1
|
Okuma H, Saijo-Hamano Y, Yamada H, Sherif AA, Hashizaki E, Sakai N, Kato T, Imasaki T, Kikkawa S, Nitta E, Sasai M, Abe T, Sugihara F, Maniwa Y, Kosako H, Takei K, Standley DM, Yamamoto M, Nitta R. Structural basis of Irgb6 inactivation by Toxoplasma gondii through the phosphorylation of switch I. Genes Cells 2024; 29:17-38. [PMID: 37984375 PMCID: PMC11448365 DOI: 10.1111/gtc.13080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.
Collapse
Affiliation(s)
- Hiromichi Okuma
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Emi Hashizaki
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | | | - Takaaki Kato
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miwa Sasai
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka, Japan
- Laboratory of Systems Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Laboratory of Immunoparasitology, Osaka University, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka, Japan
| | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Biochemical and structural characterization of murine GBP7, a guanylate binding protein with an elongated C-terminal tail. Biochem J 2020; 476:3161-3182. [PMID: 31689351 DOI: 10.1042/bcj20190364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/23/2022]
Abstract
Guanylate-binding proteins (GBPs) constitute a family of interferon-inducible guanosine triphosphatases (GTPases) that are key players in host defense against intracellular pathogens ranging from protozoa to bacteria and viruses. So far, human GBP1 and GBP5 as well as murine GBP2 (mGBP2) have been biochemically characterized in detail. Here, with murine GBP7 (mGBP7), a GBP family member with an unconventional and elongated C-terminus is analyzed. The present study demonstrates that mGBP7 exhibits a concentration-dependent GTPase activity and an apparent GTP turnover number of 20 min-1. In addition, fluorescence spectroscopy analyses reveal that mGBP7 binds GTP with high affinity (KD = 0.22 µM) and GTPase activity assays indicate that mGBP7 hydrolyzes GTP to GDP and GMP. The mGBP7 GTPase activity is inhibited by incubation with γ-phosphate analogs and a K51A mutation interfering with GTP binding. SEC-MALS analyses give evidence that mGBP7 forms transient dimers and that this oligomerization pattern is not influenced by the presence of nucleotides. Moreover, a structural model for mGBP7 is provided by homology modeling, which shows that the GTPase possesses an elongated C-terminal (CT) tail compared with the CaaX motif-containing mGBP2 and human GBP1. Molecular dynamics simulations indicate that this tail has transmembrane characteristics and, interestingly, confocal microscopy analyses reveal that the CT tail is required for recruitment of mGBP7 to the parasitophorous vacuole of Toxoplasma gondii.
Collapse
|
3
|
Vatansever S, Erman B, Gümüş ZH. Comparative effects of oncogenic mutations G12C, G12V, G13D, and Q61H on local conformations and dynamics of K-Ras. Comput Struct Biotechnol J 2020; 18:1000-1011. [PMID: 32373288 PMCID: PMC7191603 DOI: 10.1016/j.csbj.2020.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/05/2020] [Accepted: 04/04/2020] [Indexed: 12/25/2022] Open
Abstract
K-Ras is the most frequently mutated protein in human cancers. However, until very recently, its oncogenic mutants were viewed as undruggable. To develop inhibitors that directly target oncogenic K-Ras mutants, we need to understand both their mutant-specific and pan-mutant dynamics and conformations. Recently, we have investigated how the most frequently observed K-Ras mutation in cancer patients, G12D, changes its local dynamics and conformations (Vatansever et al., 2019). Here, we extend our analysis to study and compare the local effects of other frequently observed oncogenic mutations, G12C, G12V, G13D and Q61H. For this purpose, we have performed Molecular Dynamics (MD) simulations of each mutant when active (GTP-bound) and inactive (GDP-bound), analyzed their trajectories, and compared how each mutant changes local residue conformations, inter-protein distance distributions, local flexibility and residue pair correlated motions. Our results reveal that in the four active oncogenic mutants we have studied, the α2 helix moves closer to the C-terminal of the α3 helix. However, P-loop mutations cause α3 helix to move away from Loop7, and only G12 mutations change the local conformational state populations of the protein. Furthermore, the motions of coupled residues are mutant-specific: G12 mutations lead to new negative correlations between residue motions, while Q61H destroys them. Overall, our findings on the local conformational states and protein dynamics of oncogenic K-Ras mutants can provide insights for both mutant-selective and pan-mutant targeted inhibition efforts.
Collapse
Affiliation(s)
- Sezen Vatansever
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, New York, NY, United States
| | - Burak Erman
- Department of Chemical and Biological Engineering, College of Engineering, Koç University, Istanbul, Turkey
| | - Zeynep H. Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Institute for Data Science and Genomic Technology, New York, NY, United States
| |
Collapse
|
4
|
Oncogenic G12D mutation alters local conformations and dynamics of K-Ras. Sci Rep 2019; 9:11730. [PMID: 31409810 PMCID: PMC6692342 DOI: 10.1038/s41598-019-48029-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
K-Ras is the most frequently mutated oncoprotein in human cancers, and G12D is its most prevalent mutation. To understand how G12D mutation impacts K-Ras function, we need to understand how it alters the regulation of its dynamics. Here, we present local changes in K-Ras structure, conformation and dynamics upon G12D mutation, from long-timescale Molecular Dynamics simulations of active (GTP-bound) and inactive (GDP-bound) forms of wild-type and mutant K-Ras, with an integrated investigation of atomistic-level changes, local conformational shifts and correlated residue motions. Our results reveal that the local changes in K-Ras are specific to bound nucleotide (GTP or GDP), and we provide a structural basis for this. Specifically, we show that G12D mutation causes a shift in the population of local conformational states of K-Ras, especially in Switch-II (SII) and α3-helix regions, in favor of a conformation that is associated with a catalytically impaired state through structural changes; it also causes SII motions to anti-correlate with other regions. This detailed picture of G12D mutation effects on the local dynamic characteristics of both active and inactive protein helps enhance our understanding of local K-Ras dynamics, and can inform studies on the development of direct inhibitors towards the treatment of K-RasG12D-driven cancers.
Collapse
|
5
|
Structural snapshots of RAF kinase interactions. Biochem Soc Trans 2018; 46:1393-1406. [PMID: 30381334 DOI: 10.1042/bst20170528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
RAF (rapidly accelerated fibrosarcoma) Ser/Thr kinases (ARAF, BRAF, and CRAF) link the RAS (rat sarcoma) protein family with the MAPK (mitogen-activated protein kinase) pathway and control cell growth, differentiation, development, aging, and tumorigenesis. Their activity is specifically modulated by protein-protein interactions, post-translational modifications, and conformational changes in specific spatiotemporal patterns via various upstream regulators, including the kinases, phosphatase, GTPases, and scaffold and modulator proteins. Dephosphorylation of Ser-259 (CRAF numbering) and dissociation of 14-3-3 release the RAF regulatory domains RAS-binding domain and cysteine-rich domain for interaction with RAS-GTP and membrane lipids. This, in turn, results in RAF phosphorylation at Ser-621 and 14-3-3 reassociation, followed by its dimerization and ultimately substrate binding and phosphorylation. This review focuses on structural understanding of how distinct binding partners trigger a cascade of molecular events that induces RAF kinase activation.
Collapse
|
6
|
The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol 2017; 111:7-19. [PMID: 28259298 DOI: 10.1016/j.critrevonc.2017.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.
Collapse
|
7
|
Vasseur R, Skrypek N, Duchêne B, Renaud F, Martínez-Maqueda D, Vincent A, Porchet N, Van Seuningen I, Jonckheere N. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1375-84. [PMID: 26477488 DOI: 10.1016/j.bbagrm.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 01/26/2023]
Abstract
The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.
Collapse
Affiliation(s)
- Romain Vasseur
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicolas Skrypek
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Belinda Duchêne
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Florence Renaud
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France; Institut de Pathologie, Centre de Biologie Pathologie, Boulevard du Professeur Jules Leclercq, 59037 Lille Cedex, France
| | - Daniel Martínez-Maqueda
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France
| | - Audrey Vincent
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicole Porchet
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| | - Nicolas Jonckheere
- Inserm, UMR-S 1172, Jean Pierre Aubert Research Center, Team "Mucins, epithelial differentiation and carcinogenesis", 1 rue Polonovski, 59045 Lille cedex, France; Univ Lille Nord de France, 42 rue Paul Duez, F-59000 Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille cedex, France
| |
Collapse
|
8
|
Walker DM, Wang R, Webb LJ. Conserved electrostatic fields at the Ras–effector interface measured through vibrational Stark effect spectroscopy explain the difference in tilt angle in the Ras binding domains of Raf and RalGDS. Phys Chem Chem Phys 2014; 16:20047-60. [DOI: 10.1039/c4cp00743c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vibrational Stark effect (VSE) spectroscopy was used to measure the electrostatic fields present at the interface of the human guanosine triphosphatase (GTPase) Ras docked with the Ras binding domain (RBD) of the protein kinase Raf.
