1
|
Dussault AM, Dubé A, Jacques F, Grondin JP, Lafontaine DA. Ligand recognition and helical stacking formation are intimately linked in the SAM-I riboswitch regulatory mechanism. RNA (NEW YORK, N.Y.) 2017; 23:1539-1551. [PMID: 28701520 PMCID: PMC5602112 DOI: 10.1261/rna.061796.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Riboswitches are noncoding mRNA elements that control gene expression by altering their structure upon metabolite binding. Although riboswitch crystal structures provide detailed information about RNA-ligand interactions, little knowledge has been gathered to understand how riboswitches modulate gene expression. Here, we study the molecular recognition mechanism of the S-adenosylmethionine SAM-I riboswitch by characterizing the formation of a helical stacking interaction involving the ligand-binding process. We show that ligand binding is intimately linked to the formation of the helical stacking, which is dependent on the presence of three conserved purine residues that are flanked by stacked helices. We also find that these residues are important for the formation of a crucial long-range base pair formed upon SAM binding. Together, our results lend strong support to a critical role for helical stacking in the folding pathway and suggest a particularly important function in the formation of the long-range base pair.
Collapse
Affiliation(s)
- Anne-Marie Dussault
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Audrey Dubé
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Frédéric Jacques
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Jonathan P Grondin
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Sciences, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
2
|
Comeau MA, Lafontaine DA, Abou Elela S. The catalytic efficiency of yeast ribonuclease III depends on substrate specific product release rate. Nucleic Acids Res 2016; 44:7911-21. [PMID: 27257067 PMCID: PMC5027489 DOI: 10.1093/nar/gkw507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/25/2016] [Indexed: 01/31/2023] Open
Abstract
Members of the ribonuclease III (RNase III) family regulate gene expression by triggering the degradation of double stranded RNA (dsRNA). Hundreds of RNase III cleavage targets have been identified and their impact on RNA maturation and stability is now established. However, the mechanism defining substrates’ reactivity remains unclear. In this study, we developed a real-time FRET assay for the detection of dsRNA degradation by yeast RNase III (Rnt1p) and characterized the kinetic bottlenecks controlling the reactivity of different substrates. Surprisingly, the results indicate that Rnt1p cleavage reaction is not only limited by the rate of catalysis but can also depend on base-pairing of product termini. Cleavage products terminating with paired nucleotides, like the degradation signals found in coding mRNA sequence, were less reactive and more prone to inhibition than products having unpaired nucleotides found in non-coding RNA substrates. Mutational analysis of U5 snRNA and Mig2 mRNA confirms the pairing of the cleavage site as a major determinant for the difference between cleavage rates of coding and non-coding RNA. Together the data indicate that the base-pairing of Rnt1p substrates encodes reactivity determinants that permit both constitutive processing of non-coding RNA while limiting the rate of mRNA degradation.
Collapse
Affiliation(s)
- Marc-Andre Comeau
- Département de biologie, Faculté de science, Université de Sherbrooke, Sherbrooke, Québec J1E 2R1, Canada
| | - Daniel A Lafontaine
- Département de biologie, Faculté de science, Université de Sherbrooke, Sherbrooke, Québec J1E 2R1, Canada
| | - Sherif Abou Elela
- Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Pavillon de recherche appliquée sur le cancer, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
3
|
Eschbach SH, Lafontaine DA. RNA conformational changes analyzed by comparative gel electrophoresis. Methods Mol Biol 2014; 1086:255-64. [PMID: 24136609 DOI: 10.1007/978-1-62703-667-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The study of biologically relevant native RNA structures is important to understand their cellular function(s). Native gel electrophoresis provides information about such native structures in solution as a function of experimental conditions. The application of native gel electrophoresis in a comparative manner allows to obtain precise information on relative angles subtended between given pair of stems in an RNA molecule. By adapting this approach, it is possible to obtain very specific structural information such as the amplitude of dihedral angles and helical rotation. As an example, we will describe how native gel electrophoresis can be used to study the folding of the S-adenosylmethionine (SAM) sensing riboswitch.
