1
|
Palm S, Momeni S, Lundberg S, Nylander I, Roman E. Risk-assessment and risk-taking behavior predict potassium- and amphetamine-induced dopamine response in the dorsal striatum of rats. Front Behav Neurosci 2014; 8:236. [PMID: 25076877 PMCID: PMC4097208 DOI: 10.3389/fnbeh.2014.00236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/14/2014] [Indexed: 12/13/2022] Open
Abstract
Certain personality types and behavioral traits display high correlations to drug use and an increased level of dopamine in the reward system is a common denominator of all drugs of abuse. Dopamine response to drugs has been suggested to correlate with some of these personality types and to be a key factor influencing the predisposition to addiction. This study investigated if behavioral traits can be related to potassium- and amphetamine-induced dopamine response in the dorsal striatum, an area hypothesized to be involved in the shift from drug use to addiction. The open field and multivariate concentric square field™ tests were used to assess individual behavior in male Wistar rats. Chronoamperometric recordings were then made to study the potassium- and amphetamine-induced dopamine response in vivo. A classification based on risk-taking behavior in the open field was used for further comparisons. Risk-taking behavior was correlated between the behavioral tests and high risk takers displayed a more pronounced response to the dopamine uptake blocking effects of amphetamine. Behavioral parameters from both tests could also predict potassium- and amphetamine-induced dopamine responses showing a correlation between neurochemistry and behavior in risk-assessment and risk-taking parameters. In conclusion, the high risk-taking rats showed a more pronounced reduction of dopamine uptake in the dorsal striatum after amphetamine indicating that this area may contribute to the sensitivity of these animals to psychostimulants and proneness to addiction. Further, inherent dopamine activity was related to risk-assessment behavior, which may be of importance for decision-making and inhibitory control, key components in addiction.
Collapse
Affiliation(s)
- Sara Palm
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Shima Momeni
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Stina Lundberg
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| | - Erika Roman
- Neuropharmacology, Addiction and Behaviour, Department of Pharmaceutical Biosciences, Uppsala University Uppsala, Sweden
| |
Collapse
|
2
|
Palm S, Nylander I. Dopamine release dynamics change during adolescence and after voluntary alcohol intake. PLoS One 2014; 9:e96337. [PMID: 24788731 PMCID: PMC4006883 DOI: 10.1371/journal.pone.0096337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/07/2014] [Indexed: 12/05/2022] Open
Abstract
Adolescence is associated with high impulsivity and risk taking, making adolescent individuals more inclined to use drugs. Early drug use is correlated to increased risk for substance use disorders later in life but the neurobiological basis is unclear. The brain undergoes extensive development during adolescence and disturbances at this time are hypothesized to contribute to increased vulnerability. The transition from controlled to compulsive drug use and addiction involve long-lasting changes in neural networks including a shift from the nucleus accumbens, mediating acute reinforcing effects, to recruitment of the dorsal striatum and habit formation. This study aimed to test the hypothesis of increased dopamine release after a pharmacological challenge in adolescent rats. Potassium-evoked dopamine release and uptake was investigated using chronoamperometric dopamine recordings in combination with a challenge by amphetamine in early and late adolescent rats and in adult rats. In addition, the consequences of voluntary alcohol intake during adolescence on these effects were investigated. The data show a gradual increase of evoked dopamine release with age, supporting previous studies suggesting that the pool of releasable dopamine increases with age. In contrast, a gradual decrease in evoked release with age was seen in response to amphetamine, supporting a proportionally larger storage pool of dopamine in younger animals. Dopamine measures after voluntary alcohol intake resulted in lower release amplitudes in response to potassium-chloride, indicating that alcohol affects the releasable pool of dopamine and this may have implications for vulnerability to addiction and other psychiatric diagnoses involving dopamine in the dorsal striatum.
Collapse
Affiliation(s)
- Sara Palm
- Neuropharmacology, Addiction & Behaviour, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ingrid Nylander
- Neuropharmacology, Addiction & Behaviour, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Navailles S, Lagière M, Contini A, De Deurwaerdère P. Multisite intracerebral microdialysis to study the mechanism of L-DOPA induced dopamine and serotonin release in the parkinsonian brain. ACS Chem Neurosci 2013; 4:680-92. [PMID: 23541043 DOI: 10.1021/cn400046e] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
L-DOPA is currently one of the best medications for Parkinson's disease. It was assumed for several years that its benefits and side effects were related to the enhancement of dopamine release in the dopamine-depleted striatum. The use of intracerebral microdialysis combined with a pharmacological approach has led to the discovery that serotonergic neurons are responsible for dopamine release induced by L-DOPA. The subsequent use of multisite microdialysis has further revealed that L-DOPA-stimulated dopamine release is widespread and related to the serotonergic innervation. The present Review emphasizes the functional impact of extrastriatal release of dopamine induced by L-DOPA in both the therapeutic and side effects of L-DOPA.
