1
|
Mu Q, Deng H, An X, Liu G, Liu C. Designing nanodiscs as versatile platforms for on-demand therapy. NANOSCALE 2024; 16:2220-2234. [PMID: 38192208 DOI: 10.1039/d3nr05457h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nowadays, there has been an increasing utilization of nanomedicines for disease treatment. Nanodiscs (NDs) have emerged as a novel platform technology that garners significant attention in biomedical research and drug discovery. NDs are nanoscale phospholipid bilayer discs capable of incorporating membrane proteins and lipids within a native-like environment. They are assembled using amphiphilic biomacromolecular materials, such as apolipoprotein A1 or membrane scaffold proteins (MSPs), peptides, and styrene-maleic acid polymers (SMAs). NDs possess well-defined sizes and shapes, offering a stable, homogeneous, and biologically relevant environment for studying membrane proteins and lipids. Their unique properties have made them highly desirable for diverse applications, including cancer immunotherapy, vaccine development, antibacterial and antiviral therapy, and treating Alzheimer's disease (AD) and diabetes-related conditions. This review discusses the classifications, advantages, and applications of NDs in disease therapy.
Collapse
Affiliation(s)
- Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
2
|
Dallo S, Shin J, Zhang S, Ren Q, Bao H. Designer Nanodiscs to Probe and Reprogram Membrane Biology in Synapses. J Mol Biol 2023; 435:167757. [PMID: 35872069 PMCID: PMC9805492 DOI: 10.1016/j.jmb.2022.167757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023]
Abstract
Signal transduction at the synapse is mediated by a variety of protein-lipid interactions, which are vital for the spatial and temporal regulation of synaptic vesicle biogenesis, neurotransmitter release, and postsynaptic receptor activation. Therefore, our understanding of synaptic transmission cannot be completed until the elucidation of these critical protein-lipid interactions. On this front, recent advances in nanodiscs have vastly expanded our ability to probe and reprogram membrane biology in synapses. Here, we summarize the progress of the nanodisc toolbox and discuss future directions in this exciting field.
Collapse
Affiliation(s)
- Sarah Dallo
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Jeehae Shin
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Shanwen Zhang
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Qian Ren
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA
| | - Huan Bao
- Department of Molecular Medicine, UF Scripps Biomedical Research, 130 Scripps Way, Jupiter 33458, FL, USA.
| |
Collapse
|
3
|
You X, Thakur N, Ray AP, Eddy MT, Baiz CR. A comparative study of interfacial environments in lipid nanodiscs and vesicles. BIOPHYSICAL REPORTS 2022; 2. [PMID: 36176716 PMCID: PMC9518727 DOI: 10.1016/j.bpr.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane protein conformations and dynamics are driven by the protein-lipid interactions occurring within the local environment of the membrane. These environments remain challenging to accurately capture in structural and biophysical experiments using bilayers. Consequently, there is an increasing need for realistic cell-membrane mimetics for in vitro studies. Lipid nanodiscs provide certain advantages over vesicles for membrane protein studies. Nanodiscs are increasingly used for structural and spectroscopic characterization of membrane proteins. Despite the common use of nanodiscs, the interfacial environments of lipids confined to a ~10-nm diameter area have remained relatively underexplored. Here, we use ultrafast two-dimensional infrared spectroscopy and temperature-dependent infrared absorption measurements of the ester carbonyls to compare the interfacial hydrogen bond structure and dynamics in lipid nanodiscs of varying lipid compositions and sizes with ~100-nm vesicles. We examine the effects of lipid composition and nanodisc size. We found that nanodiscs and vesicles share largely similar lipid-water H-bond environments and interfacial dynamics. Differences in measured enthalpies of H-bonding suggest that H-bond dynamics in nanodiscs are modulated by the interaction between the annular lipids and the scaffold protein.
Collapse
|
4
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Schmidpeter PAM, Nimigean CM. Correlating ion channel structure and function. Methods Enzymol 2021; 652:3-30. [PMID: 34059287 DOI: 10.1016/bs.mie.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent developments in cryogenic electron microscopy (cryo-EM) led to an exponential increase in high-resolution structures of membrane proteins, and in particular ion channels. However, structures alone can only provide limited information about the workings of these proteins. In order to understand ion channel function and regulation in molecular detail, the obtained structural data need to be correlated to functional states of the same protein. Here, we describe several techniques that can be employed to study ion channel structure and function in vitro and under defined, similar conditions. Lipid nanodiscs provide a native-like environment for membrane proteins and have become a valuable tool in membrane protein structural biology and biophysics. Combined with liposome-based flux assays for the kinetic analysis of ion channel activity as well as electrophysiological recordings, researchers now have access to an array of experimental techniques allowing for detailed structure-function correlations using purified components. Two examples are presented where we put emphasis on the lipid environment and time-resolved techniques together with mutations and protein engineering to interpret structural data obtained from single particle cryo-EM on cyclic nucleotide-gated or Ca2+-gated K+ channels. Furthermore, we provide short protocols for all the assays used in our work so that others can adapt these techniques to their experimental needs. Comprehensive structure-function correlations are essential in order to pharmacologically target channelopathies.
Collapse
Affiliation(s)
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
6
|
Chang Z, Deng J, Zhao W, Yang J. Exploring interactions between lipids and amyloid-forming proteins: A review on applying fluorescence and NMR techniques. Chem Phys Lipids 2021; 236:105062. [PMID: 33600803 DOI: 10.1016/j.chemphyslip.2021.105062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/27/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
A hallmark of Alzheimer's, Parkinson's, and other amyloid diseases is the assembly of amyloid proteins into amyloid aggregates or fibrils. In many cases, the formation and cytotoxicity of amyloid assemblies are associated with their interaction with cell membranes. Despite studied for many years, the characterization of the interaction is challenged for reasons on the multiple aggregation states of amyloid-forming proteins, transient and weak interactions in the complex system. Although several strategies such as computation biology, spectroscopy, and imaging methods have been performed, there is an urgent need to detail the molecular mechanism in different time scales and high resolutions. This review highlighted the recent applications of fluorescence, solution and solid-state NMR in exploring the interactions between amyloid protein and membranes attributing to their advantages of high sensitivity and atomic resolution.
