1
|
Wang Z, Zhu H, Xiong W. Advances in mass spectrometry-based multi-scale metabolomic methodologies and their applications in biological and clinical investigations. Sci Bull (Beijing) 2023; 68:2268-2284. [PMID: 37666722 DOI: 10.1016/j.scib.2023.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Metabolomics is a nascent field of inquiry that emerged in the late 20th century. It encompasses the comprehensive profiling of metabolites across a spectrum of organisms, ranging from bacteria and cells to tissues. The rapid evolution of analytical methods and data analysis has greatly accelerated progress in this dynamic discipline over recent decades. Sophisticated techniques such as liquid chromatograph mass spectrometry (MS), gas chromatograph MS, capillary electrophoresis MS, and nuclear magnetic resonance serve as the cornerstone of metabolomic analysis. Building upon these methods, a plethora of modifications and combinations have emerged to propel the advancement of metabolomics. Despite this progress, scrutinizing metabolism at the single-cell or single-organelle level remains an arduous task over the decades. Some of the most thrilling advancements, such as single-cell and single-organelle metabolic profiling techniques, offer profound insights into the intricate mechanisms within cells and organelles. This allows for a comprehensive study of metabolic heterogeneity and its pivotal role in multiple biological processes. The progress made in MS imaging has enabled high-resolution in situ metabolic profiling of tissue sections and even individual cells. Spatial reconstruction techniques enable the direct representation of metabolic distribution and alteration in three-dimensional space. The application of novel metabolomic techniques has led to significant breakthroughs in biological and clinical studies, including the discovery of novel metabolic pathways, determination of cell fate in differentiation, anti-aging intervention through modulating metabolism, metabolomics-based clinicopathologic analysis, and surgical decision-making based on on-site intraoperative metabolic analysis. This review presents a comprehensive overview of both conventional and innovative metabolomic techniques, highlighting their applications in groundbreaking biological and clinical studies.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; CAS Key Laboratory of Brain Function and Disease, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China.
| |
Collapse
|
2
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Song Y, Zhang F, Linhardt RJ. Analysis of the Glycosaminoglycan Chains of Proteoglycans. J Histochem Cytochem 2021; 69:121-135. [PMID: 32623943 PMCID: PMC7841699 DOI: 10.1369/0022155420937154] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Glycosaminoglycans (GAGs) are heterogeneous, negatively charged, macromolecules that are found in animal tissues. Based on the form of component sugar, GAGs have been categorized into four different families: heparin/heparan sulfate, chondroitin/dermatan sulfate, keratan sulfate, and hyaluronan. GAGs engage in biological pathway regulation through their interaction with protein ligands. Detailed structural information on GAG chains is required to further understanding of GAG-ligand interactions. However, polysaccharide sequencing has lagged behind protein and DNA sequencing due to the non-template-driven biosynthesis of glycans. In this review, we summarize recent progress in the analysis of GAG chains, specifically focusing on techniques related to mass spectroscopy (MS), including separation techniques coupled to MS, tandem MS, and bioinformatics software for MS spectrum interpretation. Progress in the use of other structural analysis tools, such as nuclear magnetic resonance (NMR) and hyphenated techniques, is included to provide a comprehensive perspective.