Collapse
Affiliation(s)
- S. Navailles
- Université
de Bordeaux and ‡Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux
Cedex, France
| | - M. Lagière
- Université
de Bordeaux and ‡Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux
Cedex, France
| | - A. Contini
- Université
de Bordeaux and ‡Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux
Cedex, France
| | - P. De Deurwaerdère
- Université
de Bordeaux and ‡Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5293, 33076 Bordeaux
Cedex, France
| |
Collapse
|
4
|
Lundblad M, af Bjerkén S, Cenci MA, Pomerleau F, Gerhardt GA, Strömberg I. Chronic intermittent L-DOPA treatment induces changes in dopamine release. J Neurochem 2009; 108:998-1008. [PMID: 19196428 DOI: 10.1111/j.1471-4159.2008.05848.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3,4-Dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia often develops as a side effect of chronic l-DOPA therapy. This study was undertaken to investigate dopamine (DA) release upon l-DOPA treatment. Chronoamperometric measurements were performed in unilaterally DA-depleted rats, chronically treated with l-DOPA, resulting in dyskinetic and non-dyskinetic animals. Normal and lesioned l-DOPA naïve animals were used as controls. Potassium-evoked DA releases were significantly reduced in intact sides of animals undertaken chronic l-DOPA treatment, independent on dyskinetic behavior. Acute l-DOPA further attenuated the amplitude of the DA release in the control sides. In DA-depleted striata, no difference was found in potassium-evoked DA releases, and acute l-DOPA did not affect the amplitude. While immunoreactivity to serotonin uptake transporter was higher in lesioned striata of animals displaying dyskinetic behavior, no correlation could be documented between serotonin transporter-positive nerve fiber density and the amplitude of released DA. In conclusions, the amplitude of potassium-evoked DA release is attenuated in intact striatum after chronic intermittent l-DOPA treatment. No change in amplitude was found in DA-denervated sides of either dyskinetic or non-dyskinetic animals, while release kinetics were changed. This indicates the importance of studying DA release dynamics for the understanding of both beneficial and adverse effects of l-DOPA replacement therapy.
Collapse
Affiliation(s)
- Martin Lundblad
- Department of Integrative Medical Biology, Umeå University, Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Goodwin JS, Larson GA, Swant J, Sen N, Javitch JA, Zahniser NR, De Felice LJ, Khoshbouei H. Amphetamine and methamphetamine differentially affect dopamine transporters in vitro and in vivo. J Biol Chem 2008; 284:2978-2989. [PMID: 19047053 DOI: 10.1074/jbc.m805298200] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The psychostimulants d-amphetamine (AMPH) and methamphetamine (METH) release excess dopamine (DA) into the synaptic clefts of dopaminergic neurons. Abnormal DA release is thought to occur by reverse transport through the DA transporter (DAT), and it is believed to underlie the severe behavioral effects of these drugs. Here we compare structurally similar AMPH and METH on DAT function in a heterologous expression system and in an animal model. In the in vitro expression system, DAT-mediated whole-cell currents were greater for METH stimulation than for AMPH. At the same voltage and concentration, METH released five times more DA than AMPH and did so at physiological membrane potentials. At maximally effective concentrations, METH released twice as much [Ca(2+)](i) from internal stores compared with AMPH. [Ca(2+)](i) responses to both drugs were independent of membrane voltage but inhibited by DAT antagonists. Intact phosphorylation sites in the N-terminal domain of DAT were required for the AMPH- and METH-induced increase in [Ca(2+)](i) and for the enhanced effects of METH on [Ca(2+)](i) elevation. Calmodulin-dependent protein kinase II and protein kinase C inhibitors alone or in combination also blocked AMPH- or METH-induced Ca(2+) responses. Finally, in the rat nucleus accumbens, in vivo voltammetry showed that systemic application of METH inhibited DAT-mediated DA clearance more efficiently than AMPH, resulting in excess external DA. Together these data demonstrate that METH has a stronger effect on DAT-mediated cell physiology than AMPH, which may contribute to the euphoric and addictive properties of METH compared with AMPH.
