study represents a potential target for future TNBC therapies.
Collapse
Affiliation(s)
- Cory M Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nicole Bearss
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Nancy Villa
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Christopher S Fraser
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
12
|
Butt E, Raman D. New Frontiers for the Cytoskeletal Protein LASP1. Front Oncol 2018; 8:391. [PMID: 30298118 PMCID: PMC6160563 DOI: 10.3389/fonc.2018.00391] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023] Open
Abstract
In the recent two decades, LIM and SH3 protein 1 (LASP1) has been developed from a simple actin-binding structural protein to a tumor biomarker and subsequently to a complex, nuclear transcriptional regulator. Starting with a brief historical perspective, this review will mainly compare and contrast LASP1 and LASP2 from the angle of the newest data and importantly, examine their role in transcriptional regulation. We will summarize the current knowledge through pictorial models and tables including the roles of different microRNAs in the differential regulation of LASP1 levels and patient outcome rather than specify in detail all tumor entities. Finally, the novel functional roles of LASP1 in secretion of vesicles, expression of matrix metalloproteinases and transcriptional regulation as well as the activation of survival and proliferation pathways in different cancer types are described.
Collapse
Affiliation(s)
- Elke Butt
- Institute for Experimental Biomedicine II, University Clinic, Wuerzburg, Germany
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| |
Collapse
|
13
|
Deftu AF, Filippi A, Gheorghe RO, Ristoiu V. CXCL1 activates TRPV1 via Gi/o protein and actin filaments. Life Sci 2017; 193:282-291. [PMID: 28966134 DOI: 10.1016/j.lfs.2017.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
AIMS CXCL1 is a chemokine with pleiotropic effects, including pain and itch. Itch, an unpleasant sensation that elicits the desire or reflex to scratch, it is evoked mainly from the skin and implicates activation of a specific subset of IB4+, C-type primary afferents. In previous studies we showed that acute application of CXCL1 induced a Ca2+ influx of low amplitude and slow kinetics in a subpopulation of transient receptor potential vanilloid type 1 (TRPV1)+/isolectin B4 (IB4)+dorsal root ganglia neurons which also responded to other itch-inducing agents. In this study we explored the mechanism behind the Ca2+ influx to better understand how CXCL1 acts on primary sensitive neurons to induce itch. MATERIALS AND METHODS Intracellular Ca2+ imaging and patch-clamp recordings on dorsal root ganglia neurons primary cultures and HEK293T cell transiently transfected with TRPV1 and CXCR2 plasmids were used to investigate the acute effect (12min application) of 4nM CXCL1. In primary cultures, the focus was on TRPV1+/IB4+ cells to which the itch-sensitive neurons belong. KEY FINDINGS The results showed that the Ca2+ influx induced by the acute application of CXCL1 is mediated mainly by TRPV1 receptors and depends on extracellular Ca2+ not on intracellular stores. TRPV1 was activated, not sensitized by CXCL1, in a CXCR2 receptors- and actin filaments-dependent manner, since specific blockers and actin depolymerizing agents disrupted the CXCL1 effect. SIGNIFICANCE This study brings additional data about the itch inducing mechanism of CXCL1 chemokine and about a new mechanism of TRPV1 activation via actin filaments.
Collapse
Affiliation(s)
- Alexandru Florian Deftu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania
| | - Alexandru Filippi
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania; Department of Medical Biophysics, University of Medicine and Pharmacy "Carol Davila", Bulevardul Eroilor Sanitari 8, 050474 Bucharest, Romania
| | - Roxana Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095 Bucharest, Romania.