Collapse
Affiliation(s)
- Yuefan Song
- National R & D Branch Center for Seaweed Processing, College of Food Science and Engineering, Dalian Ocean University, Dalian, P.R. China
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
4
|
Pepi LE, Sasiene ZJ, Mendis PM, Jackson GP, Amster IJ. Structural Characterization of Sulfated Glycosaminoglycans Using Charge-Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2143-2153. [PMID: 32820910 PMCID: PMC8045215 DOI: 10.1021/jasms.0c00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Glycosaminoglycans (GAGs) participate in a broad range of physiological processes, and their structures are of interest to researchers in structural biology and medicine. Although they are abundant in tissues and extracellular matrices, their structural heterogeneity makes them challenging analytes. Mass spectrometry, and more specifically, tandem mass spectrometry, is particularly well suited for their analysis. Many tandem mass spectrometry techniques have been examined for their suitability toward the structural characterization of GAGs. Threshold activation methods such as collision-induced dissociation (CID) produce mainly glycosidic cleavages and do not yield a broad range of structurally informative cross-ring fragments. Considerable research efforts have been directed at finding other means of dissociating gas-phase GAG ions to produce more comprehensive structural information. Here, we compare the structural information on GAGs obtained by charge-transfer dissociation (CTD) and electron detachment dissociation (EDD). EDD has previously been applied to GAGs and is known to produce both glycosidic and cross-ring cleavages in similar abundance. CTD has not previously been used to analyze GAGs but has been shown to produce abundant cross-ring cleavages and no sulfate loss when applied to another class of sulfated carbohydrates like algal polysaccharides. In contrast to EDD, which is restricted to FTICR mass spectrometers, CTD can be implemented on other platforms, such as ion trap mass spectrometers (ITMS). Here, we show the capability of CTD-ITMS to produce structurally significant details of the sites of modification in both heparan sulfate (HS) and chondroitin sulfate (CS) standards ranging in length from degree of polymerization (dp) 4 to dp6. EDD and CTD both yield more structural information than CID and yield similar fractional abundances to one another for glycosidic fragments, cross-ring fragments, and neutral losses.
Collapse
Affiliation(s)
- Lauren E Pepi
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Zachary J Sasiene
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Praneeth M Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Glen P Jackson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
- Department of Forensic and Investigative Science, West Virginia University, Morgantown, West Virginia 26506, United States
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Han X, Sanderson P, Nesheiwat S, Lin L, Yu Y, Zhang F, Amster IJ, Linhardt RJ. Structural analysis of urinary glycosaminoglycans from healthy human subjects. Glycobiology 2020; 30:143-151. [PMID: 31616929 PMCID: PMC7415306 DOI: 10.1093/glycob/cwz088] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/12/2022] Open
Abstract
Urinary glycosaminoglycans (GAGs) can reflect the health condition of a human being, and the GAGs composition can be directly related to various diseases. In order to effectively utilize such information, a detailed understanding of urinary GAGs in healthy individuals can provide insight into the levels and structures of human urinary GAGs. In this study, urinary GAGs were collected and purified from healthy males and females of adults and young adults. The total creatinine-normalized urinary GAG content, molecular weight distribution and disaccharide compositions were determined. Using capillary zone electrophoresis (CZE)-mass spectrometry (MS) and CZE-MS/MS relying on negative electron transfer dissociation, the major components of healthy human urinary GAGs were determined. The structures of 10 GAG oligosaccharides representing the majority of human urinary GAGs were determined.
Collapse
Affiliation(s)
- Xiaorui Han
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Patience Sanderson
- Department of Chemistry, University of Georgia, 140 Cedar St, Athens, GA 30602, USA
| | - Sara Nesheiwat
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Lei Lin
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Yanlei Yu
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, 140 Cedar St, Athens, GA 30602, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180, USA
| |
Collapse
|
7
|
Klein DR, Leach FE, Amster IJ, Brodbelt JS. Structural Characterization of Glycosaminoglycan Carbohydrates Using Ultraviolet Photodissociation. Anal Chem 2019; 91:6019-6026. [PMID: 30932467 DOI: 10.1021/acs.analchem.9b00521] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structural characterization of sulfated glycosaminoglycans (GAGs) by mass spectrometry has long been a formidable analytical challenge owing to their high structural variability and the propensity for sulfate decomposition upon activation with low-energy ion activation methods. While derivatization and complexation workflows have aimed to generate informative spectra using low-energy ion activation methods, alternative ion activation methods present the opportunity to obtain informative spectra from native GAG structures. Both electron- and photon-based activation methods, including electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), and extreme ultraviolet photon activation, have been explored previously to overcome the limitations associated with low-energy activation methods for GAGs and other sulfated oligosaccharides. Further, implementation of such methods on high-resolution mass spectrometers has aided the interpretation of the complex spectra generated. Here, we explore ultraviolet photodissociation (UVPD) implemented on an Orbitrap mass spectrometer as another option for structural characterization of GAGs. UVPD spectra for both dermatan and heparan sulfate structures display extensive fragmentation including both glycosidic and cross-ring cleavages with the extent of sulfate retention comparable to that observed by EDD and NETD. In addition, the relatively short activation time of UVPD makes it promising for higher throughput analysis of GAGs in complex mixtures.
