1
|
Unksov IN, Korosec CS, Surendiran P, Verardo D, Lyttleton R, Forde NR, Linke H. Through the Eyes of Creators: Observing Artificial Molecular Motors. ACS NANOSCIENCE AU 2022; 2:140-159. [PMID: 35726277 PMCID: PMC9204826 DOI: 10.1021/acsnanoscienceau.1c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Inspired by molecular motors in biology, there has been significant progress in building artificial molecular motors, using a number of quite distinct approaches. As the constructs become more sophisticated, there is also an increasing need to directly observe the motion of artificial motors at the nanoscale and to characterize their performance. Here, we review the most used methods that tackle those tasks. We aim to help experimentalists with an overview of the available tools used for different types of synthetic motors and to choose the method most suited for the size of a motor and the desired measurements, such as the generated force or distances in the moving system. Furthermore, for many envisioned applications of synthetic motors, it will be a requirement to guide and control directed motions. We therefore also provide a perspective on how motors can be observed on structures that allow for directional guidance, such as nanowires and microchannels. Thus, this Review facilitates the future research on synthetic molecular motors, where observations at a single-motor level and a detailed characterization of motion will promote applications.
Collapse
Affiliation(s)
- Ivan N. Unksov
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Chapin S. Korosec
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | | | - Damiano Verardo
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
- AlignedBio
AB, Medicon Village, Scheeletorget 1, 223 63 Lund, Sweden
| | - Roman Lyttleton
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Nancy R. Forde
- Department
of Physics, Simon Fraser University, V5A 1S6 Burnaby, British Columbia, Canada
| | - Heiner Linke
- Solid
State Physics and NanoLund, Lund University, Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
2
|
Bazrafshan A, Kyriazi ME, Holt BA, Deng W, Piranej S, Su H, Hu Y, El-Sagheer AH, Brown T, Kwong GA, Kanaras AG, Salaita K. DNA Gold Nanoparticle Motors Demonstrate Processive Motion with Bursts of Speed Up to 50 nm Per Second. ACS NANO 2021; 15:8427-8438. [PMID: 33956424 DOI: 10.1021/acsnano.0c10658] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic motors that consume chemical energy to produce mechanical work offer potential applications in many fields that span from computing to drug delivery and diagnostics. Among the various synthetic motors studied thus far, DNA-based machines offer the greatest programmability and have shown the ability to translocate micrometer-distances in an autonomous manner. DNA motors move by employing a burnt-bridge Brownian ratchet mechanism, where the DNA "legs" hybridize and then destroy complementary nucleic acids immobilized on a surface. We have previously shown that highly multivalent DNA motors that roll offer improved performance compared to bipedal walkers. Here, we use DNA-gold nanoparticle conjugates to investigate and enhance DNA nanomotor performance. Specifically, we tune structural parameters such as DNA leg density, leg span, and nanoparticle anisotropy as well as buffer conditions to enhance motor performance. Both modeling and experiments demonstrate that increasing DNA leg density boosts the speed and processivity of motors, whereas DNA leg span increases processivity and directionality. By taking advantage of label-free imaging of nanomotors, we also uncover Lévy-type motion where motors exhibit bursts of translocation that are punctuated with transient stalling. Dimerized particles also demonstrate more ballistic trajectories confirming a rolling mechanism. Our work shows the fundamental properties that control DNA motor performance and demonstrates optimized motors that can travel multiple micrometers within minutes with speeds of up to 50 nm/s. The performance of these nanoscale motors approaches that of motor proteins that travel at speeds of 100-1000 nm/s, and hence this work can be important in developing protocellular systems as well next generation sensors and diagnostics.