Collapse
Affiliation(s)
- Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weijing Zhao
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
7
|
Saghir AE, Farrugia G, Vassallo N. The human islet amyloid polypeptide in protein misfolding disorders: Mechanisms of aggregation and interaction with biomembranes. Chem Phys Lipids 2020; 234:105010. [PMID: 33227292 DOI: 10.1016/j.chemphyslip.2020.105010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 02/09/2023]
Abstract
Human islet amyloid polypeptide (hIAPP), otherwise known as amylin, is a 37-residue peptide hormone which is reported to be a common factor in protein misfolding disorders such as type-2 diabetes mellitus, Alzheimer's disease and Parkinson's disease, due to deposition of insoluble hIAPP amyloid in the pancreas and brain. Multiple studies point to the importance of the peptide's interaction with biological membranes and the cytotoxicity of hIAPP species. Here, we discuss the aggregation pathways of hIAPP amyloid fibril formation and focus on the complex interplay between membrane-mediated assembly of hIAPP and the associated mechanisms of membrane damage caused by the peptide species. Mitochondrial membranes, which are unique in their lipid composition, are proposed as prime targets for the early intracellular formation of hIAPP toxic entities. We suggest that future studies should include more physiologically-relevant and in-cell studies to allow a more accurate model of in vivo interactions. Finally, we underscore an urgent need for developing effective therapeutic strategies aimed at hindering hIAPP-phospholipid interactions.
Collapse
Affiliation(s)
- Adam El Saghir
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gianluca Farrugia
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Neville Vassallo
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
8
|
Durham RJ, Latham DR, Sanabria H, Jayaraman V. Structural Dynamics of Glutamate Signaling Systems by smFRET. Biophys J 2020; 119:1929-1936. [PMID: 33096078 PMCID: PMC7732771 DOI: 10.1016/j.bpj.2020.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Single-molecule Förster resonance energy transfer (smFRET) is a powerful technique for investigating the structural dynamics of biological macromolecules. smFRET reveals the conformational landscape and dynamic changes of proteins by building on the static structures found using cryo-electron microscopy, x-ray crystallography, and other methods. Combining smFRET with static structures allows for a direct correlation between dynamic conformation and function. Here, we discuss the different experimental setups, fluorescence detection schemes, and data analysis strategies that enable the study of structural dynamics of glutamate signaling across various timescales. We illustrate the versatility of smFRET by highlighting studies of a wide range of questions, including the mechanism of activation and transport, the role of intrinsically disordered segments, and allostery and cooperativity between subunits in biological systems responsible for glutamate signaling.
Collapse
Affiliation(s)
- Ryan J Durham
- University of Texas Health Science Center at Houston, Houston, Texas
| | | | | | | |
Collapse
|
9
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
McLean MA, Denisov IG, Grinkova YV, Sligar SG. Dark, Ultra-Dark and Ultra-Bright Nanodiscs for membrane protein investigations. Anal Biochem 2020; 607:113860. [PMID: 32750355 DOI: 10.1016/j.ab.2020.113860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 11/16/2022]
Abstract
We describe the construction, expression and purification of three new membrane scaffold proteins (MSP) for use in assembling Nanodiscs. These new MSPs have a variety of luminescent properties for use in combination with several analytical methods. "Dark" MSP has no tryptophan residues, "Ultra-Dark" replaces both tryptophan and tyrosine with non-fluorescent side chains, and "Ultra-Bright" adds additional tryptophans to the parent membrane scaffold protein to provide a dramatic increase in native tryptophan fluorescence. All MSPs were used to successfully assemble Nanodiscs nominally 10 nm in diameter, and the resultant bilayer structure was characterized. An example of the usefulness of these new scaffold proteins is provided.
Collapse
Affiliation(s)
- Mark A McLean
- Department of Biochemistry, University of Illinois, Urbana, IL, 16801, USA
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, IL, 16801, USA
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois, Urbana, IL, 16801, USA
| | - Stephen G Sligar
- Department of Biochemistry, University of Illinois, Urbana, IL, 16801, USA; Department of Chemistry, University of Illinois, Urbana, IL, 16801, USA.
| |
Collapse
|
11
|
Fung HYJ, McKibben KM, Ramirez J, Gupta K, Rhoades E. Structural Characterization of Tau in Fuzzy Tau:Tubulin Complexes. Structure 2020; 28:378-384.e4. [PMID: 31995742 DOI: 10.1016/j.str.2020.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/21/2019] [Accepted: 01/07/2020] [Indexed: 02/02/2023]
Abstract
Tau is a neuronal microtubule (MT)-associated protein of significant interest due to its association with several neurodegenerative disorders. Tau's intrinsic disorder and the dynamic nature of its interactions with tubulin and MTs make its structural characterization challenging. Here, we use an environmentally sensitive fluorophore as a site-specific probe of tau bound to soluble tubulin. Comparison of our results with a recently published tau:MT cryoelectron microscopy model reveals structural similarities between tubulin- and MT-bound tau. Analysis of residues across the repeat regions reveals a hierarchy in tubulin occupancy, which may be relevant to tau's ability to differentiate between tubulin and MTs. As binding to soluble tubulin is a critical first step in MT polymerization, our characterization of the structural features of tau in dynamic, fuzzy tau:tubulin assemblies advances our understanding of how tau functions in the cell and how function may be disrupted in disease.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen M McKibben
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Ramirez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth Rhoades
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Camp T, Mehta K, Sligar SG, Zhang K. Molecular Orientation Determination in Nanodiscs at the Single-Molecule Level. Anal Chem 2020; 92:2229-2236. [PMID: 31851490 DOI: 10.1021/acs.analchem.9b04950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The function of membrane-bound proteins often depends on their interactions with the lipid bilayer. Bulk absorption-based linear dichroism has been historically used to investigate molecular orientations in the phospholipid bilayer but cannot resolve the actual distribution of molecules embedded in the membrane and is often limited by a poor signal-to-noise ratio. Here, we present single-molecule orientation determination by fluorescence-detected linear dichroism visualization in Nanodisc grids or SOLVING, to determine the molecular orientation of molecules assembled into nanoscale lipid bilayers. We provide a proof-of-concept by using SOLVING to quantitate the orientation distribution of two commonly used fluorescent dyes, DiO and BODIPY, in 10 nm Nanodiscs. Besides confirming the mean orientation determined by bulk absorption measurement, SOLVING provides the actual distribution of orientations and promises to provide key molecular insights into the topology and interactions of multiprotein complexes, such as those observed in intracellular signal transduction.
Collapse
Affiliation(s)
- Tyler Camp
- Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Kritika Mehta
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Stephen G Sligar
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Kai Zhang
- Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Neuroscience Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute , University of Illinois at Urbana-Champaign 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
13
|
Swiecicki JM, Santana JT, Imperiali B. A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Cell Chem Biol 2019; 27:245-251.e3. [PMID: 31831268 DOI: 10.1016/j.chembiol.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/22/2019] [Accepted: 11/14/2019] [Indexed: 01/06/2023]
Abstract
Biological membranes are complex barriers in which membrane proteins and thousands of lipidic species participate in structural and functional interactions. Developing a strategic approach that allows uniform labeling of membrane proteins while maintaining a lipidic environment that retains functional interactions is highly desirable for in vitro fluorescence studies. Herein, we focus on complementing current methods by integrating the powerful processes of unnatural amino acid mutagenesis, bioorthogonal labeling, and the detergent-free membrane protein solubilization based on the amphiphilic styrene-maleic acid (SMA) polymer. Importantly, the SMA polymer preserves a thermodynamically stable shell of phospholipids. The approach that we present is both rapid and generalizable providing a population of uniquely labeled membrane proteins in lipid nanoparticles for quantitative fluorescence-based studies.
