1
|
Zhang S, Zhang J, Lin R, Lu C, Fang B, Shi J, Jiang T, Zhou M. Design and construction of light-regulated gene transcription and protein translation systems in yeast P. Pastoris. J Adv Res 2024:S2090-1232(24)00330-8. [PMID: 39117107 DOI: 10.1016/j.jare.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION P. pastoris is a common host for effective biosynthesis of heterologous proteins as well as small molecules. Accurate regulation of gene transcription and protein synthesis is necessary to coordinate synthetic gene circuits and optimize cellular energy distribution. Traditional methanol or other inducible promoters, natural or engineered, have defects in either fermentation safety or expression capacity. The utilization of chemical inducers typically adds complexity to the product purification process, but there is no other well-controlled protein synthesis system than promoters yet. OBJECTIVE The study aimed to address the aforementioned challenges by constructing light-regulated gene transcription and protein translation systems with excellent expression capacity and light sensitivity. METHODS Trans-acting factors were designed by linking the N. crassa blue-light sensor WC-1 with the activation domain of endogenous transcription factors. Light inducible or repressive promoters were then constructed through chimeric design of cis-elements (light-responsive elements, LREs) and endogenous promoters. Various configurations of trans-acting factor/LRE pairs, along with different LRE positions and copy numbers were tested for optimal promoter performance. In addition to transcription, a light-repressive translation system was constructed through the "rare codon brake" design. Rare codons were deliberately utilized to serve as brakes during protein synthesis, which were switched on and off through the light-regulated changes in the expression of the corresponding pLRE-tRNA. RESULTS As demonstrated with GFP, the light-inducible promoter 4pLRE-cPAOX1 was 70 % stronger than the constitutive promoter PGAP, with L/D ratio = 77. The light-repressive promoter PGAP-pLRE was strictly suppressed by light, with expression capacity comparable with PGAP in darkness. As for the light-repressive translation system, the "triple brake" design successfully eliminated leakage and achieved light repression on protein synthesis without any impact on mRNA expression. CONCLUSION The newly designed light-regulated transcription and translation systems offer innovative tools that optimize the application of P. pastoris in biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiazhen Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ru Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chaoyu Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bohao Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiacheng Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyi Jiang
- China Innovation Center of Roche, Shanghai 201203, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Li B, Wang Y, Zhang Y, Tian W, Chong K, Jang JC, Wang L. PRR5, 7 and 9 positively modulate TOR signaling-mediated root cell proliferation by repressing TANDEM ZINC FINGER 1 in Arabidopsis. Nucleic Acids Res 2019; 47:5001-5015. [PMID: 30892623 PMCID: PMC6547441 DOI: 10.1093/nar/gkz191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Circadian clock coordinates numerous plant growth and developmental processes including cell elongation in the hypocotyl, whether or not it modulates cell proliferation is largely unknown. Here we have found that Pseudo Response Regulators (PRRs), essential components of circadian core oscillators, affect root meristem cell proliferation mediated by Target Of Rapamycin (TOR) signaling. The null mutants of PRRs display much reduced sensitivities to sugar-activated TOR signaling. We have subsequently identified Tandem Zinc Finger 1, encoding a processing body localized RNA-binding protein, as a direct target repressed by PRRs in mediating TOR signaling. Multiple lines of biochemical and genetic evidence have demonstrated that TZF1 acts downstream of PRRs to attenuate TOR signaling. Furthermore, TZF1 could directly bind TOR mRNA via its tandem zinc finger motif to affect TOR mRNA stability. Our findings support a notion that PRR-TZF1-TOR molecular axis modulates root meristem cell proliferation by integrating both transcriptional and post-transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People's Republic of China
| | - Yan Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People's Republic of China.,University of Chinese Academy of Sciences
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People's Republic of China
| | - Wenwen Tian
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People's Republic of China.,University of Chinese Academy of Sciences
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People's Republic of China
| | - Jyan-Chyun Jang
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, People's Republic of China.,University of Chinese Academy of Sciences
| |
Collapse
|
3
|