Collapse
Affiliation(s)
- J Shawn Goodwin
- Department of Cancer Biology, Meharry Medical College, Nashville, Tennessee 37208
| | - Gaynor A Larson
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045
| | - Jarod Swant
- Departments of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, Tennessee 37208
| | - Namita Sen
- Departments of Psychiatry and Pharmacology, Center for Molecular Recognition, Columbia University, New York, New York 10027-6902
| | - Jonathan A Javitch
- Departments of Psychiatry and Pharmacology, Center for Molecular Recognition, Columbia University, New York, New York 10027-6902
| | - Nancy R Zahniser
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado 80045
| | - Louis J De Felice
- Center for Molecular Neuroscience, Vanderbilt University, Nashville, Tennessee 37232; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232
| | - Habibeh Khoshbouei
- Departments of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, Tennessee 37208
| |
Collapse
|
6
|
Brumley MR, Hentall ID, Pinzon A, Kadam BH, Blythe A, Sanchez FJ, Taberner AM, Noga BR. Serotonin concentrations in the lumbosacral spinal cord of the adult rat following microinjection or dorsal surface application. J Neurophysiol 2007; 98:1440-50. [PMID: 17634342 PMCID: PMC2668515 DOI: 10.1152/jn.00309.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Application of neuroactive substances, including monoamines, is common in studies examining the spinal mechanisms of sensation and behavior. However, affected regions and time courses of transmitter activity are uncertain. We measured the spatial and temporal distribution of serotonin [5-hydroxytryptamine (5-HT)] in the lumbosacral spinal cord of halothane-anesthetized adult rats, following its intraspinal microinjection or surface application. Carbon fiber microelectrodes (CFMEs) were positioned at various locations in the spinal cord and oxidation currents corresponding to extracellular 5-HT were measured by fast cyclic voltammetry. Intraspinal microinjection of 5-HT (100 microM, 1-3 microl) produced responses that were most pronounced at CFMEs positioned <or=800 microm from the drug micropipette: 5-HT concentration was significantly higher (1.43 vs. <0.28% of initial concentration) and response latency was shorter (67.1 vs. 598.2 s) compared with more distantly positioned CFMEs. Treatment with the selective 5-HT reuptake inhibitor clomipramine only slightly affected the spread of microinjected 5-HT. Surface application over several segments led to a transient rise in concentration that was usually apparent within 30 s and was dramatically attenuated with increasing depth: 0.25% of initial concentration (1 mM) within 400 microm of the dorsal surface and <0.001% between 1,170 and 2,000 microm. This initial response to superfusion was sometimes followed by a gradual increase to a new concentration plateau. In sum, compared with bath application, microinjection can deliver about tenfold higher transmitter concentrations, but to much more restricted areas of the spinal cord.
Collapse
Affiliation(s)
- Michele R Brumley
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gulley JM, Zahniser NR. Rapid regulation of dopamine transporter function by substrates, blockers and presynaptic receptor ligands. Eur J Pharmacol 2003; 479:139-52. [PMID: 14612145 DOI: 10.1016/j.ejphar.2003.08.064] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The extracellular actions of dopamine are terminated primarily through its binding to dopamine transporters and translocation back into dopamine neurons. The transporter thereby serves as an optimal target to regulate dopamine neurotransmission. Although acute pharmacological blockade of dopamine transporters is known to reversibly inhibit transporter function by preventing the binding of its endogenous substrate dopamine, it recently has become clear that dopamine transporter substrates, such as amphetamines, and blockers, such as cocaine, also have the ability to rapidly and persistently regulate transporter function after their direct pharmacological effect has subsided. Presynaptic receptor ligands can also regulate dopamine transporter function. This has been investigated most extensively for dopamine D2 receptors, but there is also evidence for regulation by gamma-aminobutyric acid (GABA) GABAB receptors, metabotropic glutamate, nicotinic acetylcholine, serotonin, sigma2- and kappa-opioid receptors. The focus of this review is the rapid, typically reversible, regulation of dopamine transporter velocity by substrates, blockers and presynaptic receptor ligands. The research discussed here suggests that a common mechanism through which these different classes of compounds regulate transporter activity is by altering the cell surface expression of dopamine transporters.
Collapse
Affiliation(s)
- Joshua M Gulley
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Campus Box C-236, 4200 E Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
8
|
Schenk JO. The functioning neuronal transporter for dopamine: kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2003; 59:111-31. [PMID: 12458965 DOI: 10.1007/978-3-0348-8171-5_4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The dopamine transporter (DAT) is a transmembrane spanning protein that catalyzes the transport of dopamine across the neuronal membrane to concentrate the neurotransmitter inside the cell. Although the uptake of dopamine has been studied since the 1960s, more recent advances in knowledge of the protein itself and in making kinetically resolved measurements of its action have led to more insights into its mechanism and pharmacology. The literature of the kinetics of transporters and kinetic measurements of DAT activity is reviewed to provide an overview of the multisubstrate mechanism of DAT activity, its pharmacology with regard to amphetamine, cocaine and methylphenidate, and correlations of DAT activity with some behavioral outputs.