Collapse
Affiliation(s)
- Jean-Marie Swiecicki
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jordan Tyler Santana
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Quast RB, Margeat E. Studying GPCR conformational dynamics by single molecule fluorescence. Mol Cell Endocrinol 2019; 493:110469. [PMID: 31163201 DOI: 10.1016/j.mce.2019.110469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
Over the last decades, G protein coupled receptors (GPCRs) have experienced a tremendous amount of attention, which has led to a boost of structural and pharmacological insights on this large membrane protein superfamily involved in various essential physiological functions. Recently, evidence has emerged that, rather than being activated by ligands in an on/off manner switching from an inactive to an active state, GPCRs exhibit high structural flexibility in the absence and even in the presence of ligands. So far the physiological as well as pharmacological impact of this structural flexibility remains largely unexplored albeit its potential role in precisely fine-tuning receptor function and regulating the specificity of signal transduction into the cell. By complementing other biophysical approaches, single molecule fluorescence (SMF) offers the advantage of monitoring structural dynamics in biomolecules in real-time, with minimal structural invasiveness and in the context of complex biological environments. In this review a general introduction to GPCR structural dynamics is given followed by a presentation of SMF methods used to explore them. Particular attention is paid to single molecule Förster resonance energy transfer (smFRET), a key method to measure actual distance changes between two probes, and highlight conformational changes occurring at timescales relevant for protein conformational movements. The available literature reporting on GPCR structural dynamics by SMF is discussed with a focus on the newly gained biological insights on receptor activation and signaling, in particular for the β2 adrenergic and the metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Robert B Quast
- CBS, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Emmanuel Margeat
- CBS, CNRS, INSERM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
15
|
Damiati S, Scheberl A, Zayni S, Damiati SA, Schuster B, Kompella UB. Albumin-bound nanodiscs as delivery vehicle candidates: Development and characterization. Biophys Chem 2019; 251:106178. [DOI: 10.1016/j.bpc.2019.106178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 10/26/2022]
|
16
|
Sahoo BR, Genjo T, Cox SJ, Stoddard AK, Anantharamaiah GM, Fierke C, Ramamoorthy A. Nanodisc-Forming Scaffold Protein Promoted Retardation of Amyloid-Beta Aggregation. J Mol Biol 2018; 430:4230-4244. [PMID: 30170005 DOI: 10.1016/j.jmb.2018.08.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 10/28/2022]
Abstract
Peptidic nanodiscs are useful membrane mimetic tools for structural and functional studies of membrane proteins, and membrane interacting peptides including amyloids. Here, we demonstrate anti-amyloidogenic activities of a nanodisc-forming 18-residue peptide (denoted as 4F), both in lipid-bound and lipid-free states by using Alzheimer's amyloid-beta (Aβ40) peptide as an example. Fluorescence-based amyloid fibrillation kinetic assays showed a significant delay in Aβ40 amyloid aggregation by the 4F peptide. In addition, 4F-encased lipid nanodiscs, at an optimal concentration of 4F (>20 μM) and nanodisc size (<10 nm), significantly affect amyloid fibrillation. A comparison of experimental results obtained from nanodiscs with that obtained from liposomes revealed a substantial inhibitory efficacy of 4F-lipid nanodiscs against Aβ40 aggregation and were also found to be suitable to trap Aβ40 intermediates. A combination of atomistic molecular dynamics simulations with NMR and circular dichroism experimental results exhibited a substantial change in Aβ40 conformation upon 4F binding through electrostatic and π-π interactions. Specifically, the 4F peptide was found to interfere with the central β-sheet-forming residues of Aβ40 through substantial hydrogen, π-π, and π-alkyl interactions. Fluorescence experiments and coarse-grained molecular dynamics simulations showed the formation of a ternary complex, where Aβ40 binds to the proximity of peptidic belt and membrane surface that deaccelerate amyloid fibrillation. Electron microscopy images revealed short and thick amyloid fibers of Aβ40 formed in the presence of 4F or 4F-lipid nanodsics. These findings could aid in the development of amyloid inhibitors as well as in stabilizing Aβ40 intermediates for high-resolution structural and neurobiological studies.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Takuya Genjo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sarah J Cox
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Andrea K Stoddard
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | - Carol Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Texas A&M, College Station, TX 77843-3255, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
17
|
Li MJ, Nath A, Atkins WM. Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs. Biochemistry 2017; 56:2506-2517. [PMID: 28441502 DOI: 10.1021/acs.biochem.6b01245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ATP binding cassette transporter P-glycoprotein (ABCB1 or P-gp) plays a major role in cellular resistance to drugs and drug interactions. Experimental studies support a mechanism with nucleotide-dependent fluctuation between inward-facing and outward-facing conformations, which are coupled to nucleotide hydrolysis. However, detailed insight into drug-dependent modulation of these conformational ensembles is lacking. Different drugs likely occupy partially overlapping but distinct sites and are therefore variably coupled to nucleotide binding and hydrolysis. Many fluorescent drug analogues are used in cell-based transport models; however, their specific interactions with P-gp have not been studied, and this limits interpretation of transport assays in terms of molecular models. Here we monitor binding of the fluorescent probe substrates BODIPY-verapamil, BODIPY-vinblastine, and Flutax-2 at low occupancy to murine P-gp in lipid nanodiscs via fluorescence correlation spectroscopy, in variable nucleotide-bound states. Changes in affinity for the different nucleotide-dependent conformations are probe-dependent. For BODIPY-verapamil and BODIPY-vinblastine, there are 2-10-fold increases in KD in the nucleotide-bound or vanadate-trapped state, compared to that in the nucleotide-free state. In contrast, the affinity of Flutax-2 is unaffected by nucleotide or vanadate trapping. In further contrast to BODIPY-verapamil and BODIPY-vinblastine, Flutax-2 does not cause stimulation of ATP hydrolysis despite the fact that it is transported in vesicle-based transport assays. Whereas the established substrates verapamil, paclitaxel, and vinblastine displace BODIPY-verapamil or BODIPY-vinblastine from their high-affinity sites, the transport substrate Flutax-2 is not displaced by any of these substrates. The results demonstrate a unique binding site for Flutax-2 that allows for transport without stimulation of ATP hydrolysis.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington , Box 357610, Seattle, Washington 98195-7610, United States
| |
Collapse
|
18
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Junghans A, Watkins EB, Majewski J, Miranker A, Stroe I. Influence of the Human and Rat Islet Amyloid Polypeptides on Structure of Phospholipid Bilayers: Neutron Reflectometry and Fluorescence Microscopy Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4382-4391. [PMID: 27065348 DOI: 10.1021/acs.langmuir.6b00825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Neutron reflectivity (NR) and fluorescent microscopy (FM) were used to study the interactions of human (hIAPP) and rat (rIAPP) islet amyloid polypeptides with several formulations of supported model lipid bilayers at the solid-liquid interface. Aggregation and deposition of islet amyloid polypeptide is correlated with the pathology of many diseases, including Alzheimer's, Parkinson, and type II diabetes (T2DM). A central component of T2DM pathology is the deposition of fibrils in the endocrine pancreas, which is toxic to the insulin secreting β-cells. The molecular mechanism by which the cell death occurs is not yet understood, but existing evidence points toward interactions of IAPP oligomers with cellular membranes in a manner leading to loss of their integrity. Our NR and FM results showed that the human sequence variant, hIAPP, had little or no effect on bilayers composed of saturated-acyl chains like zwitterionic DPPC, anionic DPPG, and mixed 80:20 mol % DPPC:DPPG bilayers. In marked contrast, the bilayer structure and stability of anionic unsaturated DOPG were sensitive to protein interaction, and the bilayer was partly solubilized by hIAPP under the conditions used here. The rIAPP, which is considered less toxic, had no perturbing effects on any of the above membrane formulations. Understanding the conditions that result in membrane disruption by hIAPP can be crucial in developing counter strategies to fight T2DM and also physicochemically similar neurodegenerative diseases such as Alzheimer's.