Collapse
Affiliation(s)
- Dustin R Klein
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Franklin E Leach
- Department of Environmental Health Science , The University of Georgia , Athens , Georgia 30602 , United States
| | - I Jonathan Amster
- Department of Chemistry , The University of Georgia , Athens , Georgia 30602 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
8
|
Sanderson P, Stickney M, Leach FE, Xia Q, Yu Y, Zhang F, Linhardt RJ, Amster IJ. Heparin/heparan sulfate analysis by covalently modified reverse polarity capillary zone electrophoresis-mass spectrometry. J Chromatogr A 2018; 1545:75-83. [PMID: 29501428 PMCID: PMC5862776 DOI: 10.1016/j.chroma.2018.02.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022]
Abstract
Reverse polarity capillary zone electrophoresis coupled to negative ion mode mass spectrometry (CZE-MS) is shown to be an effective and sensitive tool for the analysis of glycosaminoglycan mixtures. Covalent modification of the inner wall of the separation capillary with neutral or cationic reagents produces a stable and durable surface that provides reproducible separations. By combining CZE-MS with a cation-coated capillary and a sheath flow interface, a rapid and reliable method has been developed for the analysis of sulfated oligosaccharides from dp4 to dp12. Several different mixtures have been separated and detected by mass spectrometry. The mixtures were selected to test the capability of this approach to resolve subtle differences in structure, such as sulfation position and epimeric variation of the uronic acid. The system was applied to a complex mixture of heparin/heparan sulfate oligosaccharides varying in chain length from dp3 to dp12 and more than 80 molecular compositions were identified by accurate mass measurement.
Collapse
Affiliation(s)
- Patience Sanderson
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Morgan Stickney
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Franklin E Leach
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Qiangwei Xia
- 760 Parkside Avenue, STE 211, CMP Scientific, Corp., Brooklyn, NY, 11226, United States
| | - Yanlei Yu
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Fuming Zhang
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Robert J Linhardt
- Biotech 4005, 110 8th Street, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
9
|
Leach FE, Riley NM, Westphall MS, Coon JJ, Amster IJ. Negative Electron Transfer Dissociation Sequencing of Increasingly Sulfated Glycosaminoglycan Oligosaccharides on an Orbitrap Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1844-1854. [PMID: 28589488 PMCID: PMC5711533 DOI: 10.1007/s13361-017-1709-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 05/03/2023]
Abstract
The structural characterization of sulfated glycosaminoglycan (GAG) carbohydrates remains an important target for analytical chemists attributable to challenges introduced by the natural complexity of these mixtures and the defined need for molecular-level details to elucidate biological structure-function relationships. Tandem mass spectrometry has proven to be the most powerful technique for this purpose. Previously, electron detachment dissociation (EDD), in comparison to other methods of ion activation, has been shown to provide the largest number of useful cleavages for de novo sequencing of GAG oligosaccharides, but such experiments are restricted to Fourier transform ion cyclotron resonance mass spectrometers (FTICR-MS). Negative electron transfer dissociation (NETD) provides similar fragmentation results, and can be achieved on any mass spectrometry platform that is designed to accommodate ion-ion reactions. Here, we examine for the first time the effectiveness of NETD-Orbitrap mass spectrometry for the structural analysis of GAG oligosaccharides. Compounds ranging in size from tetrasaccharides to decasaccharides were dissociated by NETD, producing both glycosidic and cross-ring cleavages that enabled the location of sulfate modifications. The highly-sulfated, heparin-like synthetic GAG, ArixtraTM, was also successfully sequenced by NETD. In comparison to other efforts to sequence GAG chains without fully ionized sulfate constituents, the occurrence of sulfate loss peaks is minimized by judicious precursor ion selection. The results compare quite favorably to prior results with electron detachment dissociation (EDD). Significantly, the duty cycle of the NETD experiment is sufficiently short to make it an effective tool for on-line separations, presenting a straightforward path for selective, high-throughput analysis of GAG mixtures. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