Collapse
Affiliation(s)
- David M. Walker
- Department of Chemistry
- Center for Nano- and Molecular Science and Technology
- and Institute for Cell and Molecular Biology
- The University of Texas at Austin
- Austin, USA
| | - Ruifei Wang
- Department of Chemistry
- Center for Nano- and Molecular Science and Technology
- and Institute for Cell and Molecular Biology
- The University of Texas at Austin
- Austin, USA
| | - Lauren J. Webb
- Department of Chemistry
- Center for Nano- and Molecular Science and Technology
- and Institute for Cell and Molecular Biology
- The University of Texas at Austin
- Austin, USA
| |
Collapse
|
9
|
Walker DM, Hayes EC, Webb LJ. Vibrational Stark effect spectroscopy reveals complementary electrostatic fields created by protein–protein binding at the interface of Ras and Ral. Phys Chem Chem Phys 2013; 15:12241-52. [DOI: 10.1039/c3cp51284c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Kravets E, Degrandi D, Weidtkamp-Peters S, Ries B, Konermann C, Felekyan S, Dargazanli JM, Praefcke GJK, Seidel CAM, Schmitt L, Smits SHJ, Pfeffer K. The GTPase activity of murine guanylate-binding protein 2 (mGBP2) controls the intracellular localization and recruitment to the parasitophorous vacuole of Toxoplasma gondii. J Biol Chem 2012; 287:27452-66. [PMID: 22730319 DOI: 10.1074/jbc.m112.379636] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the most abundantly IFN-γ-induced protein families in different cell types is the 65-kDa guanylate-binding protein family that is recruited to the parasitophorous vacuole of the intracellular parasite Toxoplasma gondii. Here, we elucidate the relationship between biochemistry and cellular host defense functions of mGBP2 in response to Toxoplasma gondii. The wild type protein exhibits low affinities to guanine nucleotides, self-assembles upon GTP binding, forming tetramers in the activated state, and stimulates the GTPase activity in a cooperative manner. The products of the two consecutive hydrolysis reactions are both GDP and GMP. The biochemical characterization of point mutants in the GTP-binding motifs of mGBP2 revealed amino acid residues that decrease the GTPase activity by orders of magnitude and strongly impair nucleotide binding and multimerization ability. Live cell imaging employing multiparameter fluorescence image spectroscopy (MFIS) using a Homo-FRET assay shows that the inducible multimerization of mGBP2 is dependent on a functional GTPase domain. The consistent results indicate that GTP binding, self-assembly, and stimulated hydrolysis activity are required for physiological localization of the protein in infected and uninfected cells. Ultimately, we show that the GTPase domain regulates efficient recruitment to T. gondii in response to IFN-γ.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine University, D-40225 Dusseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu JJ, Stockton RA, Gingras AR, Ablooglu AJ, Han J, Bobkov AA, Ginsberg MH. A mechanism of Rap1-induced stabilization of endothelial cell--cell junctions. Mol Biol Cell 2011; 22:2509-19. [PMID: 21633110 PMCID: PMC3135476 DOI: 10.1091/mbc.e11-02-0157] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Rap1 stabilizes cell–cell junctions by directly binding to KRIT1, displacing it from microtubules and enabling localization at the junctions. Activation of Rap1 small GTPases stabilizes cell–cell junctions, and this activity requires Krev Interaction Trapped gene 1 (KRIT1). Loss of KRIT1 disrupts cardiovascular development and causes autosomal dominant familial cerebral cavernous malformations. Here we report that native KRIT1 protein binds the effector loop of Rap1A but not H-Ras in a GTP-dependent manner, establishing that it is an authentic Rap1-specific effector. By modeling the KRIT1–Rap1 interface we designed a well-folded KRIT1 mutant that exhibited a ∼40-fold-reduced affinity for Rap1A and maintained other KRIT1-binding functions. Direct binding of KRIT1 to Rap1 stabilized endothelial cell–cell junctions in vitro and was required for cardiovascular development in vivo. Mechanistically, Rap1 binding released KRIT1 from microtubules, enabling it to locate to cell–cell junctions, where it suppressed Rho kinase signaling and stabilized the junctions. These studies establish that the direct physical interaction of Rap1 with KRIT1 enables the translocation of microtubule-sequestered KRIT1 to junctions, thereby supporting junctional integrity and cardiovascular development.
Collapse
Affiliation(s)
- Jian J Liu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Pawlowski N, Khaminets A, Hunn JP, Papic N, Schmidt A, Uthaiah RC, Lange R, Vopper G, Martens S, Wolf E, Howard JC. The activation mechanism of Irga6, an interferon-inducible GTPase contributing to mouse resistance against Toxoplasma gondii. BMC Biol 2011; 9:7. [PMID: 21276251 PMCID: PMC3042988 DOI: 10.1186/1741-7007-9-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interferon-inducible immunity-related GTPases (IRG proteins/p47 GTPases) are a distinctive family of GTPases that function as powerful cell-autonomous resistance factors. The IRG protein, Irga6 (IIGP1), participates in the disruption of the vacuolar membrane surrounding the intracellular parasite, Toxoplasma gondii, through which it communicates with its cellular hosts. Some aspects of the protein's behaviour have suggested a dynamin-like molecular mode of action, in that the energy released by GTP hydrolysis is transduced into mechanical work that results in deformation and ultimately rupture of the vacuolar membrane. RESULTS Irga6 forms GTP-dependent oligomers in vitro and thereby activates hydrolysis of the GTP substrate. In this study we define the catalytic G-domain interface by mutagenesis and present a structural model, of how GTP hydrolysis is activated in Irga6 complexes, based on the substrate-twinning reaction mechanism of the signal recognition particle (SRP) and its receptor (SRα). In conformity with this model, we show that the bound nucleotide is part of the catalytic interface and that the 3'hydroxyl of the GTP ribose bound to each subunit is essential for trans-activation of hydrolysis of the GTP bound to the other subunit. We show that both positive and negative regulatory interactions between IRG proteins occur via the catalytic interface. Furthermore, mutations that disrupt the catalytic interface also prevent Irga6 from accumulating on the parasitophorous vacuole membrane of T. gondii, showing that GTP-dependent Irga6 activation is an essential component of the resistance mechanism. CONCLUSIONS The catalytic interface of Irga6 defined in the present experiments can probably be used as a paradigm for the nucleotide-dependent interactions of all members of the large family of IRG GTPases, both activating and regulatory. Understanding the activation mechanism of Irga6 will help to explain the mechanism by which IRG proteins exercise their resistance function. We find no support from sequence or G-domain structure for the idea that IRG proteins and the SRP GTPases have a common phylogenetic origin. It therefore seems probable, if surprising, that the substrate-assisted catalytic mechanism has been independently evolved in the two protein families.
Collapse
Affiliation(s)
- Nikolaus Pawlowski
- Institute for Genetics, Department of Cell Genetics, University of Cologne, Zülpicher Strasse 47a, 50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ras membrane orientation and nanodomain localization generate isoform diversity. Proc Natl Acad Sci U S A 2010; 107:1130-5. [PMID: 20080631 DOI: 10.1073/pnas.0903907107] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The structural elements encoding functional diversity among Ras GTPases are poorly defined. The orientation of the G domain of H-ras with respect to the plane of the plasma membrane is recognized by the Ras binding domain of C-Raf, coupling orientation to MAPK activation. We now show that two other proteins, phosphoinositide-3-kinase-alpha and the structurally unrelated galectin-1, also recognize G-domain orientation. These results rationalize the role of galectin-1 in generating active GTP-H-ras signaling nanoclusters. However, molecular dynamics simulations of K-ras membrane insertion and fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) imaging of the effector interactions of N-Ras, K-Ras, and M-ras suggest that there are two hyperactive, signaling-competent orientations of the Ras G domain. Mutational and functional analyses establish a clear relationship between effector binding and the amphilicities of helix alpha4 and the C-terminal hypervariable region, thus confirming that these structural elements critically tune the orientation of the Ras G domain. Finally, we show that G-domain orientation and nanoclustering synergize to generate Ras isoform specificity with respect to effector interactions.
Collapse
|
14
|
Ogura T, Tan A, Tsubota T, Nakakura T, Shiotsuki T. Identification and expression analysis of ras gene in silkworm, Bombyx mori. PLoS One 2009; 4:e8030. [PMID: 19946625 PMCID: PMC2777509 DOI: 10.1371/journal.pone.0008030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/24/2009] [Indexed: 12/15/2022] Open
Abstract
Ras proteins play important roles in development especially for cell proliferation and differentiation in various organisms. However, their functions in the most insect species are still not clear. We identified three ras cDNAs from the silk worm, Bombyx mori. These sequences corresponded to three Ras of Drosophila melanogaster, but not to three mammalian Ras (H-Ras, K-Ras, N-Ras). Subsequently, the expression profiles of ras were investigated by quantitative real-time PCR using whole body of individuals from the embryonic to adult stages, and various tissues of 4th and 5th instar larvae. Each of three Bombyx ras showed different expression patterns. We also showed membrane localization of their products. These results indicate that the three Bombyx Ras are functional and have different roles.