Collapse
Affiliation(s)
| | | | - Jaroslaw Majewski
- Department of Chemical Engineering University of California, Davis , Davis, California 95616, United States
| | - Andrew Miranker
- Department of Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Izabela Stroe
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
20
|
Lindhoud S, Carvalho V, Pronk JW, Aubin-Tam ME. SMA-SH: Modified Styrene–Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs. Biomacromolecules 2016; 17:1516-22. [DOI: 10.1021/acs.biomac.6b00140] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon Lindhoud
- Department of Bionanoscience,
Kavli Institute of Nanoscience, Delft University of Technology. Lorentzweg
1, Delft 2628 CJ, The Netherlands
| | - Vanessa Carvalho
- Department of Bionanoscience,
Kavli Institute of Nanoscience, Delft University of Technology. Lorentzweg
1, Delft 2628 CJ, The Netherlands
| | - Joachim W. Pronk
- Department of Bionanoscience,
Kavli Institute of Nanoscience, Delft University of Technology. Lorentzweg
1, Delft 2628 CJ, The Netherlands
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience,
Kavli Institute of Nanoscience, Delft University of Technology. Lorentzweg
1, Delft 2628 CJ, The Netherlands
| |
Collapse
|
21
|
Nath A, Schlamadinger DE, Rhoades E, Miranker AD. Structure-Based Small Molecule Modulation of a Pre-Amyloid State: Pharmacological Enhancement of IAPP Membrane-Binding and Toxicity. Biochemistry 2015; 54:3555-64. [PMID: 25966003 DOI: 10.1021/acs.biochem.5b00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Islet amyloid polypeptide (IAPP) is a peptide hormone whose pathological self-assembly is a hallmark of the progression of type II diabetes. IAPP-membrane interactions catalyze its higher-order self-assembly and also underlie its toxic effects toward cells. While there is great interest in developing small molecule reagents capable of altering the structure and behavior of oligomeric, membrane-bound IAPP, the dynamic and heterogeneous nature of this ensemble makes it recalcitrant to traditional approaches. Here, we build on recent insights into the nature of membrane-bound states and develop a combined computational and experimental strategy to address this problem. The generalized structural approach efficiently identified diverse compounds from large commercial libraries with previously unrecognized activities toward the gain-of-function behaviors of IAPP. The use of appropriate computational prescreening reduced the experimental burden by orders of magnitude relative to unbiased high-throughput screening. We found that rationally targeting experimentally derived models of membrane-bound dimers identified several compounds that demonstrate the remarkable ability to enhance IAPP-membrane binding and one compound that enhances IAPP-mediated cytotoxicity. Taken together, these findings imply that membrane binding per se is insufficient to generate cytotoxicity; instead, enhanced sampling of rare states within the membrane-bound ensemble may potentiate IAPP's toxic effects.
Collapse
Affiliation(s)
- Abhinav Nath
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, United States
| | - Diana E Schlamadinger
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, United States
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, United States
| | - Andrew D Miranker
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
22
|
Liu Y, Cai Y, Liu W, Li XH, Rhoades E, Yan ECY. Triblock peptide–linker–lipid molecular design improves potency of peptide ligands targeting family B G protein-coupled receptors. Chem Commun (Camb) 2015; 51:6157-60. [DOI: 10.1039/c5cc00301f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Design and characterization of triblock peptide–linker–lipid constructs for targeting family B G protein-couple receptors with improved bioactivity and biostability.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Chemistry
- Yale University
- New Haven
- USA
| | - Yingying Cai
- Department of Chemistry
- Yale University
- New Haven
- USA
| | - Wei Liu
- Department of Chemistry
- Yale University
- New Haven
- USA
| | - Xiao-Han Li
- Department of Chemistry
- Yale University
- New Haven
- USA
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry
- Yale University
- New Haven
- USA
- Department of Physics
| | | |
Collapse
|
23
|
Bavishi K, Hatzakis NS. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Molecules 2014; 19:19407-34. [PMID: 25429564 PMCID: PMC6272019 DOI: 10.3390/molecules191219407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
The advent of advanced single molecule measurements unveiled a great wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways unattainable by conventional bulk assays. Equipped with the ability to record distribution of behaviors rather than the mean property of a population, single molecule measurements offer observation and quantification of the abundance, lifetime and function of multiple protein states. They also permit the direct observation of the transient and rarely populated intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements. Single molecule studies have thus provided novel insights about how the dynamic sampling of the free energy landscape dictates all aspects of protein behavior; from its folding to function. Here we will survey some of the state of the art contributions in deciphering mechanisms that underlie protein folding, structural and functional dynamics by single molecule fluorescence microscopy techniques. We will discuss a few selected examples highlighting the power of the emerging techniques and finally discuss the future improvements and directions.
