1
|
Baxa U, Weintraub A, Seckler R. Self-Competitive Inhibition of the Bacteriophage P22 Tailspike Endorhamnosidase by O-Antigen Oligosaccharides. Biochemistry 2020; 59:4845-4855. [PMID: 33326210 DOI: 10.1021/acs.biochem.0c00872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The P22 tailspike endorhamnosidase confers the high specificity of bacteriophage P22 for some serogroups of Salmonella differing only slightly in their O-antigen polysaccharide. We used several biophysical methods to study the binding and hydrolysis of O-antigen fragments of different lengths by P22 tailspike protein. O-Antigen saccharides of defined length labeled with fluorophors could be purified with higher resolution than previously possible. Small amounts of naturally occurring variations of O-antigen fragments missing the nonreducing terminal galactose could be used to determine the contribution of this part to the free energy of binding to be ∼7 kJ/mol. We were able to show via several independent lines of evidence that an unproductive binding mode is highly favored in binding over all other possible binding modes leading to hydrolysis. This is true even under circumstances under which the O-antigen fragment is long enough to be cleaved efficiently by the enzyme. The high-affinity unproductive binding mode results in a strong self-competitive inhibition in addition to product inhibition observed for this system. Self-competitive inhibition is observed for all substrates that have a free reducing end rhamnose. Naturally occurring O-antigen, while still attached to the bacterial outer membrane, does not have a free reducing end and therefore does not perform self-competitive inhibition.
Collapse
Affiliation(s)
- Ulrich Baxa
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany
| | - Andrej Weintraub
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska University Hospital, S-14186 Stockholm, Sweden
| | - Robert Seckler
- Physikalische Biochemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Golm, Germany
| |
Collapse
|
2
|
Kaira GS, Kapoor M. How substrate subsites in GH26 endo-mannanase contribute towards mannan binding. Biochem Biophys Res Commun 2019; 510:358-363. [DOI: 10.1016/j.bbrc.2019.01.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/05/2023]
|
3
|
Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep 2016; 6:23605. [PMID: 27009476 PMCID: PMC4806347 DOI: 10.1038/srep23605] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/09/2016] [Indexed: 02/02/2023] Open
Abstract
Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the −2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the −1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes.
Collapse
|
4
|
Hekmat O, Lo Leggio L, Rosengren A, Kamarauskaite J, Kolenova K, Stålbrand H. Rational Engineering of Mannosyl Binding in the Distal Glycone Subsites of Cellulomonas fimi Endo-β-1,4-mannanase: Mannosyl Binding Promoted at Subsite −2 and Demoted at Subsite −3,. Biochemistry 2010; 49:4884-96. [DOI: 10.1021/bi100097f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Omid Hekmat
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Leila Lo Leggio
- Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Anna Rosengren
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Jurate Kamarauskaite
- Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | - Katarina Kolenova
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Henrik Stålbrand
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
5
|
Anderson L, Hägglund P, Stoll D, Lo Leggio L, Drakenberg T, Stålbrand H. Kinetics and stereochemistry of theCellulomonas fimiβ-mannanase studied using1H-NMR. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701788835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Saura-Valls M, Fauré R, Brumer H, Teeri TT, Cottaz S, Driguez H, Planas A. Active-site Mapping of a Populus Xyloglucan endo-Transglycosylase with a Library of Xylogluco-oligosaccharides. J Biol Chem 2008; 283:21853-63. [DOI: 10.1074/jbc.m803058200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