Collapse
Affiliation(s)
- Takehiko Ogura
- Department of Applied Life Sciences, Kyoto University, Kyoto, Japan
| | - Anjiang Tan
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takuya Tsubota
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takayo Nakakura
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| | - Takahiro Shiotsuki
- Invertebrate Gene Function Research Unit, National Institute of Agrobiological Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
15
|
Meyer S, Wittinghofer A, Versées W. G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex. J Mol Biol 2009; 392:910-22. [PMID: 19591841 DOI: 10.1016/j.jmb.2009.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/01/2009] [Indexed: 12/01/2022]
Abstract
MnmE and GidA are involved in the modification of wobble uridine to carboxymethylaminomethyl uridine in certain tRNAs. Malfunctioning of the human orthologs has been implicated in mitochondrial diseases. MnmE is a conserved G protein activated by dimerization. Here, we show that complex formation between MnmE and GidA involves large conformational changes that induce G-domain dimerization of MmnE and that GidA co-stimulates GTP hydrolysis on MnmE. Starting from a structural model of the complex, we identify interface mutations disrupting complex formation or communication. Although GidA does not directly contact the G-domains, conformational changes in MnmE, induced by G-domain dimerization in the triphosphate state, regulate the affinity for GidA. We developed a tRNA modification assay and demonstrate for the first time in vitro that the MnmE/GidA complex catalyzes incorporation of glycine into tRNA. An intact MnmE/GidA complex rather than their sequential action is crucial for in vitro modification. Since only GTP, but not GDP or non-hydrolyzable GTP analogs, drives the MnmE/GidA-catalyzed modification reaction, we conclude that GTP hydrolysis is essential for activity. We finally show that an active GTPase, an intact MnmE/GidA communication, and dimerization of G-domains are necessary for in vivo functioning since mutations disrupting either result in a respiratory deficient phenotype in yeast.
Collapse
Affiliation(s)
- Simon Meyer
- Department of Structural Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | | | | |
Collapse
|
16
|
Freedman TS, Sondermann H, Kuchment O, Friedland GD, Kortemme T, Kuriyan J. Differences in flexibility underlie functional differences in the Ras activators son of sevenless and Ras guanine nucleotide releasing factor 1. Structure 2009; 17:41-53. [PMID: 19141281 PMCID: PMC2654222 DOI: 10.1016/j.str.2008.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 12/24/2022]
Abstract
The Ras-specific nucleotide exchange factor Son of sevenless (Sos) is inactive without Ras bound to a distal allosteric site. In contrast, the catalytic domain of Ras guanine nucleotide releasing factor 1 (RasGRF1) is active intrinsically. By substituting residues from RasGRF1 into Sos, we have generated mutants of Sos with basal activity, partially relieved of their dependence on allosteric activation. We have performed molecular dynamics simulations showing how Ras binding to the allosteric site leads to a bias toward the active conformation of Sos. The trajectories show that Sos fluctuates between active and inactive conformations in the absence of Ras and that the activating mutations favor conformations of Sos that are more permissive to Ras binding at the catalytic site. In contrast, unliganded RasGRF1 fluctuates primarily among active conformations. Our results support the premise that the catalytic domain of Sos has evolved an allosteric activation mechanism that extends beyond the simple process of membrane recruitment.
Collapse
Affiliation(s)
- Tanya S Freedman
- Department of Molecular and Cell Biology, California Institute for Quantitative Biomedical Research, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
17
|
Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A. Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Biol Chem 2008; 389:1163-71. [PMID: 18713003 DOI: 10.1515/bc.2008.132] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Down-regulation of Ras signalling is mediated by specific GTPase-activating proteins (GAPs), which stimulate the very slow GTPase reaction of Ras by 10(5)-fold. The basic features of the GAP activity involve the stabilisation of both switch regions of Ras in the transition state, and the insertion of an arginine finger. In the case of oncogenic Ras mutations, the features of the active site are disturbed. To understand these features in more detail, we have investigated the effects of oncogenic mutations of Ras and compared the GAP-stimulated GTPase reaction with the ability to form GAP-mediated aluminium or beryllium fluoride complexes. In general we find a correlation between the size of the amino acid at position 12, the GTPase activity and ability to form aluminium fluoride complexes. While Gly12 is very sensitive to even the smallest possible structural change, Gly13 is much less sensitive to steric hindrance, but is sensitive to charge. Oncogenic mutants of Ras defective in the GTPase activity can however form ground-state GppNHp complexes with GAP, which can be mimicked by beryllium fluoride binding. We show that beryllium fluoride complexes are less sensitive to structural changes and report on a state close to but different from the ground state of the GAP-stimulated GTPase reaction.
Collapse
Affiliation(s)
- Lothar Gremer
- Abteilung Strukturelle Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | |
Collapse
|
18
|
Hunn JP, Koenen-Waisman S, Papic N, Schroeder N, Pawlowski N, Lange R, Kaiser F, Zerrahn J, Martens S, Howard JC. Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J 2008; 27:2495-509. [PMID: 18772884 PMCID: PMC2532785 DOI: 10.1038/emboj.2008.176] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 08/13/2008] [Indexed: 11/30/2022] Open
Abstract
Members of the immunity-related GTPase (IRG) family are interferon-inducible resistance factors against a broad spectrum of intracellular pathogens including Toxoplasma gondii. The molecular mechanisms governing the function and regulation of the IRG resistance system are largely unknown. We find that IRG proteins function in a system of direct, nucleotide-dependent regulatory interactions between family members. After interferon induction but before infection, the three members of the GMS subfamily of IRG proteins, Irgm1, Irgm2 and Irgm3, which possess an atypical nucleotide-binding site, regulate the intracellular positioning of the conventional GKS subfamily members, Irga6 and Irgb6. Following infection, the normal accumulation of Irga6 protein at the parasitophorous vacuole membrane (PVM) is nucleotide dependent and also depends on the presence of all three GMS proteins. We present evidence that an essential role of the GMS proteins in this response is control of the nucleotide-bound state of the GKS proteins, preventing their GTP-dependent activation before infection. Accumulation of IRG proteins at the PVM has previously been shown to be associated with a block in pathogen replication: our results relate for the first time the enzymatic properties of IRG proteins to their role in pathogen resistance.
Collapse
Affiliation(s)
- Julia P Hunn
- Department of Cell Genetics, Institute for Genetics, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Filchtinski D, Bee C, Savopol T, Engelhard M, Becker CFW, Herrmann C. Probing Ras Effector Interactions on Nanoparticle Supported Lipid Bilayers. Bioconjug Chem 2008; 19:1938-44. [DOI: 10.1021/bc800099p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Filchtinski
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Christine Bee
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Tudor Savopol
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Martin Engelhard
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Christian F. W. Becker
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Christian Herrmann
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
20
|
Meyer S, Scrima A, Versées W, Wittinghofer A. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate. J Mol Biol 2008; 380:532-47. [PMID: 18565343 DOI: 10.1016/j.jmb.2008.04.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 12/01/2022]
Abstract
GidA is a flavin-adenine-dinucleotide (FAD)-binding protein that is conserved among bacteria and eucarya. Together with MnmE, it is involved in the addition of a carboxymethylaminomethyl group to the uridine base in the wobble position (nucleotide 34) of tRNAs that read split codon boxes. Here, we report the crystal structures of the GidA proteins from both Escherichia coli and Chlorobium tepidum. The structures show that the protein can be divided into three domains: a first FAD-binding domain showing the classical Rossmann fold, a second alpha/beta domain inserted between two strands of the Rossmann fold, and an alpha-helical C-terminal domain. The domain inserted into the Rossmann fold displays structural similarity to the nicotinamide-adenine-dinucleotide-(phosphate)-binding domains of phenol hydroxylase and 3-hydroxy-3-methylglutaryl-CoA reductase, and, correspondingly, we show that GidA binds NADH with high specificity as an initial donor of electrons. GidA behaves as a homodimer in solution. As revealed by the crystal structures, homodimerization is mediated via both the FAD-binding domain and the NADH-binding domain. Finally, a large patch of highly conserved, positively charged residues on the surface of GidA leading to the FAD-binding site suggests a tRNA-binding surface. We propose a model for the interaction between GidA and MnmE, which is supported by site-directed mutagenesis. Our data suggest that this interaction is modulated and potentially regulated by the switch function of the G domain of MnmE.