Collapse
Affiliation(s)
- Krutika Bavishi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Center for Synthetic Biology "bioSYNergy", Villum Research Center "Plant Plasticity", University of Copenhagen, Thorvaldsenvej 40, DK-1871 Frederiksberg C, Denmark.
| | - Nikos S Hatzakis
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center Biomembranes in Nanomedicine, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat Commun 2014; 5:5206. [DOI: 10.1038/ncomms6206] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/09/2014] [Indexed: 11/08/2022] Open
|
25
|
Ly S, Bourguet F, Fischer NO, Lau EY, Coleman MA, Laurence TA. Quantifying interactions of a membrane protein embedded in a lipid nanodisc using fluorescence correlation spectroscopy. Biophys J 2014; 106:L05-8. [PMID: 24461026 DOI: 10.1016/j.bpj.2013.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 12/31/2022] Open
Abstract
Using fluorescence correlation spectroscopy, we measured a dissociation constant of 20 nM between EGFP-labeled LcrV from Yersinia pestis and its cognate membrane-bound protein YopB inserted into a lipid nanodisc. The combination of fluorescence correlation spectroscopy and nanodisc technologies provides a powerful approach to accurately measure binding constants of interactions between membrane bound and soluble proteins in solution. Straightforward sample preparation, acquisition, and analysis procedures make this combined technology attractive for accurately measuring binding kinetics for this important class of protein-protein interactions.
Collapse
Affiliation(s)
- Sonny Ly
- Lawrence Livermore National Laboratory, Livermore, California
| | - Feliza Bourguet
- Lawrence Livermore National Laboratory, Livermore, California
| | | | - Edmond Y Lau
- Lawrence Livermore National Laboratory, Livermore, California
| | - Matthew A Coleman
- University of California at Davis, Department of Radiation Oncology, Sacramento, California.
| | - Ted A Laurence
- University of California at Davis, Department of Radiation Oncology, Sacramento, California.
| |
Collapse
|
26
|
Kumar S, Brown MA, Nath A, Miranker AD. Folded small molecule manipulation of islet amyloid polypeptide. ACTA ACUST UNITED AC 2014; 21:775-81. [PMID: 24930968 DOI: 10.1016/j.chembiol.2014.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/27/2022]
Abstract
Islet amyloid polypeptide (IAPP) is a hormone cosecreted with insulin by pancreatic β cells. Upon contact with lipid bilayers, it is stabilized into a heterogeneous ensemble of structural states. These processes are associated with gains of function, including catalysis of β sheet-rich amyloid formation, cell membrane penetration, loss of membrane integrity, and cytotoxicity. These contribute to the dysfunction of β cells, a central component in the pathology and treatment of diabetes. To gain mechanistic insight into these phenomena, a related series of substituted oligoquinolines were designed. These inhibitors are unique in that they have the capacity to affect both solution- and phospholipid bilayer-catalyzed IAPP self-assembly. Importantly, we show that this activity is associated with the oligoquinoline's capacity to irreversibly adopt a noncovalent fold. This suggests that compact foldamer scaffolds, such as oligoquinoline, are an important paradigm for conformational manipulation of disordered protein state.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA
| | - Mark A Brown
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA
| | - Abhinav Nath
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA
| | - Andrew D Miranker
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA.
| |
Collapse
|
27
|
Flory JD, Simmons CR, Lin S, Johnson T, Andreoni A, Zook J, Ghirlanda G, Liu Y, Yan H, Fromme P. Low temperature assembly of functional 3D DNA-PNA-protein complexes. J Am Chem Soc 2014; 136:8283-95. [PMID: 24871902 DOI: 10.1021/ja501228c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteins have evolved to carry out nearly all the work required of living organisms within complex inter- and intracellular environments. However, systematically investigating the range of interactions experienced by a protein that influence its function remains challenging. DNA nanostructures are emerging as a convenient method to arrange a broad range of guest molecules. However, flexible methods are needed for arranging proteins in more biologically relevant 3D geometries under mild conditions that preserve protein function. Here we demonstrate how peptide nucleic acid (PNA) can be used to control the assembly of cytochrome c (12.5 kDa, pI 10.5) and azurin (13.9 kDa, pI 5.7) proteins into separate 3D DNA nanocages, in a process that maintains protein function. Toehold-mediated DNA strand displacement is introduced as a method to purify PNA-protein conjugates. The PNA-proteins were assembled within 2 min at room temperature and within 4 min at 11 °C, and hybridize with even greater efficiency than PNA conjugated to a short peptide. Gel electrophoresis and steady state and time-resolved fluorescence spectroscopy were used to investigate the effect of protein surface charge on its interaction with the negatively charged DNA nanocage. These data were used to generate a model of the DNA-PNA-protein complexes that show the negatively charged azurin protein repelled away from the DNA nanocage while the positively charged cytochrome c protein remains within and closely interacts with the DNA nanocage. When conjugated to PNA and incorporated into the DNA nanocage, the cytochrome c secondary structure and catalytic activity were maintained, and its redox potential was reduced modestly by 20 mV possibly due to neutralization of some positive surface charges. This work demonstrates a flexible new approach for using 3D nucleic acid (PNA-DNA) nanostructures to control the assembly of functional proteins, and facilitates further investigation of protein interactions as well as engineer more elaborate 3D protein complexes.