7
|
Hekmat O, Tokuyasu K, Withers SG. Subsite structure of the endo-type chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum: an investigation using steady-state kinetic analysis and MS. Biochem J 2003; 374:369-80. [PMID: 12775215 PMCID: PMC1223603 DOI: 10.1042/bj20030204] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Revised: 05/12/2003] [Accepted: 05/30/2003] [Indexed: 11/17/2022]
Abstract
The endo-type chitin deacetylase (EC 3.5.1.41) from a deuteromycete, Colletotrichum lindemuthianum (ATCC 56676), catalyses the hydrolysis of the acetamido group of GlcNAc (2-acetamido-2-deoxy-D-glucose) residues in chitin or chito-oligosaccharides with a degree of polymerization (n) equal to or greater than 2. The steady-state kinetic parameters for the initial deacetylation reactions of (GlcNAc)(2-6) were determined using a direct, continuous spectrophotometric assay in combination with ESI-MS (electrospray ionization MS) analysis of the products. The dependence of the observed K(m) and k(cat)/K(m) on n suggests the presence of four enzyme subsites (-2, -1, 0 and +1) that interact with GlcNAc residues from the non-reducing end to the reducing end of the substrate. The turnover number (k (cat), 7 s(-1)) is independent of n and represents the intrinsic rate constant (k(int)) for the hydrolysis of the acetamido group in subsite 0. The subsite affinities for the GlcNAc residues were calculated from the observed k(cat)/K(m) values (A (-2), -11.0; A (-1), -1.5; A (0), -7.7; A (+1), -12.5 kJ x mol(-1)). The increments in the subsite affinities due to the recognition of the acetamido groups were calculated [DeltaDelta G ((N-acetyl))=3.3, 0, 4.0 and 0 kJ x mol(-1) for subsites -2, -1, 0 and +1 respectively]. The steady-state kinetic parameters for the second deacetylation reaction of (GlcNAc)(4) were also determined using (GlcNAcGlcNAcGlcNGlcNAc) as the substrate. The comparison of the experimental and theoretical values (calculated using the subsite affinities) suggests that the mono-deacetylated substrate binds strongly in a non-productive mode occupying all four subsites, thereby inhibiting the second deacetylation reaction.
Collapse
Affiliation(s)
- Omid Hekmat
- Department of Chemistry & Protein Engineering, Network of Centres of Excellence of Canada, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | | | | |
Collapse
|
8
|
Ernst S, Rhomberg AJ, Biemann K, Sasisekharan R. Direct evidence for a predominantly exolytic processive mechanism for depolymerization of heparin-like glycosaminoglycans by heparinase I. Proc Natl Acad Sci U S A 1998; 95:4182-7. [PMID: 9539710 PMCID: PMC22462 DOI: 10.1073/pnas.95.8.4182] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heparinase I from Flavobacterium heparinum has important uses for elucidating the complex sequence heterogeneity of heparin-like glycosaminoglycans (HLGAGs). Understanding the biological function of HLGAGs has been impaired by the limited methods for analysis of pure or mixed oligosaccharide fragments. Here, we use methodologies involving MS and capillary electrophoresis to investigate the sequence of events during heparinase I depolymerization of HLGAGs. In an initial step, heparinase I preferentially cleaves exolytically at the nonreducing terminal linkage of the HLGAG chain, although it also cleaves internal linkages at a detectable rate. In a second step, heparinase I has a strong preference for cleaving the same substrate molecule processively, i.e., to cleave the next site toward the reducing end of the HLGAG chain. Computer simulation showed that the experimental results presented here from analysis of oligosaccharide degradation were consistent with literature data for degradation of polymeric HLGAG by heparinase I. This study presents direct evidence for a predominantly exolytic and processive mechanism of depolymerization of HLGAG by heparinase I.