Collapse
Affiliation(s)
- S Meyer
- Department of Structural Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, Dortmund 44227, Germany
| | | | | | | |
Collapse
|
21
|
Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 2008; 12:829-75. [PMID: 18266954 PMCID: PMC4401130 DOI: 10.1111/j.1582-4934.2008.00281.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Membranes constitute a meeting point for lipids and proteins. Not only do they define the entity of cells and cytosolic organelles but they also display a wide variety of important functions previously ascribed to the activity of proteins alone. Indeed, lipids have commonly been considered a mere support for the transient or permanent association of membrane proteins, while acting as a selective cell/organelle barrier. However, mounting evidence demonstrates that lipids themselves regulate the location and activity of many membrane proteins, as well as defining membrane microdomains that serve as spatio-temporal platforms for interacting signalling proteins. Membrane lipids are crucial in the fission and fusion of lipid bilayers and they also act as sensors to control environmental or physiological conditions. Lipids and lipid structures participate directly as messengers or regulators of signal transduction. Moreover, their alteration has been associated with the development of numerous diseases. Proteins can interact with membranes through lipid co-/post-translational modifications, and electrostatic and hydrophobic interactions, van der Waals forces and hydrogen bonding are all involved in the associations among membrane proteins and lipids. The present study reviews these interactions from the molecular and biomedical point of view, and the effects of their modulation on the physiological activity of cells, the aetiology of human diseases and the design of clinical drugs. In fact, the influence of lipids on protein function is reflected in the possibility to use these molecular species as targets for therapies against cancer, obesity, neurodegenerative disorders, cardiovascular pathologies and other diseases, using a new approach called membrane-lipid therapy.
Collapse
Affiliation(s)
- Pablo V Escribá
- Laboratory of Molecular Cell Biomedicine, Dept of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yeh JJ, Der CJ. Targeting signal transduction in pancreatic cancer treatment. Expert Opin Ther Targets 2007; 11:673-94. [PMID: 17465725 DOI: 10.1517/14728222.11.5.673] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic cancer is a lethal disease with a 5-year survival rate of 4%. The only opportunity for improved survival continues to be complete surgical resection for those with localized disease. Although chemotherapeutic options are limited for the few patients with resectable disease, this problem is even more magnified in the majority (85%) of patients with unresectable or metastastic disease. Therefore, there is an urgent need for improved therapeutic options. The recent success of inhibitors of signal transduction for the treatment of other cancers supports the need to identify and validate aberrant signaling pathways important for pancreatic tumor growth. This review focuses on the validation of specific signaling networks and the present status of inhibitors of these pathways as therapeutic approaches for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jen Jen Yeh
- University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Division of Surgical Oncology, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
23
|
Cortese MR, Di Vito M, De Giorgi C. The expression of the homologue of the Caenorhabditis elegans lin-45 raf is regulated in the motile stages of the plant parasitic nematode Meloidogyne artiellia. Mol Biochem Parasitol 2006; 149:38-47. [PMID: 16737746 DOI: 10.1016/j.molbiopara.2006.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/30/2006] [Accepted: 04/07/2006] [Indexed: 10/24/2022]
Abstract
The Ras-MAPK signal transduction pathway controls multiple developmental events and is involved in the processing of olfactory information in the free living nematode Caenorhabditis elegans. We have studied the Ras-MAPK pathway in the plant parasitic nematode Meloidogyne artiellia. The genes Mt-let-60, Mt-lin-45, Mt-mek-2 and Mt-mpk-1 have been isolated and sequenced. Each of them shows a high level of sequence similarity to its presumed ortholog in C. elegans and key functional domains are structurally conserved. Furthermore, we show that the M. artiellia recombinant MEK-2 protein can phosphorylate and activate the M. artiellia recombinant MPK-1 and the recombinant MEK-2 itself can be phosphorylated and activated by immunoprecipitated mammalian Raf. Surprisingly, the Mt-lin-45 message is not detectable in freshly emerged juveniles or in male specimens, suggesting that it may be quickly degraded in these life stages.
Collapse
|
24
|
Lammers M, Rose R, Scrima A, Wittinghofer A. The regulation of mDia1 by autoinhibition and its release by Rho*GTP. EMBO J 2005; 24:4176-87. [PMID: 16292343 PMCID: PMC1356318 DOI: 10.1038/sj.emboj.7600879] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 10/26/2005] [Indexed: 11/08/2022] Open
Abstract
Formins induce the nucleation and polymerisation of unbranched actin filaments via the formin-homology domains 1 and 2. Diaphanous-related formins (Drfs) are regulated by a RhoGTPase-binding domain situated in the amino-terminal (N-terminal) region and a carboxy-terminal Diaphanous-autoregulatory domain (DAD), whose interaction stabilises an autoinhibited inactive conformation. Binding of active Rho releases DAD and activates the catalytic activity of mDia. Here, we report on the interaction of DAD with the regulatory N-terminus of mDia1 (mDia(N)) and its release by Rho*GTP. We have defined the elements required for tight binding and solved the three-dimensional structure of a complex between an mDia(N) construct and DAD by X-ray crystallography. The core DAD region is an alpha-helical peptide, which binds in the most highly conserved region of mDia(N) using mainly hydrophobic interactions. The structure suggests a two-step mechanism for release of autoinhibition whereby Rho*GTP, although having a partially nonoverlapping binding site, displaces DAD by ionic repulsion and steric clashes. We show that Rho*GTP accelerates the dissociation of DAD from the mDia(N)*DAD complex.
Collapse
Affiliation(s)
- Michael Lammers
- Department of Structural Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Rolf Rose
- Department of Structural Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Scrima
- Department of Structural Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
| | - Alfred Wittinghofer
- Department of Structural Biology, Max-Planck-Institute of Molecular Physiology, Dortmund, Germany
- Department of Structural Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany. Tel.: +49 231 133 2100; Fax: +49 231 133 2199; E-mail:
| |
Collapse
|
25
|
Zhang Z, Rehmann H, Price LS, Riedl J, Bos JL. AF6 negatively regulates Rap1-induced cell adhesion. J Biol Chem 2005; 280:33200-5. [PMID: 16051602 DOI: 10.1074/jbc.m505057200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
AF6 is involved in the connection of membrane-associated proteins to the actin cytoskeleton. It binds to Ras-like small GTPases and is suggested to be an effector of both Ras and Rap. Here we show that knockdown of AF6 in T cells by RNA interference enhanced Rap1-induced integrin-mediated cell adhesion, whereas overexpression of AF6 had the opposite effect. Interestingly, AF6-induced inhibition of cell adhesion correlated with an increase in RapGTP levels. Like AF6, protein KIAA1849 contains a Ras association domain and interacted with Rap1. However, KIAA1849 did not inhibit Rap1-induced cell adhesion. We concluded that AF6 is a negative regulator of Rap-induced cell adhesion. We proposed that AF6 inhibits Rap-mediated cell adhesion by sequestering RapGTP in an unproductive complex and thus prevents the interaction of Rap1 not only with effectors that mediate adhesion but also with Rap GTPase-activating proteins. Thus, AF6 may buffer RapGTP in resting T cells and maintain them in a non-adherent state.
Collapse
Affiliation(s)
- Zhongchun Zhang
- Department of Physiological Chemistry and Centre of Biomedical Genetics, University Medical Centre, Utrecht 3508 AB, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
Ford B, Skowronek K, Boykevisch S, Bar-Sagi D, Nassar N. Structure of the G60A mutant of Ras: implications for the dominant negative effect. J Biol Chem 2005; 280:25697-705. [PMID: 15878843 DOI: 10.1074/jbc.m502240200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substituting alanine for glycine at position 60 in v-H-Ras generated a dominant negative mutant that completely abolished the ability of v-H-Ras to transform NIH 3T3 cells and to induce germinal vesicle breakdown in Xenopus oocytes. The crystal structure of the GppNp-bound form of RasG60A unexpectedly shows that the switch regions adopt an open conformation reminiscent of the structure of the nucleotide-free form of Ras in complex with Sos. Critical residues that normally stabilize the guanine nucleotide and the Mg(2+) ion have moved considerably. Sos binds to RasG60A but is unable to catalyze nucleotide exchange. Our data suggest that the dominant negative effect observed for RasG60A.GTP could result from the sequestering of Sos in a non-productive Ras-GTP-guanine nucleotide exchange factor ternary complex.