Collapse
Affiliation(s)
- Justin D Flory
- Department of Chemistry and Biochemistry, ‡Center for Bio-Inspired Solar Fuel Production, and §Biodesign Institute, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
JØRGENSEN SUNEK, HATZAKIS NIKOSS. INSIGHTS IN ENZYME FUNCTIONAL DYNAMICS AND ACTIVITY REGULATION BY SINGLE MOLECULE STUDIES. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048013300028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of advanced single molecule measurements heralded the arrival of a wealth of dynamic information revolutionizing our understanding of protein dynamics and behavior in ways not deducible by conventional bulk assays. They offered the direct observation and quantification of the abundance and life time of multiple states and transient intermediates in the energy landscape that are typically averaged out in non-synchronized ensemble measurements, thus providing unprecedented insights into complex biological processes. Here we survey the current state of the art in single-molecule fluorescence microscopy methodology for studying the mechanism of enzymatic activity and the insights on protein functional dynamics. We will initially discuss the strategies employed to date, their limitations and possible ways to overcome them, and finally how single enzyme kinetics can advance our understanding on mechanisms underlying function and regulation of proteins. [Formula: see text]Special Issue Comment: This review focuses on functional dynamics of individual enzymes and is related to the review on ion channels by Lu,44 the reviews on mathematical treatment of Flomenbom45 and Sach et al.,46 and review on FRET by Ruedas-Rama et al.41
Collapse
Affiliation(s)
- SUNE K. JØRGENSEN
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| | - NIKOS S. HATZAKIS
- Bio-Nanotechnology Laboratory, Department of Chemistry, Nano-Science Center, Lundbeck Foundation Center, Biomembranes in Nanomedicine University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
29
|
Brucale M, Schuler B, Samorì B. Single-molecule studies of intrinsically disordered proteins. Chem Rev 2014; 114:3281-317. [PMID: 24432838 DOI: 10.1021/cr400297g] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN), Italian National Council of Research (CNR) , Area della Ricerca Roma1, Via Salaria km 29.3 00015 Monterotondo (Rome), Italy
| | | | | |
Collapse
|
30
|
A conformational transition observed in single HIV-1 Gag molecules during in vitro assembly of virus-like particles. J Virol 2014; 88:3577-85. [PMID: 24403576 DOI: 10.1128/jvi.03353-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The conformational changes within single HIV-1 Gag molecules that occur during assembly into immature viruses are poorly understood. Using an in vitro assembly assay, it has been proposed that HIV-1 Gag undergoes a conformational transition from a compact conformation in solution to an extended rod-like conformation in virus-like particles (VLPs). Here we used single-molecule Förster resonance energy transfer (smFRET) to test this model by directly probing the conformation of single HIV-1 Gag molecules. We demonstrate that monomeric HIV-1 Gag lacking the p6 domain and the N-terminal myristoyl moiety is found in solution predominantly in a compact conformation. Gag in this conformation, and in the presence of nucleic acid, assembles into 30-nm-diameter particles. However, with the addition of inositol hexakisphosphate, Gag adopts a linear conformation and assembles into full-sized ∼100-to-150-nm-diameter VLPs. Parallel fluorescence correlation spectroscopy measurements show that this conformational transition occurs early in the assembly process when Gag oligomers are small, perhaps as early as upon dimerization. Thus, smFRET measurements confirm that HIV-1 Gag transitions from a compact to a linear conformation during the formation of VLPs. Our results are consistent with a model whereby binding of HIV-1 Gag to phosphoinositides at the plasma membrane stabilizes an extended conformation and promotes oligomerization into the radially aligned immature capsid. IMPORTANCE The establishment of single-molecule fluorescence techniques reveals the conformational state of individual HIV-1 Gag molecules prior to and during in vitro assembly into virus-like particles. The data demonstrate that Gag in distinct conformations forms particles with different morphologies. In the compact conformation, in the presence of nucleic acid, Gag forms spherical particles of a diameter of approximately 30 nm. In the extended conformation, Gag forms spherical virus-like particles of approximately 100-nm diameter. The adoption of the extended conformation required the presence of inositol hexakisphosphate in addition to nucleic acid. Our results are consistent with a model whereby binding of HIV-1 Gag to phosphoinositides at the plasma membrane stabilizes an extended conformation and promotes oligomerization into the radially aligned immature capsid.
Collapse
|
31
|
Hartley MD, Schneggenburger PE, Imperiali B. Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Proc Natl Acad Sci U S A 2013; 110:20863-70. [PMID: 24302767 PMCID: PMC3876266 DOI: 10.1073/pnas.1320852110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane-bound polyprenol-dependent pathways are important for the assembly of essential glycoconjugates in all domains of life. However, despite their prevalence, the functional significance of the extended linear polyprenyl groups in the interactions of the glycan substrates, the biosynthetic enzymes that act upon them, and the membrane bilayer in which they are embedded remains a mystery. These interactions are investigated simultaneously and uniquely through application of the nanodisc membrane technology. The Campylobacter jejuni N-linked glycosylation pathway has been chosen as a model pathway in which all of the enzymes and substrates are biochemically accessible. We present the functional reconstitution of two enzymes responsible for the early membrane-committed steps in glycan assembly. Protein stoichiometry analysis, fluorescence-based approaches, and biochemical activity assays are used to demonstrate the colocalization of the two enzymes in nanodiscs. Isotopic labeling of the substrates reveals that undecaprenyl-phosphate is coincorporated into discs with the two enzymes, and furthermore, that both enzymes are functionally reconstituted and can sequentially convert the coembedded undecaprenyl-phosphate into undecaprenyl-diphosphate-linked disaccharide. These studies provide a proof-of-concept demonstrating that the nanodisc model membrane system represents a promising experimental platform for analyzing the multifaceted interactions among the enzymes involved in polyprenol-dependent glycan assembly pathways, the membrane-associated substrates, and the lipid bilayer. The stage is now set for exploration of the roles of the conserved polyprenols in promoting protein-protein interactions among pathway enzymes and processing of substrates through sequential steps in membrane-associated glycan assembly.
Collapse
Affiliation(s)
| | | | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
32
|
Ca(2+) modulating α-synuclein membrane transient interactions revealed by solution NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:853-8. [PMID: 24316000 DOI: 10.1016/j.bbamem.2013.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/07/2013] [Accepted: 11/25/2013] [Indexed: 01/08/2023]
Abstract
α-Synuclein is involved in Parkinson's disease and its interaction with cell membrane is crucial to its pathological and physiological functions. Membrane properties, such as curvature and lipid composition, have been shown to affect the interactions by various techniques, but ion effects on α-synuclein membrane interactions remain elusive. Ca(2+) dynamic fluctuation in neurons plays important roles in the onset of Parkinson's disease and its influx is considered as one of the reasons to cause cell death. Using solution Nuclear Magnetic Resonance (NMR) spectroscopy, here we show that Ca(2+) can modulate α-synuclein membrane interactions through competitive binding to anionic lipids, resulting in dissociation of α-synuclein from membranes. These results suggest a negative modulatory effect of Ca(2+) on membrane mediated normal function of α-synuclein, which may provide a clue, to their dysfunction in neurodegenerative disease.
Collapse
|
33
|
A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 2013; 13:41. [PMID: 23663692 PMCID: PMC3702409 DOI: 10.1186/1472-6750-13-41] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/07/2013] [Indexed: 01/15/2023] Open
Abstract
Background The reconstitution of membrane proteins and complexes into nanoscale lipid bilayer structures has contributed significantly to biochemical and biophysical analyses. Current methods for performing such reconstitutions entail an initial detergent-mediated step to solubilize and isolate membrane proteins. Exposure to detergents, however, can destabilize many membrane proteins and result in a loss of function. Amphipathic copolymers have recently been used to stabilize membrane proteins and complexes following suitable detergent extraction. However, the ability of these copolymers to extract proteins directly from native lipid bilayers for subsequent reconstitution and characterization has not been explored. Results The styrene-maleic acid (SMA) copolymer effectively solubilized membranes of isolated mitochondria and extracted protein complexes. Membrane complexes were reconstituted into polymer-bound nanoscale discs along with endogenous lipids. Using respiratory Complex IV as a model, these particles were shown to maintain the enzymatic activity of multicomponent electron transporting complexes. Conclusions We report a novel process for reconstituting fully operational protein complexes directly from cellular membranes into nanoscale lipid bilayers using the SMA copolymer. This facile, single-step strategy obviates the requirement for detergents and yields membrane complexes suitable for structural and functional studies.