| |
Collapse
|
14
|
Ramhorst R, Grasso E, Paparini D, Hauk V, Gallino L, Calo G, Vota D, Pérez Leirós C. Decoding the chemokine network that links leukocytes with decidual cells and the trophoblast during early implantation. Cell Adh Migr 2016; 10:197-207. [PMID: 26891097 DOI: 10.1080/19336918.2015.1135285] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chemokine network is central to the innate and adaptive immunity and entails a variety of proteins and membrane receptors that control physiological processes such as wound healing, angiogenesis, embryo growth and development. During early pregnancy, the chemokine network coordinates not only the recruitment of different leukocyte populations to generate the maternal-placental interface, but also constitutes an additional checkpoint for tissue homeostasis maintenance. The normal switch from a pro-inflammatory to an anti-inflammatory predominant microenvironment characteristic of the post-implantation stage requires redundant immune tolerance circuits triggered by key master regulators. In this review we will focus on the recruitment and conditioning of maternal immune cells to the uterus at the early implantation period with special interest on high plasticity macrophages and dendritic cells and their ability to induce regulatory T cells. We will also point to putative immunomodulatory polypeptides involved in immune homeostasis maintenance at the maternal-placental interface.
Collapse
Affiliation(s)
- Rosanna Ramhorst
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Esteban Grasso
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Daniel Paparini
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Vanesa Hauk
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Lucila Gallino
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Guillermina Calo
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Daiana Vota
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| | - Claudia Pérez Leirós
- a Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET , Buenos Aires , Argentina
| |
Collapse
|
15
|
LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene 2015; 35:1122-33. [PMID: 25982273 PMCID: PMC4651668 DOI: 10.1038/onc.2015.166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 12/30/2022]
Abstract
Nuclear LASP-1 has a direct correlation with overall survival of breast cancer patients. In this study, immunohistochemical analysis of a human breast TMA showed that LASP-1 is absent in normal human breast epithelium but the expression increases with malignancy and is highly nuclear in aggressive breast cancer. We investigated whether the chemokines and growth factors present in the tumor microenvironment could trigger nuclear translocation of LASP-1.Treatment of human breast cancer cells with CXCL12, EGF and Heregulin and HMEC-CXCR2 cells with CXCL8 facilitated nuclear shuttling of LASP-1. Data from the biochemical analysis of the nuclear and cytosolic fractions further confirmed the nuclear translocation of LASP-1 upon chemokine and growth factor treatment. CXCL12-dependent nuclear import of LASP-1 could be blocked by CXCR4 antagonist, AMD-3100. Knock down of LASP-1 resulted in alterations in gene expression leading to an increased level of cell junction and extracellular matrix proteins and an altered cytokine secretory profile. Three dimensional cultures of human breast cancer cells on Matrigel revealed an altered colony growth, morphology and arborization pattern in LASP-1 knock down cells. Functional analysis of the LASP-1 knock down cells revealed increased adhesion to collagen IV and decreased invasion through the Matrigel. Proteomics analysis of immunoprecipitates of LASP-1 and subsequent validation approaches revealed that LASP-1associated with the epigenetic machinery especially UHRF1, DNMT1, G9a and the transcription factor Snail1. Interestingly, LASP-1 associated with UHRF1, G9a, Snail1 and di- and tri-methylated histoneH3 in a CXCL12-dependent manner based on immunoprecipitation and proximity ligation assays. LASP-1 also directly bound to Snail1 which may stabilize Snail1. Thus, nuclear LASP-1 appears to functionally serve as a hub for the epigenetic machinery.