Collapse
Affiliation(s)
- Bradley Ford
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794-8661, USA
| | | | | | | | | |
Collapse
|
27
|
Spiliotis M, Tappe D, Brückner S, Mösch HU, Brehm K. Molecular cloning and characterization of Ras- and Raf-homologues from the fox-tapeworm Echinococcus multilocularis. Mol Biochem Parasitol 2005; 139:225-37. [PMID: 15664657 DOI: 10.1016/j.molbiopara.2004.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/03/2004] [Indexed: 11/26/2022]
Abstract
To better understand growth regulation in the human parasitic cestode Echinococcus multilocularis, we have cloned and characterized the parasite's orthologues of the key regulatory factors Ras and Raf. Using a degenerative PCR approach a gene, emras, was identified whose gene product, EmRas, showed high homology (79% identical residues) to human Ras and contained all amino acid residues which are characteristic for this subfamily of small GTPases at the corresponding positions. Recombinantly expressed EmRas bound GTP and was farnesylated, but not geranyl-geranylated, by Echinococcus lysate in an in vitro prenylation assay. Furthermore, upon expression in yeast, emras was able to functionally complement the Saccharomyces orthologue RAS2 in an invasive growth assay. In Western blot analyses using an anti-EmRas antibody, the Echinococcus factor could be detected in lysates of the larval stages metacestode and protoscolex. By immune-histochemistry, EmRas was shown to localize to the germinal layer of the metacestode and to tegumental structures of the protoscolex, particularly around the rostellum and the sucker regions. In addition, we fully characterized the gene emraf whose product, EmRaf, displayed considerable homology to mammalian Raf-kinases and orthologous factors from Drosophila and Caenorhabditis elegans. emraf was co-expressed with emras in the larval stages metacestode and protoscolex during in vitro cultivation and during an infection of the intermediate host as assessed by RT-PCR experiments. The emraf gene was composed of nine exons and eight introns and shared four highly conserved exon-intron boundaries with the human gene encoding Raf-1, suggesting that both genes derived from a common evolutionary ancestor. Southern blot hybridizations demonstrated that emraf is a single copy gene. Using the yeast two-hybrid system, EmRaf was shown to interact with EmRas, but not with EmRal, a previously characterized orthologue of mammalian Ral GTPases. This is the first characterization of a Ras orthologue from a cestode and the first report on a Raf-like kinase from a platyhelminth. The data presented herein will form a solid basis for further investigations on Echinococcus signaling systems that are involved in growth control and development of the parasite.
Collapse
Affiliation(s)
- Markus Spiliotis
- Institute of Hygiene and Microbiology, Julius-Maximilians University, D-97080 Würzburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Wang D, Li Z, Messing EM, Wu G. The SPRY domain-containing SOCS box protein 1 (SSB-1) interacts with MET and enhances the hepatocyte growth factor-induced Erk-Elk-1-serum response element pathway. J Biol Chem 2005; 280:16393-401. [PMID: 15713673 DOI: 10.1074/jbc.m413897200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) protein family includes a SPRY (repeats in splA and RyR) domain-containing SOCS box protein (SSB) subfamily, which consists of four members, SSB-1, SSB-2, SSB-3, and SSB-4. These proteins contain a central SPRY domain and a C-terminal SOCS box. Although some of the SOCS protein subfamilies function as adaptors for a large family of ubiquitin-protein isopeptide ligases to regulate certain signaling pathways, the function of the SSB subfamily remains to be determined. In our previous studies, we have found that two SPRY domain-containing proteins, RanBP9 and RanBP10, interact with MET through the SPRY domain. In the present study, we explored the function of SSB proteins in the regulation of the hepatocyte growth factor (HGF)-MET signaling. Our results showed that all four SSB proteins also interacted with the MET. The MET interaction with SSB-1 was further investigated. We demonstrated that SSB-1 bound to MET tyrosine kinase domain through its SPRY domain. MET interacted with SSB-1 in both the absence and the presence of HGF, but HGF treatment resulted in the recruitment of more SSB-1 by MET. We showed that overexpression of SSB-1 but not other SSB proteins enhanced the HGF-induced serum response element (SRE)-luciferase activity. Overexpression of SSB-1 exhibited no effect on the basal level or epidermal growth factor-induced SRE-luciferase activity. SSB-1 also enhanced HGF-induced Erk phosphorylation. Suppression of SSB-1 by the RNA interference method down-regulated HGF-induced SRE-luciferase activity and decreased Elk-1 activation. These results suggest that SSB-1 may play an important role in enhancing the HGF-induced Erk-Elk-1-SRE pathway. Furthermore, we demonstrated that in response to HGF stimulation, the SSB-1 protein became phosphorylated at tyrosine residue 31. The phosphorylated SSB-1 protein bound to p120Ras-GTPase-activating protein (GAP) but did not promote the degradation of p120RasGAP, indicating that enhanced HGF-MET signaling by overexpression of SSB-1 was not dependent on p120RasGAP degradation.
Collapse
Affiliation(s)
- Dakun Wang
- Department of Urology, Department of Pathology and Laboratory Medicine, and The James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
29
|
Scrima A, Vetter IR, Armengod ME, Wittinghofer A. The structure of the TrmE GTP-binding protein and its implications for tRNA modification. EMBO J 2004; 24:23-33. [PMID: 15616586 PMCID: PMC544919 DOI: 10.1038/sj.emboj.7600507] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/15/2004] [Indexed: 11/08/2022] Open
Abstract
TrmE is a 50 kDa guanine nucleotide-binding protein conserved between bacteria and man. It is involved in the modification of uridine bases (U34) at the first anticodon (wobble) position of tRNAs decoding two-family box triplets. The precise role of TrmE in the modification reaction is hitherto unknown. Here, we report the X-ray structure of TrmE from Thermotoga maritima. The structure reveals a three-domain protein comprising the N-terminal alpha/beta domain, the central helical domain and the G domain, responsible for GTP binding and hydrolysis. The N-terminal domain induces dimerization and is homologous to the tetrahydrofolate-binding domain of N,N-dimethylglycine oxidase. Biochemical and structural studies show that TrmE indeed binds formyl-tetrahydrofolate. A cysteine residue, necessary for modification of U34, is located close to the C1-group donor 5-formyl-tetrahydrofolate, suggesting a direct role of TrmE in the modification analogous to DNA modification enzymes. We propose a reaction mechanism whereby TrmE actively participates in the formylation reaction of uridine and regulates the ensuing hydrogenation reaction of a Schiff's base intermediate.
Collapse
Affiliation(s)
- Andrea Scrima
- Max-Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ingrid R Vetter
- Max-Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - M Eugenia Armengod
- Insituto de Investigationes Citológicas, Fondación Valenciana de Investigationes Biomédicas, Valencia, Spain
| | - Alfred Wittinghofer
- Max-Planck Institut für Molekulare Physiologie, Dortmund, Germany
- Max-Planck Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany. Tel.: +49 231 133 2100; Fax: +49 231 133 2199; E-mail:
| |
Collapse
|
30
|
Praefcke GJK, Kloep S, Benscheid U, Lilie H, Prakash B, Herrmann C. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis. J Mol Biol 2004; 344:257-69. [PMID: 15504415 DOI: 10.1016/j.jmb.2004.09.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 09/14/2004] [Accepted: 09/14/2004] [Indexed: 11/27/2022]
Abstract
The guanylate-binding proteins (GBPs) form a group of interferon-gamma inducible GTP-binding proteins which belong to the family of dynamin-related proteins. Like other members of this family, human guanylate-binding protein 1 (hGBP1) shows nucleotide-dependent oligomerisation that stimulates the GTPase activity of the protein. A unique feature of the GBPs is their ability to hydrolyse GTP to GDP and GMP. In order to elucidate the relationship between these findings, we designed point mutants in the phosphate-binding loop (P-loop) as well as in the switch I and switch II regions of the protein based on the crystal structure of hGBP1. These mutant proteins were analysed for their interaction with guanine nucleotides labeled with a fluorescence dye and for their ability to hydrolyse GTP in a cooperative manner. We identified mutations of amino acid residues that decrease GTPase activity by orders of magnitude a part of which are conserved in GTP-binding proteins. In addition, mutants in the P-loop were characterized that strongly impair binding of nucleotide. In consequence, together with altered GTPase activity and given cellular nucleotide concentrations this results in hGBP1 mutants prevailingly resting in the nucleotide-free (K51A and S52N) or the GTP bound form (R48A), respectively. Using size-exclusion chromatography and analytical ultracentrifugation we addressed the impact on protein oligomerisation. In summary, mutants of hGBP1 were identified and biochemically characterized providing hGBP1 locked in defined states in order to investigate their functional role in future cell biology studies.
Collapse
Affiliation(s)
- Gerrit J K Praefcke
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Staruschenko A, Patel P, Tong Q, Medina JL, Stockand JD. Ras activates the epithelial Na(+) channel through phosphoinositide 3-OH kinase signaling. J Biol Chem 2004; 279:37771-8. [PMID: 15215250 DOI: 10.1074/jbc.m402176200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldosterone induces expression and activation of the GTP-dependent signaling switch K-Ras. This small monomeric G protein is both necessary and sufficient for activation of the epithelial Na(+) channel (ENaC). The mechanism by which K-Ras enhances ENaC activity, however, is uncertain. We demonstrate here that K-Ras activates human ENaC reconstituted in Chinese hamster ovary cells in a GTP-dependent manner. K-Ras influences ENaC activity most likely by affecting open probability. Inhibition of phosphoinositide 3-OH kinase (PI3K) abolished K-Ras actions on ENaC. In contrast, inhibition of other K-Ras effector cascades, including the MAPK and Ral/Rac/Rho cascades, did not affect K-Ras actions on ENaC. Activation of ENaC by K-Ras, moreover, was sensitive to co-expression of dominant negative p85(PI3K). The G12:C40 effector-specific double mutant of Ras, which preferentially activates PI3K, enhanced ENaC activity in a manner sensitive to inhibition of PI3K. Other effector-specific mutants preferentially activating MAPK and RalGDS signaling had no effect. Constitutively active PI3K activated ENaC independent of K-Ras with the effects of PI3K and K-Ras on ENaC not being additive. We conclude that K-Ras activates ENaC via the PI3K cascade.