Collapse
Affiliation(s)
- James O Schenk
- Department of Chemistry, School of Molecular Biosciences, and Program in Pharmacology/Toxicology, Washington State University, Pullman, WA 99164-4630, USA.
| |
Collapse
|
9
|
Garris PA, Rebec GV. Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res 2002; 137:47-63. [PMID: 12445715 DOI: 10.1016/s0166-4328(02)00284-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advances in electrophysiology and voltammetry permit monitoring of dopamine (DA) neuronal activity in real time in the brain of awake animals. Studies using these approaches demonstrate that behaviorally relevant events elicit characteristic patterns of electrical activity in midbrain DA neurons as well as large, transient changes in extracellular DA in the nucleus accumbens (NAc). In addition to providing insight into the role of the DA system in the processing of motor, motivational, and sensory information, the new findings also shed light on fast DA neurotransmission in a behavioral context. This report, (1). summarizes the information obtained by electrophysiological and real-time voltammetric approaches and (2). describes a general model of phasic DA signaling in the NAc that links the observed changes in DA electrical activity and extracellular dynamics. The analysis demonstrates that the behaviorally evoked DA transients are governed by similar mechanisms as those produced by short trains of electrical stimulation. Thus, action potential-dependent release and presynaptic uptake are primary determinants of functional DA levels in the brain during behavior. Interestingly, the model predicts that the same burst of electrical activity generated at DA cell bodies produces markedly different DA dynamics in forebrain projection fields. The distinct changes result from heterogeneous release and uptake rates and may underlie region-specific effects of DA. Auto- and heteroreceptors, as well as other sites of presynaptic control, could further modulate the DA transients.
Collapse
Affiliation(s)
- Paul A Garris
- Department of Biological Sciences, Illinois State University, 244 SLB, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
10
|
Gulley JM, Doolen S, Zahniser NR. Brief, repeated exposure to substrates down-regulates dopamine transporter function in Xenopus oocytes in vitro and rat dorsal striatum in vivo. J Neurochem 2002; 83:400-11. [PMID: 12423250 DOI: 10.1046/j.1471-4159.2002.01133.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In heterologous expression systems, dopamine transporter (DAT) cell-surface localization is reduced after relatively prolonged exposure to d-amphetamine (AMPH) or dopamine (DA), suggesting a role for substrate-mediated regulation of transporter function. Here, we investigated whether brief, repeated periods of substrate exposure modulated transporter function, first, in an in vitro model system and, second, in intact rat brain. In human DAT-expressing Xenopus laevis oocytes, repeated exposure to low micromolar concentrations of DA, AMPH or tyramine markedly reduced transport-mediated currents. This functional down-regulation was attenuated by inclusion of a protein kinase C (PKC) inhibitor and probably reflects DAT redistribution, as cell-surface [3H]WIN 35 428 binding was significantly lower following DA exposure. High-speed chronoamperometry was used to measure clearance of exogenously applied DA in dorsal striatum (STR) and nucleus accumbens (NAc) of anesthetized rats. In STR, frequent (every 2 min) applications of DA altered DA clearance parameters in a manner consistent with profound down-regulation of DAT function. Similar changes were not observed in NAc or after repeated vehicle (ascorbic acid) application. Together, our results suggest that brief, repeated periods of substrate exposure lead to rapid down-regulation of DAT activity and that this type of regulation can occur in vivo in STR, but not NAc.
Collapse
Affiliation(s)
- Joshua M Gulley
- Department of Pharmacology and Neuroscience Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
11
|
Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA. Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real-time voltammetry. J Neurosci Methods 2001; 112:119-33. [PMID: 11716947 DOI: 10.1016/s0165-0270(01)00459-9] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantifying mechanisms underlying extracellular signaling by the neurotransmitter dopamine (DA) is a difficult task, particularly in the complex extracellular microenvironment of the intact brain. In this study, two methods for evaluating release and uptake from DA dynamics monitored by real-time voltammetry are described. Both are based on a neurochemical model characterizing electrically evoked levels of DA as a balance between these opposing mechanisms. The theoretical basis of what is called here nonlinear regression and single curve analyses is given. Fitting simulated data tests the reliability of the methods. The two analyses are also compared with an experimental data set describing the effects of pharmacologically inhibiting the DA transporter in the caudate-putamen (CP) and nucleus accumbens (NAc). The results indicate that nonlinear regression and single curve analyses are suitable for quantifying release and uptake mechanisms underlying DA neurotransmission. Additionally, the most important experimental finding of this technical study was the independent confirmation of high affinity (approximately 0.2 microM) DA uptake in the intact striatum.
Collapse
Affiliation(s)
- Q Wu
- Department of Biological Sciences, Cellular and Integrative Physiology Section, Illinois State University, 244 SLB, Normal, IL 61790, USA
| | | | | | | | | |
Collapse
|