Steinbach Y. The Arabidopsis thaliana CONSTANS- LIKE 4 ( COL4) - A Modulator of Flowering Time. FRONTIERS IN PLANT SCIENCE 2019; 10:651. [PMID: 31191575 PMCID: PMC6546890 DOI: 10.3389/fpls.2019.00651] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/30/2019] [Indexed: 05/22/2023]
Abstract
Appropriate control of flowering time is crucial for crop yield and the reproductive success of plants. Flowering can be induced by a number of molecular pathways that respond to internal and external signals. In Arabidopsis, expression of the key florigenic signal FLOWERING LOCUS T (FT) is positively regulated by CONSTANS (CO) a BBX protein sharing high sequence similarity with 16 CO-like proteins. Within this study, we investigated the role of the Arabidopsis CONSTANS-LIKE 4 (COL4), whose role in flowering control was unknown. We demonstrate that, unlike CO, COL4 is a flowering repressor in long days (LD) and short days (SD) and acts on the expression of FT and FT-like genes as well as on SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Reduction of COL4 expression level leads to an increase of FT and APETALA 1 (AP1) expression and to accelerated flowering, while the increase of COL4 expression causes a flowering delay. Further, the observed co-localization of COL4 protein and CO in nuclear speckles supports the idea that the two act as an antagonistic pair of transcription factors. This interaction may serve the fine-tuning of flowering time control and other light dependent plant developmental processes.
Collapse
|
4
|
Redox rhythm reinforces the circadian clock to gate immune response. Nature 2015; 523:472-6. [PMID: 26098366 PMCID: PMC4526266 DOI: 10.1038/nature14449] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/07/2015] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that in addition to the transcriptional circadian clock, many organisms, including Arabidopsis, have a circadian redox rhythm driven by the organism’s metabolic activities1–3. It has been hypothesized that the redox rhythm is linked to the circadian clock, but the mechanism and the biological significance of this link have only begun to be investigated4–7. Here we report that the master immune regulator NPR1 (non-expressor of pathogenesis-related gene 1) of Arabidopsis is a sensor of the plant’s redox state and regulates transcription of core circadian clock genes even in the absence of pathogen challenge. Surprisingly, acute perturbation in the redox status triggered by the immune signal salicylic acid (SA) does not compromise the circadian clock but rather leads to its reinforcement. Mathematical modelling and subsequent experiments show that NPR1 reinforces the circadian clock without changing the period by regulating both the morning and the evening clock genes. This balanced network architecture helps plants gate their immune responses towards the morning and minimize costs on growth at night. Our study demonstrates how a sensitive redox rhythm interacts with a robust circadian clock to ensure proper responsiveness to environmental stimuli without compromising fitness of the organism.
Collapse
|
5
|
Salomé PA, Bernal M, Krämer U. Circadian life without micronutrients: effects of altered micronutrient supply on clock function in Arabidopsis. Methods Mol Biol 2014; 1158:227-38. [PMID: 24792056 DOI: 10.1007/978-1-4939-0700-7_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The plant circadian clock is formed by a number of interlocked feedback loops that control the expression of thousands of genes. Genetic and pharmacological approaches towards the study of the plant clock are routinely carried out on Murashige and Skoog growth medium, which is both Fe-replete and Cu-deficient. However, it has recently become clear that the plant clock responds to available iron (Fe) supply: circadian pace slows down under conditions of Fe deficiency; circadian period progressively shortens with increasing Fe supply. Here, we describe several growth media that may be used to study the effects of varying micronutrient supply on the circadian clock, in which deficiency in a given micronutrient are imposed by the addition of a specific chelator or, alternatively, by using EDTA-washed agar as gelling agent, thus minimizing micronutrient contamination.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 39 Spemannstrasse, 72076, Tübingen, Germany,
| | | | | |
Collapse
|
6
|
Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 2013; 9:e1003370. [PMID: 23754942 PMCID: PMC3675028 DOI: 10.1371/journal.ppat.1003370] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/04/2013] [Indexed: 12/17/2022] Open
Abstract
The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Qiguang Xie
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ryan G. Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Gina Ng
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nicholas C. Seitz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Thomas Peterson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - C. Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - John M. McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dongdong Kong
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - June M. Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States of America
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|