| | - Nicholas M Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Michael S Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Joshua J Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Morgridge Institute for Research, Madison, WI, USA
| | | |
Collapse
|
10
|
Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal Chem 2014; 86:196-212. [PMID: 24313268 PMCID: PMC3924431 DOI: 10.1021/ac403969n] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - L. Renee Ruhaak
- Department of Chemistry, University of California at Davis, Davis, CA 95616
| | | | | |
Collapse
|
11
|
Wang B, Trimpin S. High-throughput solvent assisted ionization inlet for use in mass spectrometry. Anal Chem 2013; 86:1000-6. [PMID: 24093975 DOI: 10.1021/ac400867b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work we developed a multiplexed analysis platform providing a simple high-throughput means to characterize solutions. Automated analyses, requiring less than 5 s per sample without carryover and 1 s per sample, accepting minor cross contamination, was achieved using multiplexed solvent assisted ionization inlet (SAII) mass spectrometry (MS). The method involves sequentially moving rows of pipet tips containing sample solutions in close proximity to the inlet aperture of a heated mass spectrometer inlet tube. The solution is pulled from the container into the mass spectrometer inlet by the pressure differential at the mass spectrometer inlet aperture. This sample introduction method for direct injection of solutions is fast, easily implemented, and widely applicable, as is shown by applications ranging from small molecules to proteins as large as carbonic anhydrase (molecular weight ca. 29,000). MS/MS fragmentation is applicable for sample characterization. An x,y-stage and common imaging software are incorporated to map the location of components in the sample wells of a microtiter plate. Location within an x,y-array of different sample solutions and the relative concentration of the sample are displayed using ion intensity maps.
Collapse
Affiliation(s)
- Beixi Wang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | | |
Collapse
|
12
|
Flangea C, Petrescu AJ, Seidler DG, Munteanu CVA, Zamfir AD. Identification of an unusually sulfated tetrasaccharide chondroitin/dermatan motif in mouse brain by combining chip-nanoelectrospray multistage MS2-MS4and high resolution MS. Electrophoresis 2013; 34:1581-92. [DOI: 10.1002/elps.201200704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Daniela G. Seidler
- Institute for Physiological Chemistry and Pathobiochemistry; University of Münster; Münster; Germany
| | | | | |
Collapse
|
13
|
Minsky BB, Atmuri A, Kaltashov IA, Dubin PL. Counterion Condensation on Heparin Oligomers. Biomacromolecules 2013; 14:1113-21. [DOI: 10.1021/bm400006g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Burcu Baykal Minsky
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street,
Amherst, Massachusetts, 01003, United States
| | - Anand Atmuri
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts,
01003, United States
| | - Igor A. Kaltashov
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street,
Amherst, Massachusetts, 01003, United States
| | - Paul L. Dubin
- Department
of Chemistry, University of Massachusetts, 710 North Pleasant Street,
Amherst, Massachusetts, 01003, United States
| |
Collapse
|
14
|
Furukawa JI, Fujitani N, Shinohara Y. Recent advances in cellular glycomic analyses. Biomolecules 2013; 3:198-225. [PMID: 24970165 PMCID: PMC4030886 DOI: 10.3390/biom3010198] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 12/21/2022] Open
Abstract
A large variety of glycans is intricately located on the cell surface, and the overall profile (the glycome, given the entire repertoire of glycoconjugate-associated sugars in cells and tissues) is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that control cell-cell adhesion, immune response, microbial pathogenesis and other cellular events. The glycomic profile also reflects cellular alterations, such as development, differentiation and cancerous change. A glycoconjugate-based approach would therefore be expected to streamline discovery of novel cellular biomarkers. Development of such an approach has proven challenging, due to the technical difficulties associated with the analysis of various types of cellular glycomes; however, recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various classes of glycoconjugates. This review focuses on recent advances in the technical aspects of cellular glycomic analyses of major classes of glycoconjugates, including N- and O-linked glycans, derived from glycoproteins, proteoglycans and glycosphingolipids. Articles that unveil the glycomics of various biologically important cells, including embryonic and somatic stem cells, induced pluripotent stem (iPS) cells and cancer cells, are discussed.