Collapse
Affiliation(s)
- S Ernst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
9
|
Pitson SM, Voragen AG, Vincken JP, Beldman G. Action patterns and mapping of the substrate-binding regions of endo-(1-->5)-alpha-L-arabinanases from Aspergillus niger and Aspergillus aculeatus. Carbohydr Res 1997; 303:207-18. [PMID: 9352635 DOI: 10.1016/s0008-6215(97)00159-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The substrate binding sites of endo-(1-->5)-alpha-L-arabinanases (EC 3.2.1.99) from Aspergillus niger and Aspergillus aculeatus were investigated using reduced and regular (1-->5)-alpha-L-arabino-oligosaccharides and high performance anion exchange chromatographic analysis. Calculation of bond cleavage frequencies and kcat/K(m) parameters for these substrates enabled the determination of the number of arabinofuranosyl binding subsites and the estimation of the binding affinities of each subsite. The A. aculeatus endo-arabinanase has six subsites arranged symmetrically around the catalytic site, while the A. niger endo-arabinanase has five subsites; two from the catalytic site towards the non-reducing end of the bound substrate and three toward the reducing end. The two subsites directly adjacent to the catalytic sites in both the A. niger and A. aculeatus endo-arabinanase have near-zero net free energy of binding. These results are unlike most glycopyranosyl endo-hydrolases studied which have net negative (unfavourable) energies of interaction at these two subsites, and may be related to the greater conformational flexibility of arabinofuranosyl residues than glycopyranosyl residues. The complete subsite maps are also rationalized with regard to the observed action patterns of these enzymes on linear (1-->5)-alpha-L-arabinan.
Collapse
Affiliation(s)
- S M Pitson
- Department of Food Science, Wageningen Agricultural University, The Netherlands
| | | | | | | |
Collapse
|
10
|
Bonnin E, Vigouroux J, Thibault JF. Kinetic parameters of hydrolysis and transglycosylation catalyzed by an exo-β-(1,4)-galactanase. Enzyme Microb Technol 1997. [DOI: 10.1016/s0141-0229(96)00188-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Stokke BT, Vårum KM, Holme HK, Hjerde RJ, Smidsrød O. Sequence specificities for lysozyme depolymerization of partially N-acetylated chitosans. CAN J CHEM 1995. [DOI: 10.1139/v95-244] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of sugar residue sequence in partially N-acetylated chitosans on relative hydrolysis rate catalyzed by lysozyme was studied. The relative rates were modelled assuming an Arrhenius-type relation for the relative rate constants. The apparent activation energy was assumed to consist of additive contributions from GlcN or GlcNAc residues within the polymer chain interacting with sites A–F of the active cleft of lysozyme. This model accounted well for the relative hydrolysis rates reported for well-defined oligomers. Calculated and experimental data for the dependence of the initial relative hydrolysis rates on fraction of acetylated units, FA, showed an FA3,6 dependence. A fully water-soluble highly N-acetylated chitosan with FA = 0.68 was depolymerized using lysozyme for further testing of the model. Analyses of the 13C nuclear magnetic resonance spectra of the diad sequences at the new reducing and nonreducing ends formed by lysozyme showed that this enzymatic depolymerization was dominated by chitosan sequences presenting GlcNAc residues to sites C, D, and E of the active cleft. In contrast, there was no selectivity between GlcNAc and GlcN residues interacting with site F. These selectivities were confirmed by the calculated contributions to the apparent activation energy of these sites. The experimentally determined depletion in the diad and triad frequencies of GlcNAc during the course of lysozyme hydrolysis was in good agreement with the model calculations. Keywords: lysozyme, chitosan, chitin, sequence specificity, subsite model.
Collapse
|
12
|
Hrmova M, Garrett TP, Fincher GB. Subsite affinities and disposition of catalytic amino acids in the substrate-binding region of barley 1,3-beta-glucanases. Implications in plant-pathogen interactions. J Biol Chem 1995; 270:14556-63. [PMID: 7782319 DOI: 10.1074/jbc.270.24.14556] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Oligo-1,3-beta-glucosides with degrees of polymerization of 2-9 were labeled at their reducing terminal residues by catalytic tritiation. These substrates were used in detailed kinetic and thermodynamic analyses to examine substrate binding in 1,3-beta-D-glucan glucanohydrolase (EC 3.2.1.39) isoenzymes GI, GII, and GIII from young seedlings of barley (Hordeum vulgare). Bond-cleavage frequencies, together with the kinetic parameter kcat/Km, have been calculated as a function of substrate chain length to define the number of subsites that accommodate individual beta-glucosyl residues and to estimate binding energies at each subsite. Each isoenzyme has eight beta-glucosyl-binding subsites. The catalytic amino acids are located between the third and fourth subsite from the nonreducing terminus of the substrate. Negative binding energies in subsites adjacent to the hydrolyzed glycosidic linkage suggest that some substrate distortion may occur in this region during binding and that the resultant strain induced in the substrate might facilitate hydrolytic cleavage. If the 1,3-beta-glucanases exert their function as pathogenesis-related proteins by hydrolyzing the branched or substituted 1,3;1,6-beta-glucans of fungal walls, it is clear that relatively extended regions of the cell wall polysaccharide must fit into the substrate-binding cleft of the enzyme.