Collapse
Affiliation(s)
- Sébastien H Eschbach
- Department of Biology, Faculty of Science, RNA Group, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
4
|
Savinov A, Perez CF, Block SM. Single-molecule studies of riboswitch folding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1030-1045. [PMID: 24727093 DOI: 10.1016/j.bbagrm.2014.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Andrew Savinov
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | | | - Steven M Block
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Milas P, Gamari BD, Parrot L, Krueger BP, Rahmanseresht S, Moore J, Goldner LS. Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer. J Phys Chem B 2013; 117:8649-58. [PMID: 23799279 DOI: 10.1021/jp311071y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanine dyes are widely used to study the folding and structural transformations of nucleic acids using fluorescence resonance energy transfer (FRET). The extent to which FRET can be used to extract inter- and intramolecular distances has been the subject of considerable debate in the literature; the contribution of dye and linker dynamics to the observed FRET signal is particularly troublesome. We used molecular dynamics (MD) simulations to study the dynamics of the indocarbocyanine dyes Cy3 and Cy5 attached variously to the 3' or 5' terminal bases of a 16-base-pair RNA duplex. We then used Monte Carlo modeling of dye photophysics to predict the results of single-molecule-sensitive FRET measurements of these same molecules. Our results show that the average value of FRET depends on both the terminal base and the linker position. In particular, 3' attached dyes typically explore a wide region of configuration space, and the relative orientation factor, κ(2), has a distribution that approaches that of free-rotators. This is in contrast to 5' attached dyes, which spend a significant fraction of their time in one or more configurations that are effectively stacked on the ends of the RNA duplex. The presence of distinct dye configurations for 5' attached dyes is consistent with observations, made by others, of multiple fluorescence lifetimes of Cy3 on nucleic acids. Although FRET is frequently used as a molecular "ruler" to measure intramolecular distances, the unambiguous measurement of distances typically relies on the assumption that the rotational degrees of freedom of the dyes can be averaged out and that the donor lifetime in the absence of the acceptor is a constant. We demonstrate that even for the relatively free 3' attached dyes, the correlation time of κ(2) is still too long to justify the use of a free-rotation approximation. We further explore the consequences of multiple donor lifetimes on the predicted value of FRET.
Collapse
Affiliation(s)
- Peker Milas
- Department of Physics, University of Massachusetts, Amherst, Amherst, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Preus S, Wilhelmsson LM. Advances in quantitative FRET-based methods for studying nucleic acids. Chembiochem 2012; 13:1990-2001. [PMID: 22936620 DOI: 10.1002/cbic.201200400] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Indexed: 01/02/2023]
Abstract
Förster resonance energy transfer (FRET) is a powerful tool for monitoring molecular distances and interactions at the nanoscale level. The strong dependence of transfer efficiency on probe separation makes FRET perfectly suited for "on/off" experiments. To use FRET to obtain quantitative distances and three-dimensional structures, however, is more challenging. This review summarises recent studies and technological advances that have improved FRET as a quantitative molecular ruler in nucleic acid systems, both at the ensemble and at the single-molecule levels.
Collapse
Affiliation(s)
- Søren Preus
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
7
|
Urnavicius L, McPhee SA, Lilley DMJ, Norman DG. The structure of sulfoindocarbocyanine 3 terminally attached to dsDNA via a long, flexible tether. Biophys J 2012; 102:561-8. [PMID: 22325279 DOI: 10.1016/j.bpj.2012.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 10/14/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is an important source of long-range distance information in macromolecules. However, extracting maximum information requires knowledge of fluorophore, donor and acceptor, positions on the macromolecule. We previously determined the structure of the indocarbocyanine fluorophores Cy3 and Cy5 attached to DNA via three-carbon atom tethers, showing that they stacked onto the end of the helix in a manner similar to an additional basepair. Our recent FRET study has suggested that when they are attached via a longer 13-atom tether, these fluorophores are repositioned relative to the terminal basepair by a rotation of ∼30°, while remaining stacked. In this study, we have used NMR to extend our structural understanding to the commonly used fluorophore sulfoindocarbocyanine-3 (sCy3) attached to the 5'-terminus of the double-helical DNA via a 13-atom flexible tether (L13). We find that L13-sCy3 remains predominantly stacked onto the end of the duplex, but adopts a significantly different conformation, from that of either Cy3 or Cy5 attached by 3-atom tethers, with the long axes of the fluorophore and the terminal basepair approximately parallel. This result is in close agreement with our FRET data, supporting the contention that FRET data can be used to provide orientational information.