Collapse
|
34
|
|
35
|
Nath A, Rhoades E. A flash in the pan: dissecting dynamic amyloid intermediates using fluorescence. FEBS Lett 2013; 587:1096-105. [PMID: 23458258 DOI: 10.1016/j.febslet.2013.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022]
Abstract
Several widespread and severe degenerative diseases are characterized by the deposition of amyloid protein aggregates in affected tissues. While there is great interest in the complete description of the aggregation pathway of the proteins involved, a molecular level understanding is hindered by the complexity of the self-assembly process. In particular, the early stages of aggregation, where dynamic, heterogeneous and often toxic intermediates are populated, are resistant to high-resolution structural characterization. Fluorescence spectroscopy is a powerful and versatile tool for such analysis. In this review, we survey its application to provide residue-specific information about amyloid intermediate states for three selected proteins: IAPP, α-synuclein, and tau.
Collapse
Affiliation(s)
- Abhinav Nath
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
36
|
Abstract
The context of the membrane is crucial for the interaction of many membrane proteins with their ligands. However, many detailed studies cannot be carried out in living cells. Therefore, studying these interactions requires model membrane systems that are compatible with the used analytical method. A big variety of these methods is available, each of which has its advantages and disadvantages. This chapter gives an overview over the existing techniques, a basic introduction into work with lipids, and detailed protocols for selected methods.
Collapse
Affiliation(s)
- Heiko Keller
- BIOTEC, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
37
|
Luthra A, Gregory M, Grinkova YV, Denisov IG, Sligar SG. Nanodiscs in the studies of membrane-bound cytochrome P450 enzymes. Methods Mol Biol 2013; 987:115-27. [PMID: 23475672 DOI: 10.1007/978-1-62703-321-3_10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochromes P450 from eukaryotes and their native redox partners cytochrome P450 reductases both belong to the class of monotopic membrane proteins containing one transmembrane anchor. Incorporation into the lipid bilayer significantly affects their equilibrium and kinetic properties and plays an important role in their interactions. We describe here the detailed protocols developed in our group for the functional self-assembly of mammalian cytochromes P450 and cytochrome P450 reductases into Nanodiscs with controlled lipid composition. The resulting preparations are fully functional, homogeneous in size, composition and oligomerization state of the heme enzyme, and show an improved stability with respect to P420 formation. We provide a brief overview of applications of Nanodisc technology to the biophysical and biochemical mechanistic studies of cytochromes P450 involved in steroidogenesis, and of the most abundant xenobiotic-metabolizing human cytochrome P450 CYP3A4.
Collapse
Affiliation(s)
- A Luthra
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | | | | | | | | |
Collapse
|
38
|
Martos A, Jiménez M, Rivas G, Schwille P. Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol 2012; 22:634-43. [DOI: 10.1016/j.tcb.2012.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
|
39
|
Trexler AJ, Rhoades E. Function and dysfunction of α-synuclein: probing conformational changes and aggregation by single molecule fluorescence. Mol Neurobiol 2012; 47:622-31. [PMID: 22983916 DOI: 10.1007/s12035-012-8338-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/19/2012] [Indexed: 01/21/2023]
Abstract
The aggregation and deposition of the neuronal protein α-synuclein in the substantia nigra region of the brain is a key pathological feature of Parkinson's disease. α-Synuclein assembles from a monomeric state in solution, which lacks stable secondary and tertiary contacts, into highly structured fibrillar aggregates through a pathway which involves the population of multiple oligomeric species over a range of time scales. These features make α-synuclein well suited for study with single-molecule techniques, which are particularly useful for characterizing dynamic, heterogeneous samples. Here, we review the current literature featuring single-molecule fluorescence studies of α-synuclein and discuss how these studies have contributed to our understanding of both its function and its role in disease.
Collapse
Affiliation(s)
- Adam J Trexler
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, P.O. Box 208114, New Haven, CT 06511, USA
| | | |
Collapse
|
40
|
Bao H, Duong F, Chan CS. A step-by-step method for the reconstitution of an ABC transporter into nanodisc lipid particles. J Vis Exp 2012:e3910. [PMID: 22951950 DOI: 10.3791/3910] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The nanodisc is a discoidal particle (~ 10-12 nm large) that trap membrane proteins into a small patch of phospholipid bilayer. The nanodisc is a particularly attractive option for studying membrane proteins, especially in the context of ligand-receptor interactions. The method pioneered by Sligar and colleagues is based on the amphipathic properties of an engineered highly a-helical scaffold protein derived from the apolipoprotein A1. The hydrophobic faces of the scaffold protein interact with the fatty acyl side-chains of the lipid bilayer whereas the polar regions face the aqueous environment. Analyses of membrane proteins in nanodiscs have significant advantages over liposome because the particles are small, homogeneous and water-soluble. In addition, biochemical and biophysical methods normally reserved to soluble proteins can be applied, and from either side of the membrane. In this visual protocol, we present a step-by-step reconstitution of a well characterized bacterial ABC transporter, the MalE-MalFGK2 complex. The formation of the disc is a self-assembly process that depends on hydrophobic interactions taking place during the progressive removal of the detergent. We describe the essential steps and we highlight the importance of choosing a correct protein-to-lipid ratio in order to limit the formation of aggregates and larger polydisperse liposome-like particles. Simple quality controls such as gel filtration chromatography, native gel electrophoresis and dynamic light scattering spectroscopy ensure that the discs have been properly reconstituted.
Collapse
Affiliation(s)
- Huan Bao
- Department of Biochemistry and Molecular Biology, University of British Columbia
| | | | | |
Collapse
|
41
|
Ranaghan MJ, Schwall CT, Alder NN, Birge RR. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 2011; 133:18318-27. [PMID: 21951206 PMCID: PMC3218432 DOI: 10.1021/ja2070957] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over 4000 putative proteorhodopsins (PRs) have been identified throughout the oceans and seas of the Earth. The first of these eubacterial rhodopsins was discovered in 2000 and has expanded the family of microbial proton pumps to all three domains of life. With photophysical properties similar to those of bacteriorhodopsin, an archaeal proton pump, PRs are also generating interest for their potential use in various photonic applications. We perform here the first reconstitution of the minimal photoactive PR structure into nanoscale phospholipid bilayers (nanodiscs) to better understand how protein-protein and protein-lipid interactions influence the photophysical properties of PR. Spectral (steady-state and time-resolved UV-visible spectroscopy) and physical (size-exclusion chromatography and electron microscopy) characterization of these complexes confirms the preparation of a photoactive PR monomer within nanodiscs. Specifically, when embedded within a nanodisc, monomeric PR exhibits a titratable pK(a) (6.5-7.1) and photocycle lifetime (∼100-200 ms) that are comparable to the detergent-solubilized protein. These ndPRs also produce a photoactive blue-shifted absorbance, centered at 377 or 416 nm, that indicates that protein-protein interactions from a PR oligomer are required for a fast photocycle. Moreover, we demonstrate how these model membrane systems allow modulation of the PR photocycle by variation of the discoidal diameter (i.e., 10 or 12 nm), bilayer thickness (i.e., 23 or 26.5 Å), and degree of saturation of the lipid acyl chain. Nanodiscs also offer a highly stable environment of relevance to potential device applications.