Collapse
Affiliation(s)
- M Hrmova
- Department of Plant Science, University of Adelaide, Australia
| | | | | |
Collapse
|
13
|
Contribution of subsites to catalysis and specificity in the extended binding cleft of Bacillus 1,3-1,4-β-D-glucan 4-glucanohydrolases. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0921-0423(06)80096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Ernst S, Langer R, Cooney CL, Sasisekharan R. Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol Biol 1995; 30:387-444. [PMID: 8575190 DOI: 10.3109/10409239509083490] [Citation(s) in RCA: 309] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glycosaminoglycans (GAGs) play an intricate role in the extracellular matrix (ECM), not only as soluble components and polyelectrolytes, but also by specific interactions with growth factors and other transient components of the ECM. Modifications of GAG chains, such as isomerization, sulfation, and acetylation, generate the chemical specificity of GAGs. GAGs can be depolymerized enzymatically either by eliminative cleavage with lyases (EC 4.2.2.-) or by hydrolytic cleavage with hydrolases (EC 3.2.1.-). Often, these enzymes are specific for residues in the polysaccharide chain with certain modifications. As such, the enzymes can serve as tools for studying the physiological effect of residue modifications and as models at the molecular level of protein-GAG recognition. This review examines the structure of the substrates, the properties of enzymatic degradation, and the enzyme substrate-interactions at a molecular level. The primary structure of several GAGs is organized macroscopically by segregation into alternating blocks of specific sulfation patterns and microscopically by formation of oligosaccharide sequences with specific binding functions. Among GAGs, considerable dermatan sulfate, heparin and heparan sulfate show conformational flexibility in solution. They elicit sequence-specific interactions with enzymes that degrade them, as well as with other proteins, however, the effect of conformational flexibility on protein-GAG interactions is not clear. Recent findings have established empirical rules of substrate specificity and elucidated molecular mechanisms of enzyme-substrate interactions for enzymes that degrade GAGs. Here we propose that local formation of polysaccharide secondary structure is determined by the immediate sequence environment within the GAG polymer, and that this secondary structure, in turn, governs the binding and catalytic interactions between proteins and GAGs.
Collapse
Affiliation(s)
- S Ernst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The three-dimensional structure of a complex between catalytically active cobalt(II) substituted human carbonic anhydrase II and its substrate bicarbonate was determined by X-ray crystallography (1.9 A). One water molecule and two bicarbonate oxygen atoms are found at distances between 2.3 and 2.5 A from the cobalt ion in addition to the three histidyl ligands contributed by the peptide chain. The tetrahedral geometry around the metal ion in the native enzyme with a single water molecule 2.0 A from the metal is therefore lost. The geometry is difficult to classify but might best be described as distorted octahedral. The structure is suggested to represent a water-bicarbonate exchange state relevant also for native carbonic anhydrase, where the two unprotonized oxygen atoms of the substrate are bound in a carboxylate binding site and the hydroxyl group is free to move closer to the metal thereby replacing the metal-bound water molecule. A reaction mechanism based on crystallographically determined enzyme-ligand complexes is represented.