Collapse
Affiliation(s)
- Alisina Bazrafshan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322 United States
| | - Maria-Eleni Kyriazi
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO171BJ, U.K
| | - Brandon Alexander Holt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322 United States
| | - Wenxiao Deng
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322 United States
| | - Selma Piranej
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322 United States
| | - Hanquan Su
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322 United States
| | - Yuesong Hu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322 United States
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322 United States
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO171BJ, U.K
- Institute for Life Sciences, University of Southampton, Southampton, SO171BJ, U.K
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322 United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322 United States
| |
Collapse
|
3
|
Jiang S, Pal N, Hong F, Fahmi NE, Hu H, Vrbanac M, Yan H, Walter NG, Liu Y. Regulating DNA Self-Assembly Dynamics with Controlled Nucleation. ACS NANO 2021; 15:5384-5396. [PMID: 33705654 DOI: 10.1021/acsnano.1c00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controlling the nucleation step of a self-assembly system is essential for engineering structural complexity and dynamic behaviors. Here, we design a "frame-filling" model system that comprises one type of self-complementary DNA tile and a hosting DNA origami frame to investigate the inherent dynamics of three general nucleation modes in nucleated self-assembly: unseeded, facet, and seeded nucleation. Guided by kinetic simulation, which suggested an optimal temperature range to differentiate the individual nucleation modes, and complemented by single-molecule observations, the transition of tiles from a metastable, monomeric state to a stable, polymerized state through the three nucleation pathways was monitored by Mg2+-triggered kinetic measurements. The temperature-dependent kinetics for all three nucleation modes were correlated by a "nucleation-growth" model, which quantified the tendency of nucleation using an empirical nucleation number. Moreover, taking advantage of the temperature dependence of nucleation, tile assembly can be regulated externally by the hosting frame. An ultraviolet (UV)-responsive trigger was integrated into the frame to simultaneously control "when" and "where" nucleation started. Our results reveal the dynamic mechanisms of the distinct nucleation modes in DNA tile-based self-assembly and provide a general strategy for controlling the self-assembly process.
Collapse
Affiliation(s)
- Shuoxing Jiang
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nibedita Pal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fan Hong
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nour Eddine Fahmi
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Huiyu Hu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthew Vrbanac
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yan Liu
- Center for Molecular Design and Biomimetics at the Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
4
|
Bazrafshan A, Meyer TA, Su H, Brockman JM, Blanchard AT, Piranej S, Duan Y, Ke Y, Salaita K. Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds. Angew Chem Int Ed Engl 2020; 59:9514-9521. [PMID: 32017312 PMCID: PMC7301628 DOI: 10.1002/anie.201916281] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 11/07/2022]
Abstract
Inspired by biological motor proteins, that efficiently convert chemical fuel to unidirectional motion, there has been considerable interest in developing synthetic analogues. Among the synthetic motors created thus far, DNA motors that undertake discrete steps on RNA tracks have shown the greatest promise. Nonetheless, DNA nanomotors lack intrinsic directionality, are low speed and take a limited number of steps prior to stalling or dissociation. Herein, we report the first example of a highly tunable DNA origami motor that moves linearly over micron distances at an average speed of 40 nm/min. Importantly, nanomotors move unidirectionally without intervention through an external force field or a patterned track. Because DNA origami enables precise testing of nanoscale structure-function relationships, we were able to experimentally study the role of motor shape, chassis flexibility, leg distribution, and total number of legs in tuning performance. An anisotropic rigid chassis coupled with a high density of legs maximizes nanomotor speed and endurance.
Collapse
Affiliation(s)
- Alisina Bazrafshan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Travis A Meyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Hanquan Su
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Selma Piranej
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Yonggang Ke
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia, Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Bazrafshan A, Meyer TA, Su H, Brockman JM, Blanchard AT, Piranej S, Duan Y, Ke Y, Salaita K. Tunable DNA Origami Motors Translocate Ballistically Over μm Distances at nm/s Speeds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alisina Bazrafshan
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Travis A. Meyer
- Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Hanquan Su
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Joshua M. Brockman
- Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Aaron T. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Selma Piranej
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Yuxin Duan
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
| | - Yonggang Ke
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
- Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Khalid Salaita
- Department of Chemistry Emory University 1515 Dickey Drive Atlanta GA 30322 USA
- Wallace H. Coulter Department of Biomedical Engineering Georgia, Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
6
|
Suddala KC, Price IR, Dandpat SS, Janeček M, Kührová P, Šponer J, Banáš P, Ke A, Walter NG. Local-to-global signal transduction at the core of a Mn 2+ sensing riboswitch. Nat Commun 2019; 10:4304. [PMID: 31541094 PMCID: PMC6754395 DOI: 10.1038/s41467-019-12230-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 01/01/2023] Open
Abstract
The widespread Mn2+-sensing yybP-ykoY riboswitch controls the expression of bacterial Mn2+ homeostasis genes. Here, we first determine the crystal structure of the ligand-bound yybP-ykoY riboswitch aptamer from Xanthomonas oryzae at 2.96 Å resolution, revealing two conformations with docked four-way junction (4WJ) and incompletely coordinated metal ions. In >100 µs of MD simulations, we observe that loss of divalents from the core triggers local structural perturbations in the adjacent docking interface, laying the foundation for signal transduction to the regulatory switch helix. Using single-molecule FRET, we unveil a previously unobserved extended 4WJ conformation that samples transient docked states in the presence of Mg2+. Only upon adding sub-millimolar Mn2+, however, can the 4WJ dock stably, a feature lost upon mutation of an adenosine contacting Mn2+ in the core. These observations illuminate how subtly differing ligand preferences of competing metal ions become amplified by the coupling of local with global RNA dynamics.