Collapse
Affiliation(s)
- Jun-Ichi Furukawa
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Naoki Fujitani
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratory of Medical and Functional Glycomics, Graduate School of Advanced Life Science and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
15
|
Leach FE, Arungundram S, Al-Mafraji K, Venot A, Boons GJ, Amster IJ. ELECTRON DETACHMENT DISSOCIATION OF SYNTHETIC HEPARAN SULFATE GLYCOSAMINOGLYCAN TETRASACCHARIDES VARYING IN DEGREE OF SULFATION AND HEXURONIC ACID STEREOCHEMISTRY. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2012; 330-332:152-159. [PMID: 23230388 PMCID: PMC3517180 DOI: 10.1016/j.ijms.2012.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glycosaminoglycan (GAG) carbohydrates provide a challenging analytical target for structural determination due to their polydisperse nature, non-template biosynthesis, and labile sulfate modifications. The resultant structures, although heterogeneous, contain domains which indicate a sulfation pattern or code that correlates to specific function. Mass spectrometry, in particular electron detachment dissociation Fourier transform ion cyclotron resonance (EDD FT-ICR MS), provides a highly sensitive platform for GAG structural analysis by providing cross-ring cleavages for sulfation location and product ions specific to hexuronic acid stereochemistry. To investigate the effect of sulfation pattern and variations in stereochemistry on EDD spectra, a series of synthetic heparan sulfate (HS) tetrasaccharides are examined. Whereas previous studies have focused on lowly sulfated compounds (0.5-1 sulfate groups per disaccharide), the current work extends the application of EDD to more highly sulfated tetrasaccharides (1-2 sulfate groups per disaccharide) and presents the first EDD of a tetrasaccharide containing a sulfated hexuronic acid. For these more highly sulfated HS oligomers, alternative strategies are shown to be effective for extracting full structural details. These strategies inlcude sodium cation replacement of protons, for determining the sites of sulfation, and desulfation of the oligosaccharides for the generation of product ions for assigning uronic acid stereochemistry.
Collapse
Affiliation(s)
| | - Sailaja Arungundram
- University of Georgia, Department of Chemistry, Athens, GA 30602
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | - Kanar Al-Mafraji
- University of Georgia, Department of Chemistry, Athens, GA 30602
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | - Andre Venot
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | - Geert-Jan Boons
- University of Georgia, Department of Chemistry, Athens, GA 30602
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA
| | | |
Collapse
|
16
|
Mizumoto S, Murakoshi S, Kalayanamitra K, Deepa SS, Fukui S, Kongtawelert P, Yamada S, Sugahara K. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities. Glycobiology 2012; 23:155-68. [PMID: 23019154 DOI: 10.1093/glycob/cws137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kailemia MJ, Li L, Ly M, Linhardt RJ, Amster IJ. Complete mass spectral characterization of a synthetic ultralow-molecular-weight heparin using collision-induced dissociation. Anal Chem 2012; 84:5475-8. [PMID: 22715938 PMCID: PMC4477280 DOI: 10.1021/ac3015824] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycans (GAGs) are a class of biologically important molecules, and their structural analysis is the target of considerable research effort. Advances in tandem mass spectrometry (MS/MS) have recently enabled the structural characterization of several classes of GAGs; however, the highly sulfated GAGs, such as heparins, have remained a relatively intractable class due their tendency to lose SO(3) during MS/MS, producing few sequence-informative fragment ions. The present work demonstrates for the first time the complete structural characterization of the highly sulfated heparin-based drug Arixtra. This was achieved by Na(+)/H(+) exchange to create a more ionized species that was stable against SO(3) loss, and that produced complete sets of both glycosidic and cross-ring fragment ions. MS/MS enables the complete structural determination of Arixtra, including the stereochemistry of its uronic acid residues, and suggests an approach for solving the structure of more complex, highly sulfated heparin-based drugs.