Collapse
Affiliation(s)
- K Håkansson
- Molecular Biophysics, Chemical Center, University of Lund, Sweden
| | | |
Collapse
|
16
|
Enzymic depolymerization processes: reaction pathways as a basis for a new classification and nomenclature. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/bf00735645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Azhari R, Sideman S, Lotan N. A generalized model for enzymic depolymerization processes: Part I—Reaction pathways and kinetics. Polym Degrad Stab 1991. [DOI: 10.1016/0141-3910(91)90028-p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Håkansson K, Svensson B. Side chain reactivities of glucoamylase G2 from Aspergillus niger evaluated by group-specific chemical modifications. CARLSBERG RESEARCH COMMUNICATIONS 1989; 54:145-56. [PMID: 2516722 DOI: 10.1007/bf02907184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Treatment of glucoamylase G2 with large excesses of different group specific reagents resulted in modification of 25% of the histidyl, 15% of the tyrosyl, 20-40% of the arginyl, 30-50% of the lysyl and none of the methionyl residues. The modified groups were not critical since the various derivatives possessed from 50% to 100% residual enzymatic activity and retained the thermostability. Carboxamidomethylation occurred specifically at His254 with essentially no change of the kinetic parameters for hydrolysis of maltose and starch. Removal of the two N-linked sugar units by endoglycosidase H was similarly without effect on activity, thermostability and chemical reactivity of the histidyl residues. H(+)-titration revealed that glucoamylase G2 carries a lower net charge throughout the pH-range 3-11 than predicted from its amino acid composition.
Collapse
Affiliation(s)
- K Håkansson
- Department of Chemistry, Carlsberg Laboratory, Copenhagen Valby
| | | |
Collapse
|
19
|
Bezukladnikov PV, Elyakova LA, Zvyagintseva TN, Mirgorodskaya OA. Study of carbohydrase-catalyzed reactions with the aid of EDIAP mass spectrometry. Chem Nat Compd 1989. [DOI: 10.1007/bf00596698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Seigner C, Prodanov E, Marchis-Mouren G. The determination of subsite binding energies of porcine pancreatic alpha-amylase by comparing hydrolytic activity towards substrates. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 913:200-9. [PMID: 3496119 DOI: 10.1016/0167-4838(87)90331-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The active centre of porcine pancreatic alpha-amylase contains five subsites. Their occupancy has been studied using as a substrate maltooligosaccharide of various chain lengths (maltose up to maltoheptaose), some of their p- and o-nitrophenylated derivatives, and 412-residue amylose. Quantitative analysis of the digestion products allowed the determination of the subsite occupancy for the various productive complexes, the bond cleavage frequency and respective kcati (where i is the binding mode). The catalytic efficiency (kcat/Km) increases with chain length from maltose (2 M-1 X S-1) up to amylose (1.06 X 10(7) M-1 X S-1). The kinetic parameters of p-nitrophenylmaltoside hydrolysis are quite close to those of maltose, and the ortho compound behaves as maltotriose. Determination of binding energy of glucose residue at the various subsites calculated according to the method of Hiromi et al. (Hiromi, K., Nitta, Y., Numata, C. and Ono, S. (1973) Biochim. Biophys. Acta 302, 362-375) did not give consistent results. A method is proposed based on certain properties of porcine pancreatic alpha-amylase, especially the non-interaction of the p-nitrophenyl moiety of the maltose derivative with subsites 1 and 2, and the o-nitrophenyl group which interacts in a similar way to a glucose residue at the reducing end, and on the grounds that the amylase-amylose complexes are of the productive type. In addition, binding energy differences were calculated from substrates with the same chain length. The subsite energy profile is characterized by a low value at subsite 3 which confirms this subsite as the catalytic one. Another consequence is that the hydrolysis rate constant of productive complexes (kintn) (where n is the number of glucose or glucose equivalent residues for a given substrate) varies with chain length which is in conflict with the hypothesis of Hiromi et al.
Collapse
|
21
|
Bezukladnikov PW, Elyakova LA. A study of the pattern of action of endo-(1→3)-β-d-glucanases from marine bivalves on a polymer substrate labelled at the reducing end. Carbohydr Res 1986. [DOI: 10.1016/s0008-6215(00)90306-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Eppstein DA, Schryver BB, Marsh YV. Stereoconfiguration markedly affects the biochemical and biological properties of phosphorothioate analogs of 2-5A core, (A2'p5')2A. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38484-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
23
|
|