Collapse
Affiliation(s)
- Krishna C Suddala
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian R Price
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Shiba S Dandpat
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michal Janeček
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Petra Kührová
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolská 135, Brno, 612 65, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, tř. 17 listopadu 12, Olomouc, 771 46, Czech Republic
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Chauvier A, Cabello-Villegas J, Walter NG. Probing RNA structure and interaction dynamics at the single molecule level. Methods 2019; 162-163:3-11. [PMID: 30951833 DOI: 10.1016/j.ymeth.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
RNA structures and their dynamic fluctuations lie at the heart of understanding key biological process such as transcription, splicing, translation and RNA decay. While conventional bulk assays have proven to identify and characterize key pathway intermediates, the generally dynamic nature of RNA structures renders the information obtained from time and ensemble averaging techniques necessarily lacking in critical details. Here we detail Single-Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS), a method that readily monitors structural fluctuations of single RNA molecules through the repetitive interaction of fluorescent probes with an unlabeled, surface-immobilized RNA target of virtually any length and in any biological context. In addition, we demonstrate the broad applicability of SiM-KARTS by kinetically fingerprinting the binding of cognate tRNA ligand to single immobilized T-box riboswitch molecules. SiM-KARTS represents a valuable tool for probing biologically relevant structure and interaction features of potentially many diverse RNA metabolic pathways.
Collapse
Affiliation(s)
- Adrien Chauvier
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Javier Cabello-Villegas
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
A guide to nucleic acid detection by single-molecule kinetic fingerprinting. Methods 2018; 153:3-12. [PMID: 30099084 DOI: 10.1016/j.ymeth.2018.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Conventional methods for detecting small quantities of nucleic acids require amplification by the polymerase chain reaction (PCR), which necessitates prior purification and introduces copying errors. While amplification-free methods do not have these shortcomings, they are generally orders of magnitude less sensitive and specific than PCR-based methods. In this review, we provide a practical guide to a novel amplification-free method, single-molecule recognition through equilibrium Poisson sampling (SiMREPS), that provides both single-molecule sensitivity and single-base selectivity by monitoring the repetitive interactions of fluorescent probes to immobilized targets. We demonstrate how this kinetic fingerprinting filters out background arising from the inevitable nonspecific binding of probes, yielding virtually zero background signal. As practical applications of this digital detection methodology, we present the quantification of microRNA miR-16 and the detection of the mutation EGFR L858R with an apparent single-base discrimination factor of over 3 million.
Collapse
|
9
|
Li J, Johnson-Buck A, Yang YR, Shih WM, Yan H, Walter NG. Exploring the speed limit of toehold exchange with a cartwheeling DNA acrobat. NATURE NANOTECHNOLOGY 2018; 13:723-729. [PMID: 29736034 DOI: 10.1038/s41565-018-0130-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/29/2018] [Indexed: 05/26/2023]
Abstract
Dynamic DNA nanotechnology has yielded nontrivial autonomous behaviours such as stimulus-guided locomotion, computation and programmable molecular assembly. Despite these successes, DNA-based nanomachines suffer from slow kinetics, requiring several minutes or longer to carry out a handful of operations. Here, we pursue the speed limit of an important class of reactions in DNA nanotechnology-toehold exchange-through the single-molecule optimization of a novel class of DNA walker that undergoes cartwheeling movements over a field of complementary oligonucleotides. After optimizing this DNA 'acrobat' for rapid movement, we measure a stepping rate constant approaching 1 s-1, which is 10- to 100-fold faster than prior DNA walkers. Finally, we use single-particle tracking to demonstrate movement of the walker over hundreds of nanometres within 10 min, in quantitative agreement with predictions from stepping kinetics. These results suggest that substantial improvements in the operating rates of broad classes of DNA nanomachines utilizing strand displacement are possible.