Collapse
Affiliation(s)
- Alexander Staruschenko
- University of Texas Health Science Center at San Antonio, Department of Physiology, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
32
|
Sakata T, Wang Y, Halloran BP, Elalieh HZ, Cao J, Bikle DD. Skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) by inhibiting activation of the IGF-I signaling pathways. J Bone Miner Res 2004; 19:436-46. [PMID: 15040832 PMCID: PMC10720400 DOI: 10.1359/jbmr.0301241] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2003] [Revised: 09/18/2003] [Accepted: 10/09/2003] [Indexed: 01/09/2023]
Abstract
UNLABELLED We showed that unloading markedly diminished the effects of IGF-I to activate its signaling pathways, and the disintegrin echistatin showed a similar block in osteoprogenitor cells. Furthermore, unloading decreased alphaVbeta3 integrin expression. These results show that skeletal unloading induces resistance to IGF-I by inhibiting activation of the IGF-I signaling pathways at least in part through downregulation of integrin signaling. INTRODUCTION We have previously reported that skeletal unloading induces resistance to insulin-like growth factor-I (IGF-I) with respect to bone formation. However, the underlying mechanism remains unclear. The aim of this study was to clarify how skeletal unloading induces resistance to the effects of IGF-I administration in vivo and in vitro with respect to bone formation. MATERIALS AND METHODS We first determined the response of bone to IGF-I administration in vivo during skeletal unloading. We then evaluated the response of osteoprogenitor cells isolated from unloaded bones to IGF-I treatment in vitro with respect to activation of the IGF-I signaling pathways. Finally we examined the potential role of integrins in mediating the responsiveness of osteoprogenitor cells to IGF-I. RESULTS IGF-I administration in vivo significantly increased proliferation of osteoblasts. Unloading markedly decreased proliferation and blocked the ability of IGF-I to increase proliferation. On a cellular level, IGF-I treatment in vitro stimulated the activation of its receptor, Ras, ERK1/2 (p44/42 MAPK), and Akt in cultured osteoprogenitor cells from normally loaded bones, but these effects were markedly diminished in cells from unloaded bones. These results were not caused by altered phosphatase activity or changes in receptor binding to IGF-I. Inhibition of the Ras/MAPK pathway was more impacted by unloading than that of Akt. The disintegrin echistatin (an antagonist of the alphaVbeta3 integrin) blocked the ability of IGF-I to stimulate its receptor phosphorylation and osteoblast proliferation, similar to that seen in cells from unloaded bone. Furthermore, unloading significantly decreased the mRNA levels both of alphaV and beta3 integrin subunits in osteoprogenitor cells. CONCLUSION These results indicate that skeletal unloading induces resistance to IGF-I by inhibiting the activation of IGF-I signaling pathways, at least in part, through downregulation of integrin signaling, resulting in decreased proliferation of osteoblasts and their precursors.
Collapse
Affiliation(s)
- Takeshi Sakata
- Department of Medicine, University of California, Endocrine Unit, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| | | | | | | | | | | |
Collapse
|
33
|
D'Silva NJ, Mitra RS, Zhang Z, Kurnit DM, Babcock CR, Polverini PJ, Carey TE. Rap1, a small GTP-binding protein is upregulated during arrest of proliferation in human keratinocytes. J Cell Physiol 2003; 196:532-40. [PMID: 12891710 DOI: 10.1002/jcp.10331] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rap1 is a small GTP-binding protein (SMG) that exists in two 95% homologous isoforms, rap1A and rap1B. The functions of the rap1 proteins are not well understood. In this report we examined expression and function of rap1 in primary (HOKs) and immortalized (IHOKs) human oral keratinocytes under different growth conditions. In HOKs, rap1 increased with passage number, suggesting a role in differentiation and arrest of proliferation. Similarly, when inhibition of proliferation and differentiation were induced in HOKs by 1.2 mM CaCl2, both rap1 and involucrin increased with increasing concentrations of CaCl2. However, when similar experiments were done with IHOKs, which continue to proliferate in the presence of 1.2 mM CaCl2, the increase in involucrin expression was similar to HOKs but there was no substantial increase in rap1, suggesting that increased expression of rap1 is linked to inhibition of proliferation rather than differentiation of keratinocytes. Upon transfection of immortalized keratinocytes with rapGAP, which inactivates both isoforms of endogenous active rap1, enhanced proliferation was observed. Thus, we conclude that rap1 inhibits proliferation in keratinocytes.
Collapse
Affiliation(s)
- N J D'Silva
- Department of Oral Medicine, Pathology and Oncology, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | | | | | | | |
Collapse
|
34
|
Uthaiah RC, Praefcke GJK, Howard JC, Herrmann C. IIGP1, an interferon-gamma-inducible 47-kDa GTPase of the mouse, showing cooperative enzymatic activity and GTP-dependent multimerization. J Biol Chem 2003; 278:29336-43. [PMID: 12732635 DOI: 10.1074/jbc.m211973200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
IIGP1 belongs to a well defined family of 47-kDa GTPases whose members are present at low resting levels in mouse cells but are strongly induced transcriptionally by interferons and are implicated in cell-autonomous resistance to intracellular pathogens. Recombinant IIGP1 was expressed in Escherichia coli and purified to homogeneity. Here we present a detailed biochemical characterization of IIGP1 using various biochemical and biophysical methods. IIGP1 binds to GTP and GDP with dissociation constants in the micromolar range with at least 10 times higher affinity for GDP than for GTP. IIGP1 hydrolyzes GTP to GDP, and the GTPase activity is concentration-dependent with a GTP turnover rate of 2 min-1 under saturating protein concentrations. Functional interaction between IIGP1 molecules is shown by nucleotide-dependent oligomerization in vitro. Both cooperative hydrolysis of GTP and GTP-dependent oligomerization are blocked in a mutant form of IIGP1 modified at the C terminus. IIGP1 shares micromolar nucleotide affinities and oligomerization-dependent hydrolytic activity with the 67-kDa GTPase hGBP1 (induced by type I and type II interferons), with the antiviral Mx proteins (interferon type I-induced) and with the paradigm of the self-activating large GTPases, the dynamins, with which Mx proteins show homology. The higher relative affinity for GDP and the relatively low GTPase activity distinguish IIGP1, but this study clearly adds IIGP1 and thus the p47 GTPases to the small group of cooperative GTPase families that appear to characterize the development of intracellular resistance during the interferon response to infection. The present analysis provides essential parameters to understand the molecular mechanism by which IIGP1 participates in this complex resistance program.
Collapse
Affiliation(s)
- Revathy C Uthaiah
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| | | | | | | |
Collapse
|
35
|
Brinkmann T, Daumke O, Herbrand U, Kühlmann D, Stege P, Ahmadian MR, Wittinghofer A. Rap-specific GTPase activating protein follows an alternative mechanism. J Biol Chem 2002; 277:12525-31. [PMID: 11812780 DOI: 10.1074/jbc.m109176200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rap1 is a small GTPase that is involved in signal transduction cascades. It is highly homologous to Ras but it is down-regulated by its own set of GTPase activating proteins (GAPs). To investigate the mechanism of the GTP-hydrolysis reaction catalyzed by Rap1GAP, a catalytically active fragment was expressed in Escherichia coli and characterized by kinetic and mutagenesis studies. The GTPase reaction of Rap1 is stimulated 10(5)-fold by Rap1GAP and has a k(cat) of 6 s(-1) at 25 degrees C. The catalytic effect of GAPs from Ras, Rho, and Rabs depends on a crucial arginine which is inserted into the active site. However, all seven highly conserved arginines of Rap1GAP can be mutated without dramatically reducing V(max) of the GTP-hydrolysis reaction. We found instead two lysines whose mutations reduce catalysis 25- and 100-fold, most likely by an affinity effect. Rap1GAP does also not supply the crucial glutamine that is missing in Rap proteins at position 61. The Rap1(G12V) mutant which in Ras reduces catalysis 10(6)-fold is shown to be efficiently down-regulated by Rap1GAP. As an alternative, Rap1(F64A) is shown by kinetic and cell biological studies to be a Rap1GAP-resistant mutant. This study supports the notion of a completely different mechanism of the Rap1GAP-catalyzed GTP-hydrolysis reaction on Rap1.