Collapse
|
18
|
Abstract
Proteoglycans (PGs) are among the most structurally complex biomacromolecules in nature. They are present in all animal cells and frequently exert their critical biological functions through interactions with protein ligands and receptors. PGs are comprised of a core protein to which one or multiple, heterogeneous, and polydisperse glycosaminoglycan (GAG) chains are attached. Proteins, including the protein core of PGs, are now routinely sequenced either directly using proteomics or indirectly using molecular biology through their encoding DNA. The sequencing of the GAG component of PGs poses a considerably more difficult challenge because of the relatively underdeveloped state of glycomics and because the control of their biosynthesis in the endoplasmic reticulum and the Golgi is poorly understood and not believed to be template driven. Recently, the GAG chain of the simplest PG has been suggested to have a defined sequence based on its top-down Fourier transform mass spectral sequencing. This review examines the advances made over the past decade in the sequencing of GAG chains and the challenges the field face in sequencing complex PGs having critical biological functions in developmental biology and pathogenesis.
Collapse
Affiliation(s)
- Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA; Fax: +1 518-276-3405; Tel: +1 518-276-3404
| | - Mellisa Ly
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA; Fax: +1 518-276-3405; Tel: +1 518-276-3404
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA; Fax: +1 518-276-3405; Tel: +1 518-276-3404
- Department of Biology, Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA
| |
Collapse
|
19
|
Heiss C, Wang Z, Azadi P. Sodium hydroxide permethylation of heparin disaccharides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:774-8. [PMID: 21337639 PMCID: PMC3928630 DOI: 10.1002/rcm.4930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Permethylation is a valuable and widely used tool for the mass spectrometry of carbohydrates, improving sensitivity and fragmentation and increasing the amount of information that can be obtained from tandem mass spectrometric experiments. Permethylation of most glycans is easily performed with sodium hydroxide and iodomethane in dimethyl sulfoxide (DMSO). However, permethylation has not been widely used in the mass spectrometry of glycosaminoglycan (GAG) oligosaccharides, partly because it has required the use of the difficult Hakomori method employing the methylsulfinylmethanide ('dimsyl') base, which has to be made in a tedious process. Additionally, the Hakomori method is not as effective as the sodium hydroxide method in making fully methylated derivatives. A further problem in the permethylation of highly sulfated oligosaccharides is their limited solubility in DMSO. This paper describes the use of the triethylammonium counterion to overcome this problem, as well as the application of the sodium hydroxide method to make permethylated heparin disaccharides and their workup to yield fully methylated disaccharides for electrospray ionization mass spectrometry. The ease, speed, and effectiveness of the described methodology should open up permethylation of GAG oligosaccharides to a wider circle of mass spectrometrists and enable them to develop further derivatization schemes in the effort to rapidly elucidate the structure of these important molecules. Permethylation may also provide new ways of separating GAG oligosaccharides in LC/MS, their increased hydrophobicity making them amenable for reversed-phase chromatography without the need for ion pairing reagents.
Collapse
Affiliation(s)
- Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
20
|
Hart GW, Copeland RJ. Glycomics hits the big time. Cell 2010; 143:672-6. [PMID: 21111227 DOI: 10.1016/j.cell.2010.11.008] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/27/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Cells run on carbohydrates. Glycans, sequences of carbohydrates conjugated to proteins and lipids, are arguably the most abundant and structurally diverse class of molecules in nature. Recent advances in glycomics reveal the scope and scale of their functional roles and their impact on human disease.
Collapse
Affiliation(s)
- Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21205-2185, USA.
| | | |
Collapse
|
21
|
Abstract
The structure of the GAG (glycosaminoglycan) chain of recombinantly expressed decorin proteoglycan was examined using a combination of intact-chain analysis and domain compositional analysis. The GAG had a number-average molecular mass of 22 kDa as determined by PAGE. NMR spectroscopic analysis using two-dimensional correlation spectroscopy indicated that the ratio of glucuronic acid to iduronic acid in decorin peptidoglycan was 5 to 1. GAG domains terminated with a specific disaccharide obtained by enzymatic degradation of decorin GAG with highly specific endolytic and exolytic lyases were analysed by PAGE and further depolymerized with the enzymes. The disaccharide compositional profiles of the resulting domains were obtained using LC with mass spectrometric and photometric detection and compared with that of the polysaccharide. The information obtained through the disaccharide compositional profiling was combined with the NMR and PAGE data to construct a map of the decorin GAG sequence motifs.
Collapse
|