Collapse
Affiliation(s)
- Jieming Li
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Yuhe Renee Yang
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - William M Shih
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hao Yan
- Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Valero J, Pal N, Dhakal S, Walter NG, Famulok M. A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks. NATURE NANOTECHNOLOGY 2018; 13:496-503. [PMID: 29632399 PMCID: PMC5994166 DOI: 10.1038/s41565-018-0109-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/01/2018] [Indexed: 05/25/2023]
Abstract
Biological motors are highly complex protein assemblies that generate linear or rotary motion, powered by chemical energy. Synthetic motors based on DNA nanostructures, bio-hybrid designs or synthetic organic chemistry have been assembled. However, unidirectionally rotating biomimetic wheel motors with rotor-stator units that consume chemical energy are elusive. Here, we report a bio-hybrid nanoengine consisting of a catalytic stator that unidirectionally rotates an interlocked DNA wheel, powered by NTP hydrolysis. The engine consists of an engineered T7 RNA polymerase (T7RNAP-ZIF) attached to a dsDNA nanoring that is catenated to a rigid rotating dsDNA wheel. The wheel motor produces long, repetitive RNA transcripts that remain attached to the engine and are used to guide its movement along predefined ssDNA tracks arranged on a DNA nanotube. The simplicity of the design renders this walking nanoengine adaptable to other biological nanoarchitectures, facilitating the construction of complex bio-hybrid structures that achieve NTP-driven locomotion.
Collapse
Affiliation(s)
- Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany
- Center of Advanced European Studies and Research (CAESAR), Bonn, Germany
| | - Nibedita Pal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Soma Dhakal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, University of Bonn, Bonn, Germany.
- Center of Advanced European Studies and Research (CAESAR), Bonn, Germany.
| |
Collapse
|
11
|
Pan J, Cha TG, Chen H, Li F, Choi JH. DNA Walkers as Transport Vehicles of Nanoparticles Along a Carbon Nanotube Track. Methods Mol Biol 2017; 1500:269-280. [PMID: 27813015 DOI: 10.1007/978-1-4939-6454-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA-based molecular motors are synthetic analogs of naturally occurring protein motors. Typical DNA walkers are constructed from synthetic short DNA strands and are powered by various free energy changes during hybridization reactions. Due to the constraints set by their small physical dimension and slow kinetics, most DNA walkers are characterized by ensemble measurements that result in averaged kinetics data. Here we present a synthetic DNA walker system that exploits the extraordinary physicochemical properties of nanomaterials and the functionalities of DNA molecules, which enables real-time control and monitoring of single-DNA walkers over an extended period.
Collapse
Affiliation(s)
- Jing Pan
- School of Mechanical Engineering, Purdue University, Mechanical Engineering Building Room 2143, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Tae-Gon Cha
- School of Mechanical Engineering, Purdue University, Mechanical Engineering Building Room 2143, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Haorong Chen
- School of Mechanical Engineering, Purdue University, Mechanical Engineering Building Room 2143, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Feiran Li
- School of Mechanical Engineering, Purdue University, Mechanical Engineering Building Room 2143, 585 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, Mechanical Engineering Building Room 2143, 585 Purdue Mall, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Fu J, Yang YR, Dhakal S, Zhao Z, Liu M, Zhang T, Walter NG, Yan H. Assembly of multienzyme complexes on DNA nanostructures. Nat Protoc 2016; 11:2243-2273. [DOI: 10.1038/nprot.2016.139] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Recent progress on DNA based walkers. Curr Opin Biotechnol 2015; 34:56-64. [DOI: 10.1016/j.copbio.2014.11.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
|
14
|
Mallik L, Dhakal S, Nichols J, Mahoney J, Dosey AM, Jiang S, Sunahara RK, Skiniotis G, Walter NG. Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami. ACS NANO 2015; 9:7133-41. [PMID: 26149412 PMCID: PMC5835357 DOI: 10.1021/acsnano.5b01841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
DNA provides an ideal substrate for the engineering of versatile nanostructures due to its reliable Watson-Crick base pairing and well-characterized conformation. One of the most promising applications of DNA nanostructures arises from the site-directed spatial arrangement with nanometer precision of guest components such as proteins, metal nanoparticles, and small molecules. Two-dimensional DNA origami architectures, in particular, offer a simple design, high yield of assembly, and large surface area for use as a nanoplatform. However, such single-layer DNA origami were recently found to be structurally polymorphous due to their high flexibility, leading to the development of conformationally restrained multilayered origami that lack some of the advantages of the single-layer designs. Here we monitored single-layer DNA origami by transmission electron microscopy (EM) and discovered that their conformational heterogeneity is dramatically reduced in the presence of a low concentration of dimethyl sulfoxide, allowing for an efficient flattening onto the carbon support of an EM grid. We further demonstrated that streptavidin and a biotinylated target protein (cocaine esterase, CocE) can be captured at predesignated sites on these flattened origami while maintaining their functional integrity. Our demonstration that protein assemblies can be constructed with high spatial precision (within ∼2 nm of their predicted position on the platforms) by using strategically flattened single-layer origami paves the way for exploiting well-defined guest molecule assemblies for biochemistry and nanotechnology applications.