Collapse
Affiliation(s)
- Linas Urnavicius
- Nucleic Acid Structure Research Group, The University of Dundee, Dundee, United Kingdom
| | | | | | | |
Collapse
|
8
|
Lilley DMJ. Fluorescence Resonance Energy Transfer Studies of Structure and Dynamics in Nucleic Acids. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2012. [DOI: 10.1007/978-94-007-4923-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Ouellet J, Schorr S, Iqbal A, Wilson TJ, Lilley DMJ. Orientation of cyanine fluorophores terminally attached to DNA via long, flexible tethers. Biophys J 2011; 101:1148-54. [PMID: 21889452 DOI: 10.1016/j.bpj.2011.07.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/04/2011] [Accepted: 07/11/2011] [Indexed: 11/15/2022] Open
Abstract
Cyanine fluorophores are commonly used in single-molecule FRET experiments with nucleic acids. We have previously shown that indocarbocyanine fluorophores attached to the 5'-termini of DNA and RNA via three-carbon atom linkers stack on the ends of the helix, orienting their transition moments. We now investigate the orientation of sulfoindocarbocyanine fluorophores tethered to the 5'-termini of DNA via 13-atom linkers. Fluorescence lifetime measurements of sulfoindocarbocyanine 3 attached to double-stranded DNA indicate that the fluorophore is extensively stacked onto the terminal basepair at 15 °C, with properties that depend on the terminal sequence. In single molecules of duplex DNA, FRET efficiency between sulfoindocarbocyanine 3 and 5 attached in this manner is modulated with helix length, indicative of fluorophore orientation and consistent with stacked fluorophores that can undergo lateral motion. We conclude that terminal stacking is an intrinsic property of the cyanine fluorophores irrespective of the length of the tether and the presence or absence of sulfonyl groups. However, compared to short-tether indocarbocyanine, the mean rotational relationship between the two fluorophores is changed by ∼60° for the long-tether sulfoindocarbocyanine fluorophores. This is consistent with the transition moments becoming approximately aligned with the long axis of the terminal basepair for the long-linker species.
Collapse
Affiliation(s)
- Jonathan Ouellet
- Cancer Research UK Nucleic Acid Structure Research Group, The University of Dundee, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
He Y, Lu Y. Metal-ion-dependent folding of a uranyl-specific DNAzyme: insight into function from fluorescence resonance energy transfer studies. Chemistry 2011; 17:13732-42. [PMID: 22052817 DOI: 10.1002/chem.201100352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/25/2011] [Indexed: 01/28/2023]
Abstract
Fluorescence resonance energy transfer (FRET) has been used to study the global folding of an uranyl (UO(2)(2+))-specific 39E DNAzyme in the presence of Mg(2+), Zn(2+), Pb(2+), or UO(2)(2+). At pH 5.5 and physiological ionic strength (100 mM Na(+)), two of the three stems in this DNAzyme folded into a compact structure in the presence of Mg(2+) or Zn(2+). However, no folding occurred in the presence of Pb(2+) or UO(2)(2+); this is analogous to the "lock-and-key" catalysis mode first observed in the Pb(2+)-specific 8-17 DNAzyme. However, Mg(2+) and Zn(2+) exert different effects on the 8-17 and 39E DNAzymes. Whereas Mg(2+) or Zn(2+)-dependent folding promoted 8-17 DNAzyme activity, the 39E DNAzyme folding induced by Mg(2+) or Zn(2+) inhibited UO(2)(2+)-specific activity. Group IIA series of metal ions (Mg(2+), Ca(2+), Sr(2+)) also caused global folding of the 39E DNAzyme, for which the apparent binding affinity between these metal ions and the DNAzyme decreases as the ionic radius of the metal ions increases. Because the ionic radius of Sr(2+) (1.12 Å) is comparable to that of Pb(2+) (1.20 Å), but contrary to Pb(2+), Sr(2+) induces the DNAzyme to fold under identical conditions, ionic size alone cannot account for the unique folding behaviors induced by Pb(2+) and UO(2)(2+). Under low ionic strength (30 mM Na(+)), all four metal ions (Mg(2+), Zn(2+), Pb(2+), and UO(2)(2+)), caused 39E DNAzyme folding, suggesting that metal ions can neutralize the negative charge of DNA-backbone phosphates in addition to playing specific catalytic roles. Mg(2+) at low (<2 mM) concentration promoted UO(2)(2+)-specific activity, whereas Mg(2+) at high (>2 mM) concentration inhibited the UO(2)(2+)-specific activity. Therefore, the lock-and-key mode of DNAzymes depends on ionic strength, and the 39E DNAzyme is in the lock-and-key mode only at ionic strengths of 100 mM or greater.
