Borek C, Ong A, Mason H. Distinctive transforming genes in x-ray-transformed mammalian cells.
Proc Natl Acad Sci U S A 1987;
84:794-8. [PMID:
3027705 PMCID:
PMC304302 DOI:
10.1073/pnas.84.3.794]
[Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNAs from hamster embryo cells and mouse C3H/10T1/2 cells transformed in vitro by x-irradiation into malignant cells transmit the radiation transformation phenotype by producing transformed colonies (transfectants) in two mouse recipient lines, the NIH 3T3 and C3H/101/2 cells, and in a rat cell line, the Rat-2 cells. DNAs from unirradiated cells or irradiated and visibly untransformed cells do not produce transformed colonies. The transfectants grow in agar and form tumors in nude mice. Treatment of the DNAs with restriction endonucleases prior to transfection indicates that the same transforming gene (oncogene) is present in each of the transformed mouse cells and is the same in each of the transformed hamster cells. Southern blot analysis of 3T3 or Rat-2 transfectants carrying oncogenes from radiation-transformed C3H/10T1/2 or hamster cells indicates that the oncogenes responsible for the transformation of 3T3 cells are not the Ki-ras, Ha-ras, or N-ras genes, nor are they neu, trk, raf, abl, or fms, although quick blot analysis using 11 oncogene probes detected increased transcripts of c-abl and c-fms in the 3T3 transformants containing oncogenic sequences from the x-ray-transformed C3H/10T1/2 cells. The work demonstrates that DNAs from mammalian cells transformed into malignancy by direct exposure in vitro to radiation contain genetic sequences with detectable transforming activity in three recipient cell lines. The results provide evidence that DNA is the target of radiation carcinogenesis induced at a cellular level in vitro. The experiments indicate that malignant radiogenic transformation in vitro of hamster embryo and mouse C3H/10T1/2 cells involves the activation of unique non-ras transforming genes, which heretofore have not been described.
Collapse