Collapse
Affiliation(s)
- Thilo Brinkmann
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Mohammad Reza Ahmadian
- Max-Planck-Institute of Molecular Physiology, Department of Structural Biology, Dortmund, Germany.
| |
Collapse
|
37
|
Rudolph MG, Linnemann T, Grunewald P, Wittinghofer A, Vetter IR, Herrmann C. Thermodynamics of Ras/effector and Cdc42/effector interactions probed by isothermal titration calorimetry. J Biol Chem 2001; 276:23914-21. [PMID: 11292826 DOI: 10.1074/jbc.m011600200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferation, differentiation, and morphology of eucaryotic cells is regulated by a large network of signaling molecules. Among the major players are members of the Ras and Rho/Rac subfamilies of small GTPases that bind to different sets of effector proteins. Recognition of multiple effectors is important for communicating signals into different pathways, leading to the question of how an individual GTPase achieves tight binding to diverse targets. To understand the observed specificity, detailed information about binding energetics is expected to complement the information gained from the three-dimensional structures of GTPase/effector protein complexes. Here, the thermodynamics of the interaction of four closely related members of the Ras subfamily with four different effectors and, additionally, the more distantly related Cdc42/WASP couple were quantified by means of isothermal titration calorimetry. The heat capacity changes upon complex formation were rationalized in light of the GTPase/effector complex structures. Changes in enthalpy, entropy, and heat capacity of association with various Ras proteins are similar for the same effector. In contrast, although the structures of the Ras-binding domains are similar, the thermodynamics of the Ras/Raf and Ras/Ral guanine nucleotide dissociation stimulator interactions are quite different. The energy profile of the Cdc42/WASP interaction is similar to Ras/Ral guanine nucleotide dissociation stimulator, despite largely different structures and interface areas of the complexes. Water molecules in the interface cannot fully account for the observed discrepancy but may explain the large range of Ras/effector binding specificity. The differences in the thermodynamic parameters, particularly the entropy changes, could help in the design of effector-specific inhibitors that selectively block a single pathway.
Collapse
Affiliation(s)
- M G Rudolph
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Three classes of mammalian phosphoinositide-specific phospholipase C (PLC) have been characterized, PLCbeta, PLCgamma and PLCdelta, that are differentially regulated by heterotrimeric G-proteins, tyrosine kinases and calcium. Here we describe a fourth class, PLCepsilon, that in addition to conserved PLC domains, contains a GTP exchange factor (GRF CDC25) domain and two C-terminal Ras-binding (RA) domains, RA1 and RA2. The RA2 domain binds H-Ras in a GTP-dependent manner, comparable with the Ras-binding domain of Raf-1; however, the RA1 domain binds H-Ras with a low affinity in a GTP-independent manner. While G(alpha)q, Gbetagamma or, surprisingly, H-Ras do not activate recombinant purified protein in vitro, constitutively active Q61L H-Ras stimulates PLC(epsilon) co-expressed in COS-7 cells in parallel with Ras binding. Deletion of either the RA1 or RA2 domain inhibits this activation. Site-directed mutagenesis of the RA2 domain or Ras demonstrates a conserved Ras-effector interaction and a unique profile of activation by Ras effector domain mutants. These studies identify a novel fourth class of mammalian PLC that is directly regulated by Ras and links two critical signaling pathways.
Collapse
Affiliation(s)
- Grant G. Kelley
- Departments of Medicine and Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 and
Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA Corresponding author e-mail:
| | | | | | - Alan V. Smrcka
- Departments of Medicine and Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 and
Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA Corresponding author e-mail:
| |
Collapse
|
39
|
Jacobs JR. The midline glia of Drosophila: a molecular genetic model for the developmental functions of glia. Prog Neurobiol 2000; 62:475-508. [PMID: 10869780 DOI: 10.1016/s0301-0082(00)00016-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Midline Glia of Drosophila are required for nervous system morphogenesis and midline axon guidance during embryogenesis. In origin, gene expression and function, this lineage is analogous to the floorplate of the vertebrate neural tube. The expression or function of over 50 genes, summarised here, has been linked to the Midline Glia. Like the floorplate, the cells which generate the Midline Glia lineage, the mesectoderm, are determined by the interaction of ectoderm and mesoderm during gastrulation. Determination and differentiation of the Midline Glia involves the Drosophila EGF, Notch and segment polarity signaling pathways, as well as twelve identified transcription factors. The Midline Glia lineage has two phases of cell proliferation and of programmed cell death. During embryogenesis, the EGF receptor pathway signaling and Wrapper protein both function to suppress apoptosis only in those MG which are appropriately positioned to separate and ensheath midline axonal commissures. Apoptosis during metamorphosis is regulated by the insect steroid, Ecdysone. The Midline Glia participate in both the attraction of axonal growth cones towards the midline, as well as repulsion of growth cones from the midline. Midline axon guidance requires the Drosophila orthologs of vertebrate genes expressed in the floorplate, which perform the same function. Genetic and molecular evidence of the interaction of attractive (Netrin) and repellent (Slit) signaling is reviewed and summarised in a model. The Midline Glia participate also in the generation of extracellular matrix and in trophic interactions with axons. Genetic evidence for these functions is reviewed.
Collapse
Affiliation(s)
- J R Jacobs
- Department of Biology, McMaster University, 1280 Main Street W., L8S 4K1, Hamilton, Canada.
| |
Collapse
|
40
|
Weber CK, Slupsky JR, Herrmann C, Schuler M, Rapp UR, Block C. Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Oncogene 2000; 19:169-76. [PMID: 10644994 DOI: 10.1038/sj.onc.1203261] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the mitogenic signaling cascade interaction of Ras with Raf represents a critical step for the regulation of cell growth and differentiation. The major effector of Ras, the serine/threonine kinase Raf exists as three isoforms with different tissue distributions. We demonstrate that transient transfection of oncogenic Ha-Ras leads to a preferential activation of endogenous c-Raf-1 in HEK 293 cells as opposed to A-Raf. In vitro binding studies using purified Ras binding domains of Raf as well as in vivo bindings tests with full length molecules reveals significantly lower binding affinities of A-Raf to Ha-Ras as compared to other Raf isoforms. The Ras-binding interface of c-Raf differs from A-Raf by a conservative Arg to Lys exchange at residue 59 or 22 respectively. Mutational analysis reveals that this residue represents a point of isozyme discrimination: c-Raf-R59K binds Ha-Ras weaker than the wildtype, likewise A-Raf-K22R increases its affinity to Ha-Ras in vivo and in vitro. Differential binding affinities are reflected in downstream signaling. Immunecomplex kinase assays reveal that Ha-Ras mediated Raf activation is decreased for c-Raf-R59K and increased for A-Raf-K22R when compared to the respective wildtype forms. Thus our observations introduce a new level of isoform discrimination in Ras/Raf signaling as a functional consequence of a conservative amino acid exchange in the Ras binding domains.
Collapse
Affiliation(s)
- C K Weber
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Universität Würzburg, Versbacher Str.5, 97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Praefcke GJ, Geyer M, Schwemmle M, Robert Kalbitzer H, Herrmann C. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif. J Mol Biol 1999; 292:321-32. [PMID: 10493878 DOI: 10.1006/jmbi.1999.3062] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
hGBP1 is a GTPase with antiviral activity encoded by an interferon- activated human gene. Specific binding of hGBP1 to guanine nucleotides has been established although only two classical GTP-binding motifs were found in its primary sequence. The unique position of hGBP1 amongst known GTPases is further demonstrated by the hydrolysis of GTP to GDP and GMP. Although subsequent cleavage of orthophosphates rather than pyrophosphate was demonstrated, GDP coming from bulk solution cannot serve as a substrate. The relation of guanine nucleotide binding and hydrolysis to the antiviral function of hGBP1 is unknown. Here we show similar binding affinities for all three guanine nucleotides and the ability of both products, GDP and GMP, to compete with GTP binding. Fluorimetry and isothermal titration calorimetry were applied to prove that only one nucleotide binding site is present in hGBP1. Furthermore, we identified the third canonical GTP-binding motif and verified its role in nucleotide recognition by mutational analysis. The high guanine nucleotide dissociation rates measured by stopped-flow kinetics are responsible for the weak affinities to hGBP1 when compared to other GTPases like Ras or Galpha. By means of fluorescence and NMR spectroscopy it is demonstrated that aluminium fluoride forms a complex with hGBP1 only in the GDP state, presumably mimicking the transition state of GTP hydrolysis. Tentatively, the involvement of a GAP domain in hGBP1 in GTP hydrolysis is suggested. These results will serve as a basis for the determination of the differential biological functions of the three nucleotide states and for the elucidation of the unique mechanism of nucleotide hydrolysis catalysed by hGBP1.