Collapse
Affiliation(s)
- Matthew J. Ranaghan
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Christine T. Schwall
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| | - Robert R. Birge
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269 (USA)
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269 (USA)
| |
Collapse
|
42
|
Nath A, Miranker AD, Rhoades E. A Membrane-Bound Antiparallel Dimer of Rat Islet Amyloid Polypeptide. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Nath A, Miranker AD, Rhoades E. A membrane-bound antiparallel dimer of rat islet amyloid polypeptide. Angew Chem Int Ed Engl 2011; 50:10859-62. [PMID: 21948544 DOI: 10.1002/anie.201102887] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/27/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Abhinav Nath
- Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
44
|
Morgan CR, Hebling CM, Rand KD, Stafford DW, Jorgenson JW, Engen JR. Conformational transitions in the membrane scaffold protein of phospholipid bilayer nanodiscs. Mol Cell Proteomics 2011; 10:M111.010876. [PMID: 21715319 DOI: 10.1074/mcp.m111.010876] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phospholipid bilayer nanodiscs are model membrane systems that provide an environment where membrane proteins are highly stable and monodisperse without the use of detergents or liposomes. Nanodiscs consist of a discoidal phospholipid bilayer encircled by two copies of an amphipathic alpha helical membrane scaffold protein, which is modeled from apolipoprotein A-1. Hydrogen exchange mass spectrometry was used to probe the structure and dynamics of the scaffold protein in the presence and absence of lipid. On nanodisc self-assembly, the entire scaffold protein gained significant protection from exchange, consistent with a large, protein-wide, structural rearrangement. This protection was short-lived and the scaffold protein was highly deuterated within 2 h. Several regions of the scaffold protein, in both the lipid-free and lipid-associated states, displayed EX1 unfolding kinetics. The rapid deuteration of the scaffold protein and the presence of correlated unfolding events both indicate that nanodiscs are dynamic rather than rigid bodies in solution. This work provides a catalog of the expected scaffold protein peptic peptides in a nanodisc-hydrogen exchange mass spectrometry experiment and their deuterium uptake signatures, data that can be used as a benchmark to verify correct assembly and nanodisc structure. Such reference data will be useful control data for all hydrogen exchange mass spectrometry experiments involving nanodiscs in which transmembrane or lipid-associated proteins are the primary molecule(s) of interest.
Collapse
Affiliation(s)
- Christopher R Morgan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity. Proc Natl Acad Sci U S A 2011; 108:9460-5. [PMID: 21606325 DOI: 10.1073/pnas.1102356108] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Amyloid fiber formation is correlated with pathology in many diseases, including Alzheimer's, Parkinson's, and type II diabetes. Although β-sheet-rich fibrillar protein deposits define this class of disorder, increasing evidence points toward small oligomeric species as being responsible for cell dysfunction and death. The molecular mechanism by which this occurs is unknown, but likely involves the interaction of these species with biological membranes, with a subsequent loss of integrity. Here, we investigate islet amyloid polypeptide, which is implicated in the loss of insulin-secreting cells in type II diabetics. We report the discovery of oligomeric species that arise through stochastic nucleation on membranes and result in disruption of the lipid bilayer. These species are stable, result in all-or-none leakage, and represent a definable protein/lipid phase that equilibrates over time. We characterize the reaction pathway of assembly through the use of an experimental design that includes both ensemble and single-particle evaluations. Complexity in the reaction pathway could not be satisfied using a two-state description of membrane-bound monomer and oligomeric species. We therefore put forward a three-state kinetic framework, one of which we conjecture represents a non-amyloid, non-β-sheet intermediate previously shown to be a candidate therapeutic target.
Collapse
|
46
|
Rhoades L. Liz Rhoades: Single molecules tell many stories. Interview by Caitlin Sedwick. J Cell Biol 2010; 191:1046-7. [PMID: 21149562 PMCID: PMC3002035 DOI: 10.1083/jcb.1916pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rhoades studies protein folding and binding using single-molecule fluorescence techniques.
Collapse
|
47
|
Elbaum-Garfinkle S, Ramlall T, Rhoades E. The role of the lipid bilayer in tau aggregation. Biophys J 2010; 98:2722-30. [PMID: 20513417 PMCID: PMC2877329 DOI: 10.1016/j.bpj.2010.03.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 03/02/2010] [Indexed: 11/22/2022] Open
Abstract
Tau is a microtubule associated protein whose aggregation is implicated in a number of neurodegenerative diseases. We investigate the mechanism by which anionic lipid vesicles induce aggregation of tau in vitro using K18, a fragment of tau corresponding to the four repeats of the microtubule binding domain. Our results show that aggregation occurs when the amount of K18 bound to the lipid bilayer exceeds a critical surface density. The ratio of protein/lipid at the critical aggregation concentration is pH-dependent, as is the binding affinity. At low pH, where the protein binds with high affinity, the critical surface density is independent both of total lipid concentration as well as the fraction of anionic lipid present in the bilayer. Furthermore, the aggregates consist of both protein and vesicles and bind the beta-sheet specific dye, Thioflavin T, in the manner characteristic of pathological aggregates. Our results suggest that the lipid bilayer facilitates protein-protein interactions both by screening charges on the protein and by increasing the local protein concentration, resulting in rapid aggregation. Because anionic lipids are abundant in cellular membranes, these findings contribute to understanding tau-lipid bilayer interactions that may be relevant to disease pathology.
Collapse
Key Words
- al488, alexa fluor 488
- cac, critical aggregation concentration
- fcs, fluorescence correlation spectroscopy
- luvs, large unilamellar vesicles
- nft, neurofibrillary tangle
- pc, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
- phfs, paired helical filaments
- ps, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine
- tht, thioflavin t
- rhod-pe, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-n-(lissamine rhodamine b sulfonyl)
Collapse
Affiliation(s)
- Shana Elbaum-Garfinkle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Trudy Ramlall
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York
| | - Elizabeth Rhoades
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
- Department of Physics, Yale University, New Haven, Connecticut
| |
Collapse
|