Collapse
Affiliation(s)
- Leena Mallik
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Soma Dhakal
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph Nichols
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jacob Mahoney
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anne M. Dosey
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shuoxing Jiang
- The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Roger K. Sunahara
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Georgios Skiniotis
- Life Sciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nils G. Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Johnson-Buck A, Su X, Giraldez MD, Zhao M, Tewari M, Walter NG. Kinetic fingerprinting to identify and count single nucleic acids. Nat Biotechnol 2015; 33:730-2. [PMID: 26098451 DOI: 10.1038/nbt.3246] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 05/07/2015] [Indexed: 01/05/2023]
Abstract
MicroRNAs (miRNAs) have emerged as promising diagnostic biomarkers. We introduce a kinetic fingerprinting approach called single-molecule recognition through equilibrium Poisson sampling (SiMREPS) for the amplification-free counting of single unlabeled miRNA molecules, which circumvents thermodynamic limits of specificity and virtually eliminates false positives. We demonstrate high-confidence, single-molecule detection of synthetic and endogenous miRNAs in both buffer and minimally treated biofluids, as well as >500-fold discrimination between single nucleotide polymorphisms.
Collapse
Affiliation(s)
- Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Xin Su
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Maria D Giraldez
- Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Muneesh Tewari
- 1] Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA. [2] Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, Michigan, USA. [3] Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA. [4] Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA. [5] Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Kahlscheuer ML, Widom J, Walter NG. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines. Methods Enzymol 2015; 558:539-570. [PMID: 26068753 PMCID: PMC4886477 DOI: 10.1016/bs.mie.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition, and versatile structural dynamics. Single-molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues toward studying the mechanisms of biomolecular machines isolated directly from complex biological specimens, such as cell extracts. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy in exemplary single-molecule pull-down FRET studies of the yeast spliceosome and discuss the broad application potential of this technique.
Collapse
Affiliation(s)
- Matthew L Kahlscheuer
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Julia Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
17
|
Widom JR, Dhakal S, Heinicke LA, Walter NG. Single-molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update. Arch Toxicol 2014; 88:1965-85. [PMID: 25212907 PMCID: PMC4615698 DOI: 10.1007/s00204-014-1357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022]
Abstract
Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy.
Collapse
Affiliation(s)
- Julia R Widom
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109-1055, USA
| | | | | | | |
Collapse
|
18
|
Johnson-Buck A, Jiang S, Yan H, Walter NG. DNA-cholesterol barges as programmable membrane-exploring agents. ACS NANO 2014; 8:5641-9. [PMID: 24833515 DOI: 10.1021/nn500108k] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
DNA nanotechnology enables the precise construction of nanoscale devices that mimic aspects of natural biomolecular systems yet exhibit robustly programmable behavior. While many important biological processes involve dynamic interactions between components associated with phospholipid membranes, little progress has been made toward creating synthetic mimics of such interfacial systems. We report the assembly and characterization of cholesterol-labeled DNA origami "barges" capable of reversible association with and lateral diffusion on supported lipid bilayers. Using single-particle fluorescence microscopy, we show that these DNA barges rapidly and stably embed in lipid bilayers and exhibit Brownian diffusion in a manner dependent on both cholesterol labeling and bilayer composition. Tracking of individual barges rapidly generates super-resolution maps of the contiguous regions of a membrane. Addition of appropriate command oligonucleotides enables membrane-associated barges to reversibly exchange fluorescent cargo with bulk solution, dissociate from the membrane, or form oligomers within the membrane, opening up new possibilities for programmable membrane-bound molecular devices.