Collapse
|
16
|
Raman D, Sai J, Hawkins O, Richmond A. Adaptor protein2 (AP2) orchestrates CXCR2-mediated cell migration. Traffic 2014; 15:451-69. [PMID: 24450359 DOI: 10.1111/tra.12154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022]
Abstract
The chemokine receptor CXCR2 is vital for inflammation, wound healing, angiogenesis, cancer progression and metastasis. Adaptor protein 2 (AP2), a clathrin binding heterotetrameric protein comprised of α, β2, μ2 and σ2 subunits, facilitates clathrin-mediated endocytosis. Mutation of the LLKIL motif in the CXCR2 carboxyl-terminal domain (CTD) results in loss of AP2 binding to the receptor and loss of ligand-mediated receptor internalization and chemotaxis. AP2 knockdown also results in diminished ligand-mediated CXCR2 internalization, polarization and chemotaxis. Using knockdown/rescue approaches with AP2-μ2 mutants, the binding domains were characterized in reference to CXCR2 internalization and chemotaxis. When in an open conformation, μ2 Patch 1 and Patch 2 domains bind tightly to membrane PIP2 phospholipids. When AP2-μ2, is replaced with μ2 mutated in Patch 1 and/or Patch 2 domains, ligand-mediated receptor binding and internalization are not lost. However, chemotaxis requires AP2-μ2 Patch 1, but not Patch 2. AP2-σ2 has been demonstrated to bind dileucine motifs to facilitate internalization. Expression of AP2-σ2 V88D and V98S dominant negative mutants resulted in loss of CXCR2 mediated chemotaxis. Thus, AP2 binding to both membrane phosphatidylinositol phospholipids and dileucine motifs is crucial for directional migration or chemotaxis. Moreover, AP2-mediated receptor internalization can be dissociated from AP2-mediated chemotaxis.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | | | | | | |
Collapse
|
17
|
Evaluation of antibody–chemokine fusion proteins for tumor-targeting applications. Exp Biol Med (Maywood) 2014; 239:842-852. [DOI: 10.1177/1535370214536667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There is an increasing biotechnological interest in the ‘arming’ of therapeutic antibodies with bioactive payloads. While many antibody–cytokine fusion proteins have been extensively investigated in preclinical and clinical studies, there are only few reports related to antibody–chemokine fusion proteins (‘immunochemokines’). Here, we describe the cloning, expression, and characterization of 10 immunochemokines based on the monoclonal antibody F8, specific to the alternatively spliced extra domain A (EDA) of fibronectin, a marker of angiogenesis. Among the 10 murine chemokines tested in our study, only CCL19, CCL20, CCL21, and CXCL10 could be expressed and isolated at acceptable purity levels as F8-based fusion proteins. The immunochemokines retained the binding characteristics of the parental antibody, but could not be characterized by gel-filtration analysis, an analytical limitation which had previously been observed in our laboratory for the unconjugated chemokines. When radioiodinated preparations of CCL19-F8, CCL20-F8, CCL21-F8, and CXCL10-F8 were tested in quantitative biodistribution studies in tumor-bearing mice, the four fusion proteins failed to preferentially accumulate at the tumor site, while the unconjugated parental antibody displayed a tumor:blood ratio >20:1, 24 h after intravenous (i.v.) administration. The tumor-targeting ability of CCL19-F8 could be rescued only in part by preadministration of unlabeled CCL19-F8, indicating that a chemokine trapping mechanism may hinder pharmacodelivery strategies. While this article highlights expression, analytical, and biodistribution challenges associated with the antibody-based in vivo delivery of chemokines at sites of disease, it provides the first comprehensive report in this field and may facilitate future studies with immunochemokines.
Collapse
|
18
|
Chemokine receptors in epithelial ovarian cancer. Int J Mol Sci 2013; 15:361-76. [PMID: 24384839 PMCID: PMC3907814 DOI: 10.3390/ijms15010361] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 01/03/2023] Open
Abstract
Ovarian carcinoma is the deadliest gynecologic malignancy with very poor rate of survival, and it is characterized by the presence of vast incurable peritoneal metastasis. Studies of the role of chemokine receptors, a family of proteins belonging to the group of G protein-coupled receptors, in ovarian carcinoma strongly placed this family of membrane receptors as major regulators of progression of this malignancy. In this review, we will discuss the roles that chemokine-receptor interactions play to support angiogenesis, cell proliferation, migration, adhesion, invasion, metastasis, and immune evasion in progression of ovarian carcinoma. Data regarding the role that the chemokine receptors play in the disease progression accumulated insofar strongly suggest that this family of proteins could be good therapeutic targets against ovarian carcinoma.