Collapse
Affiliation(s)
- Ying He
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
11
|
McPhee JT, Scott E, Levinger NE, Van Orden A. Cy3 in AOT Reverse Micelles I. Dimer Formation Revealed through Steady-State and Time-Resolved Spectroscopy. J Phys Chem B 2011; 115:9576-84. [DOI: 10.1021/jp200126f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jeffrey T. McPhee
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eric Scott
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nancy E. Levinger
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Alan Van Orden
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
12
|
Rindermann JJ, Akhtman Y, Richardson J, Brown T, Lagoudakis PG. Gauging the Flexibility of Fluorescent Markers for the Interpretation of Fluorescence Resonance Energy Transfer. J Am Chem Soc 2010; 133:279-85. [DOI: 10.1021/ja105720j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan J. Rindermann
- School of Physics and Astronomy and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom, and Department of Computer Science, Maths and Physics, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados
| | - Yosef Akhtman
- School of Physics and Astronomy and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom, and Department of Computer Science, Maths and Physics, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados
| | - James Richardson
- School of Physics and Astronomy and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom, and Department of Computer Science, Maths and Physics, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados
| | - Tom Brown
- School of Physics and Astronomy and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom, and Department of Computer Science, Maths and Physics, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados
| | - Pavlos G. Lagoudakis
- School of Physics and Astronomy and School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom, and Department of Computer Science, Maths and Physics, The University of the West Indies, Cave Hill, Bridgetown BB11000, Barbados
| |
Collapse
|
13
|
Ouellet J, Melcher S, Iqbal A, Ding Y, Lilley DMJ. Structure of the three-way helical junction of the hepatitis C virus IRES element. RNA (NEW YORK, N.Y.) 2010; 16:1597-1609. [PMID: 20581129 PMCID: PMC2905758 DOI: 10.1261/rna.2158410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/04/2010] [Indexed: 05/29/2023]
Abstract
The hepatitis C virus internal ribosome entry site (IRES) element contains a three-way junction that is important in the overall RNA conformation, and for its role in the internal initiation of translation. The junction also illustrates some important conformational principles in the folding of three-way helical junctions. It is formally a 3HS(4) junction, with the possibility of two alternative stacking conformers. However, in principle, the junction can also undergo two steps of branch migration that would form 2HS(1)HS(3) and 2HS(2)HS(2) junctions. Comparative gel electrophoresis and ensemble fluorescence resonance energy transfer (FRET) studies show that the junction is induced to fold by the presence of Mg(2+) ions in low micromolar concentrations, and suggest that the structure adopted is based on coaxial stacking of the two helices that do not terminate in a hairpin loop (i.e., helix IIId). Single-molecule FRET studies confirm this conclusion, and indicate that there is no minor conformer present based on an alternative choice of helical stacking partners. Moreover, analysis of single-molecule FRET data at an 8-msec resolution failed to reveal evidence for structural transitions. It seems probable that this junction adopts a single conformation as a unique and stable fold.
Collapse
Affiliation(s)
- Jonathan Ouellet
- Cancer Research UK Nucleic Acid Structure Research Group, MSI/WTB Complex, The University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|