Collapse
Affiliation(s)
- Alexander Johnson-Buck
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | | | | | | |
Collapse
|
19
|
Tsukanov R, Tomov TE, Liber M, Berger Y, Nir E. Developing DNA nanotechnology using single-molecule fluorescence. Acc Chem Res 2014; 47:1789-98. [PMID: 24828396 DOI: 10.1021/ar500027d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONSPECTUS: An important effort in the DNA nanotechnology field is focused on the rational design and manufacture of molecular structures and dynamic devices made of DNA. As is the case for other technologies that deal with manipulation of matter, rational development requires high quality and informative feedback on the building blocks and final products. For DNA nanotechnology such feedback is typically provided by gel electrophoresis, atomic force microscopy (AFM), and transmission electron microscopy (TEM). These analytical tools provide excellent structural information; however, usually they do not provide high-resolution dynamic information. For the development of DNA-made dynamic devices such as machines, motors, robots, and computers this constitutes a major problem. Bulk-fluorescence techniques are capable of providing dynamic information, but because only ensemble averaged information is obtained, the technique may not adequately describe the dynamics in the context of complex DNA devices. The single-molecule fluorescence (SMF) technique offers a unique combination of capabilities that make it an excellent tool for guiding the development of DNA-made devices. The technique has been increasingly used in DNA nanotechnology, especially for the analysis of structure, dynamics, integrity, and operation of DNA-made devices; however, its capabilities are not yet sufficiently familiar to the community. The purpose of this Account is to demonstrate how different SMF tools can be utilized for the development of DNA devices and for structural dynamic investigation of biomolecules in general and DNA molecules in particular. Single-molecule diffusion-based Förster resonance energy transfer and alternating laser excitation (sm-FRET/ALEX) and immobilization-based total internal reflection fluorescence (TIRF) techniques are briefly described and demonstrated. To illustrate the many applications of SMF to DNA nanotechnology, examples of SMF studies of DNA hairpins and Holliday junctions and of the interactions of DNA strands with DNA origami and origami-related devices such as a DNA bipedal motor are provided. These examples demonstrate how SMF can be utilized for measurement of distances and conformational distributions and equilibrium and nonequilibrium kinetics, to monitor structural integrity and operation of DNA devices, and for isolation and investigation of minor subpopulations including malfunctioning and nonreactive devices. Utilization of a flow-cell to achieve measurements of dynamics with increased time resolution and for convenient and efficient operation of DNA devices is discussed briefly. We conclude by summarizing the various benefits provided by SMF for the development of DNA nanotechnology and suggest that the method can significantly assist in the design and manufacture and evaluation of operation of DNA devices.
Collapse
Affiliation(s)
- Roman Tsukanov
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Toma E. Tomov
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Miran Liber
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yaron Berger
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Eyal Nir
- Department of Chemistry and the
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|
20
|
Discovering anomalous hybridization kinetics on DNA nanostructures using single-molecule fluorescence microscopy. Methods 2014; 67:177-84. [DOI: 10.1016/j.ymeth.2014.02.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/04/2014] [Accepted: 02/21/2014] [Indexed: 11/21/2022] Open
|
21
|
Yamashiro S, Mizuno H, Smith MB, Ryan GL, Kiuchi T, Vavylonis D, Watanabe N. New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Mol Biol Cell 2014; 25:1010-24. [PMID: 24501425 PMCID: PMC3967967 DOI: 10.1091/mbc.e13-03-0162] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This paper introduces a new, easy-to-use method of fluorescence single-molecule speckle microscopy for actin with nanometer-scale accuracy. This new method reveals that actin flows in front of mature focal adhesions (FAs) are fast and biased toward FAs, suggesting that mature FAs are actively engaged in pulling and remodeling the local actin network. Speckle microscopy directly visualizes the retrograde actin flow, which is believed to promote cell-edge protrusion when linked to focal adhesions (FAs). However, it has been argued that, due to rapid actin turnover, the use of green fluorescent protein–actin, the lack of appropriate analysis algorithms, and technical difficulties, speckle microscopy does not necessarily report the flow velocities of entire actin populations. In this study, we developed a new, user-friendly single-molecule speckle (SiMS) microscopy using DyLight dye-labeled actin. Our new SiMS method enables in vivo nanometer-scale displacement analysis with a low localization error of ±8–8.5 nm, allowing accurate flow-velocity measurement for actin speckles with lifetime <5 s. In lamellipodia, both short- and long-lived F-actin molecules flow with the same speed, indicating they are part of a single actin network. These results do not support coexistence of F-actin populations with different flow speeds, which is referred to as the lamella hypothesis. Mature FAs, but not nascent adhesions, locally obstruct the retrograde flow. Interestingly, the actin flow in front of mature FAs is fast and biased toward FAs, suggesting that mature FAs attract the flow in front and actively remodel the local actin network.