Collapse
|
19
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 680] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pérez Leirós C, Ramhorst R. Tolerance induction at the early maternal-placental interface through selective cell recruitment and targeting by immune polypeptides. Am J Reprod Immunol 2013; 69:359-68. [PMID: 23405982 DOI: 10.1111/aji.12087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/07/2013] [Indexed: 12/12/2022] Open
Abstract
Pregnancy challenges immune cells and immunomodulatory circuits of the mother and the developing fetus to dynamically adapt to each other in an homeostatic and tolerant environment for fetal growth. This entails the coordination of multiple cellular processes all devoted to accommodate and nourish the fetus while protecting the mother from endogenous and exogenous threatens. From the earliest stages of pregnancy, several strategies to efficiently communicate immune and trophoblast cells within the interface or at a distance were identified and chemokines might act at on different targets through direct or indirect mechanisms. Here, we briefly review some mechanisms of T regulatory cell recruitment to the early maternal-placental interfaces to accomplish immunotolerance and homeostatic control and we discuss evidence on two locally released polypeptides, RANTES (regulated on activation, normal, T-cell expressed, and secreted) and vasoactive intestinal peptide (VIP), as novel contributors to the multiplicity of immune tolerant responses and uterine quiescence requirements.
Collapse
Affiliation(s)
- Claudia Pérez Leirós
- Immunopharmacology Laboratory, School of Sciences, University of Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina
| | | |
Collapse
|
21
|
Veenstra M, Ransohoff RM. Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller? J Neuroimmunol 2012; 246:1-9. [PMID: 22445294 PMCID: PMC3335977 DOI: 10.1016/j.jneuroim.2012.02.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/23/2012] [Accepted: 02/25/2012] [Indexed: 01/05/2023]
Abstract
The innate immune system is a crucial component of inflammatory reactions, while the central nervous system (CNS) is the most vulnerable site of the body to inflammatory tissue injury. Neuroinflammatory brain pathologies are disorders in which the CNS is threatened by its own immune system. Chemokine receptor CXCR2 and its ligands have been implicated in several neuroinflammatory brain pathologies, as well as in neutrophil recruitment and in the developmental positioning of neural cells. This review focuses on the basics of CXCR2, its regulating role in bone marrow neutrophil recruitment, oligodendrocyte progenitor cell positioning and neural repair mechanisms, as well as its diverse roles in neuroinflammatory brain pathologies.
Collapse
Affiliation(s)
- Mike Veenstra
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Richard M. Ransohoff
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
22
|
Raman D, Sobolik-Delmaire T, Richmond A. Chemokines in health and disease. Exp Cell Res 2011; 317:575-89. [PMID: 21223965 DOI: 10.1016/j.yexcr.2011.01.005] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 12/20/2022]
Abstract
Chemokines and their receptors play a key role in development and homeostasis as well as in the pathogenesis of tumors and autoimmune diseases. Chemokines are involved in the implantation of the early conceptus, the migration of subsets of cells during embryonic development, and the overall growth of the embryo. Chemokines also have an important role in the development and maintenance of innate and adaptive immunity. In addition, they play a significant role in wound healing and angiogenesis. When the physiological role of chemokines is subverted or chronically amplified, disease often follows. Chemokines are involved in the pathobiology of chronic inflammation, tumorigenesis and metastasis, as well as autoimmune diseases. This article reviews the role of chemokines and their receptors in normal and disease processes and the potential for using chemokine antagonists for appropriate targeted therapy.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer Biology, Vanderbilt University, School of Medicine, USA
| | | | | |
Collapse
|
23
|
Raman D, Sai J, Neel NF, Chew CS, Richmond A. LIM and SH3 protein-1 modulates CXCR2-mediated cell migration. PLoS One 2010; 5:e10050. [PMID: 20419088 PMCID: PMC2856662 DOI: 10.1371/journal.pone.0010050] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 03/16/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as "CXCR2 chemosynapse". Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. CONCLUSIONS/SIGNIFICANCE We demonstrate here for the first time that LASP-1 is a key component of the "CXCR2 chemosynapse" and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis. Thus, LASP-1 may serve as a new link coordinating the flow of information between chemokine receptors and nascent focal adhesions, especially at the leading edge. Thus the association between the chemokine receptors and LASP-1 suggests to the presence of a CXC chemokine receptor-LASP-1 pro-migratory module in cells governing the cell migration.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jiqing Sai
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Nicole F. Neel
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Catherine S. Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Veterans Affairs, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|