Collapse
Affiliation(s)
- Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Miyagi 980-8578, Japan Department of Physics, Lehigh University, Bethlehem, PA 18015
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang H, Guo P. Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 2014; 67:169-76. [PMID: 24440482 DOI: 10.1016/j.ymeth.2014.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 11/25/2022] Open
Abstract
Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The single molecule photobleaching (SMPB) technology for direct counting developed by our team (Shu et al., 2007 [18]; Zhang et al., 2007 [19]) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
23
|
Abstract
Riboswitches are structured noncoding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single-molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy for smFRET studies of the structure, dynamics, and ligand-binding mechanisms of riboswitches.
Collapse
|
24
|
Michelotti N, Johnson-Buck A, Manzo AJ, Walter NG. Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:139-52. [PMID: 22131292 PMCID: PMC3360889 DOI: 10.1002/wnan.170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nucleic acid nanotechnology exploits the programmable molecular recognition properties of natural and synthetic nucleic acids to assemble structures with nanometer-scale precision. In 2006, DNA origami transformed the field by providing a versatile platform for self-assembly of arbitrary shapes from one long DNA strand held in place by hundreds of short, site-specific (spatially addressable) DNA 'staples'. This revolutionary approach has led to the creation of a multitude of two-dimensional and three-dimensional scaffolds that form the basis for functional nanodevices. Not limited to nucleic acids, these nanodevices can incorporate other structural and functional materials, such as proteins and nanoparticles, making them broadly useful for current and future applications in emerging fields such as nanomedicine, nanoelectronics, and alternative energy.
Collapse
|
25
|
Motion analysis of live objects by super-resolution fluorescence microscopy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2011; 2012:859398. [PMID: 22162725 PMCID: PMC3227432 DOI: 10.1155/2012/859398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
Motion analysis plays an important role in studing activities or behaviors of live objects in medicine, biotechnology, chemistry, physics, spectroscopy, nanotechnology, enzymology, and biological engineering. This paper briefly reviews the developments in this area mostly in the recent three years, especially for cellular analysis in fluorescence microscopy. The topic has received much attention with the increasing demands in biomedical applications. The tasks of motion analysis include detection and tracking of objects, as well as analysis of motion behavior, living activity, events, motion statistics, and so forth. In the last decades, hundreds of papers have been published in this research topic. They cover a wide area, such as investigation of cell, cancer, virus, sperm, microbe, karyogram, and so forth. These contributions are summarized in this review. Developed methods and practical examples are also introduced. The review is useful to people in the related field for easy referral of the state of the art.
Collapse
|
26
|
Shukla GC, Haque F, Tor Y, Wilhelmsson LM, Toulmé JJ, Isambert H, Guo P, Rossi JJ, Tenenbaum SA, Shapiro BA. A boost for the emerging field of RNA nanotechnology. ACS NANO 2011; 5:3405-18. [PMID: 21604810 PMCID: PMC3102291 DOI: 10.1021/nn200989r] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23-25, 2010) ( http://www.eng.uc.edu/nanomedicine/RNA2010/ ), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCI. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries.
Collapse
Affiliation(s)
- Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological Sciences, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Farzin Haque
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - Yitzhak Tor
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - L. Marcus Wilhelmsson
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Jean-Jacques Toulmé
- Université Bordeaux Segalen, INSERM U869, Bâtiment 3A 1er étage, 33076 Bordeaux Cedex, France
| | - Hervé Isambert
- Institut Curie, Research Division, CNRS UMR 168, 11 rue P. & M. Curie, 75005 Paris, France
| | - Peixuan Guo
- Nanobiomedical Center, College of Engineering and Applied Science, and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, United States
| | - John J. Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California 91010, United States
| | - Scott A. Tenenbaum
- College of Nanoscale Science & Engineering, University at Albany-SUNY, Albany, New York 12203, United States
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute at Frederick, Frederick, Maryland 21702, United States
| |
Collapse
|