Collapse
Affiliation(s)
- G J Praefcke
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Dortmund, 44202, Germany
| | | | | | | | | |
Collapse
|
43
|
Slupsky JR, Quitterer U, Weber CK, Gierschik P, Lohse MJ, Rapp UR. Binding of Gbetagamma subunits to cRaf1 downregulates G-protein-coupled receptor signalling. Curr Biol 1999; 9:971-4. [PMID: 10508586 DOI: 10.1016/s0960-9822(99)80426-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Receptors of the seven transmembrane domain family are coupled to heterotrimeric G proteins [1]. Binding of ligand to these receptors induces dissociation of the heterotrimeric complex into free GTP-Galpha and Gbetagamma subunits, which then interact with their respective effector molecules to stimulate specific cellular responses. In some cases, these cellular responses involve mitogenic signalling [2]. The mitogen-activated protein (MAP) kinase cascade is initiated by the protein kinase cRaf1 and links growth factor receptor signalling to cell growth and differentiation [3]. The main activator of cRaf1 is the small GTP-binding protein Ras [4], and the binding of cRaf1 to GTP-Ras translocates cRaf1 to the plasma membrane, where it is activated [5]. It has been reported that cRaf1 associates directly with the beta subunit of heterotrimeric G proteins in vitro, and with the betagamma subunit complex in vivo [6], but the role of this association is not yet understood. Here, we show that cRaf1 associates with Gbeta1gamma2, and that this association in mammalian cells is significantly enhanced when active p21(Ras) is present or when cRaf1 is otherwise targeted to the membrane. Association with Gbeta1gamma2 has no effect on the kinase activity of cRaf1, but cRaf1 can affect Gbetagamma-mediated signalling events. Thus, membrane-localised cRaf1 inhibits G-protein-coupled receptor (GPCR)-stimulated activation of phospholipase Cbeta (PLCbeta) by sequestration of Gbetagamma subunits, an effect also observed with endogenous levels of cRaf1. Our data suggest that cRaf1 may be an important regulator of signalling by Gbetagamma, particularly in those GPCR systems that stimulate the MAP kinase cascade through the activation of p21(Ras).
Collapse
Affiliation(s)
- J R Slupsky
- Institut für medizinische Strahlenkunde und Zellforschung (MSZ) der Universität Würzburg Versbacherstrasse 5, D-97078, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Linnemann T, Geyer M, Jaitner BK, Block C, Kalbitzer HR, Wittinghofer A, Herrmann C. Thermodynamic and kinetic characterization of the interaction between the Ras binding domain of AF6 and members of the Ras subfamily. J Biol Chem 1999; 274:13556-62. [PMID: 10224125 DOI: 10.1074/jbc.274.19.13556] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cellular signaling downstream of Ras is highly diversified and may involve many different effector molecules. A potential candidate is AF6 which was originally identified as a fusion to ALL-1 in acute myeloid leukemia. In the present work the interaction between Ras and AF6 is characterized and compared with other effectors. The binding characteristics are quite similar to Raf and RalGEF, i.e. nucleotide dissociation as well as GTPase-activating protein activity are inhibited, whereas the intrinsic GTPase activity of Ras is unperturbed by AF6 binding. Particularly, the dynamics of interaction are similar to Raf and RalGEF with a lifetime of the Ras. AF6 complex in the millisecond range. As probed by 31P NMR spectroscopy one of two major conformational states of Ras is stabilized by the interaction with AF6. Looking at the affinities of AF6 to a number of Ras mutants in the effector region, a specificity profile emerges distinct from that of other effector molecules. This finding may be useful in defining the biological function of AF6 by selectively switching off other pathways downstream of Ras using the appropriate effector mutant. Notably, among the Ras-related proteins AF6 binds most tightly to Rap1A which could imply a role of Rap1A in AF6 regulation.
Collapse
Affiliation(s)
- T Linnemann
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Postfach 102664, 44026 Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
van Leeuwen JE, Paik PK, Samelson LE. Activation of nuclear factor of activated T cells-(NFAT) and activating protein 1 (AP-1) by oncogenic 70Z Cbl requires an intact phosphotyrosine binding domain but not Crk(L) or p85 phosphatidylinositol 3-kinase association. J Biol Chem 1999; 274:5153-62. [PMID: 9988765 DOI: 10.1074/jbc.274.8.5153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Cbl proto-oncogene product is a complex adapter protein that functions as a negative regulator of protein tyrosine kinases. It is rapidly tyrosine-phosphorylated and associates with Crk(L) and p85 phosphatidylinositol 3-kinase (PI3K) upon engagement of numerous receptors linked to tyrosine kinases. Elucidation of the mechanism(s) underlying Cbl deregulation is therefore of considerable interest. The 70Z Cbl oncoprotein shows increased baseline tyrosine phosphorylation in fibroblasts and enhances nuclear factor of activated T cells (NFAT) activity in Jurkat T cells. Its transforming ability has been proposed to relate to its increased phosphotyrosine content. We demonstrate that 70Z Cbl shows increased basal and activation-induced tyrosine phosphorylation and association with Crk(L) and p85 PI3K in Jurkat T cells. 70Z Cbl, however, retains the ability to enhance NFAT and activating protein 1 (AP1) activity in the absence of Crk(L)/p85 PI3K association. In contrast, the G306E mutation, which inactivates the phosphotyrosine binding domain of Cbl, blocks NFAT/AP1 activation by 70Z Cbl. We conclude that 70Z Cbl-induced NFAT/AP1 activation requires the phosphotyrosine binding domain but not Crk(L)/p85 PI3K association. We hypothesize that 70Z Cbl acts as a dominant negative by blocking the negative regulatory function of the Cbl phosphotyrosine binding domain on protein-tyrosine kinases.
Collapse
Affiliation(s)
- J E van Leeuwen
- Cell Biology and Metabolism Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
46
|
Harel NY, Alwine JC. Phosphorylation of the human cytomegalovirus 86-kilodalton immediate-early protein IE2. J Virol 1998; 72:5481-92. [PMID: 9621004 PMCID: PMC110188 DOI: 10.1128/jvi.72.7.5481-5492.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have investigated the phosphorylation state of the human cytomegalovirus 86-kDa immediate-early (IE) protein IEP86 from transfected and infected cells. We show that multiple domains of IEP86 are phosphorylated by cellular kinases, both in vitro and in vivo. Our data suggest that serum-inducible kinases play a significant role in cell-mediated IE protein phosphorylation and that a member of the mitogen-activated protein (MAP) kinase (MAPK) family, extracellular regulated kinase 2 (ERK2), phosphorylates several domains of IEP86 in vitro. Alanine substitution mutagenesis was performed on specific serines or threonines (T27, S144, T233/S234, and T555) found in consensus MAP kinase motifs. Analysis of these mutations showed that T27 and T233/S234 are the major sites for serum-inducible kinases and are the major ERK2 sites in vitro. S144 appeared to be phosphorylated in a serum-independent manner in vitro. All of the mutations except T555 eliminated specific phosphorylation in vivo. In transient transfection analyses, IEP86 isoforms containing mutations in S144 and, especially, T233/S234 displayed increased transcriptional activation relative to the wild type, suggesting that phosphorylation at these sites in wild-type IEP86 may result in reduction of its transcriptional activation ability.
Collapse
Affiliation(s)
- N Y Harel
- Graduate Group of Cell and Molecular Biology and Department of Microbiology, Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
47
|
Herrmann C, Ahmadian MR, Hofmann F, Just I. Functional consequences of monoglucosylation of Ha-Ras at effector domain amino acid threonine 35. J Biol Chem 1998; 273:16134-9. [PMID: 9632667 DOI: 10.1074/jbc.273.26.16134] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Monoglucosylation of low molecular mass GTPases is an important post-translational modification by which microbes interfere with eukaryotic cell signaling. Ha-Ras is monoglucosylated at effector domain amino acid threonine 35 by Clostridium sordellii lethal toxin, resulting in a blockade of the downstream mitogen-activated protein kinase cascade. To understand the molecular consequences of this modification, effects of glucosylation on each step of the GTPase cycle of Ras were analyzed. Whereas nucleotide binding was not significantly altered, intrinsic GTPase activity was markedly decreased, and GTPase stimulation by the GTPase-activating protein p120(GAP) and neurofibromin NF-1 was completely blocked, caused by failure to bind to glucosylated Ras. Guanine nucleotide exchange factor (Cdc25)-catalyzed GTP loading was decreased, but not completely inhibited. A dominant-negative property of modified Ras to sequester exchange factor was not detectable. However, the crucial step in downstream signaling, Ras-effector coupling, was completely blocked. The Kd for the interaction between Ras.GTP and the Ras-binding domain of Raf was 15 nM, whereas glucosylation increased the Kd to >1 mM. Because the affinity of Ras.GDP for Raf (Kd = 22 microM) is too low to allow functional interaction, a glucose moiety at threonine 35 of Ras seems to block completely the interaction with Raf. The net effect of lethal toxin-catalyzed glucosylation of Ras is the complete blockade of Ras downstream signaling.
Collapse
Affiliation(s)
- C Herrmann
- Max-Planck-Institut für Molekulare Physiologie, Rheinlanddamm 201, D-44139 Dortmund, Germany
| | | | | | | |
Collapse
|
48
|
Qian X, Vass WC, Papageorge AG, Anborgh PH, Lowy DR. N terminus of Sos1 Ras exchange factor: critical roles for the Dbl and pleckstrin homology domains. Mol Cell Biol 1998; 18:771-8. [PMID: 9447973 PMCID: PMC108788 DOI: 10.1128/mcb.18.2.771] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have studied the functional importance of the N terminus of mouse Sos1 (mSos1), a ubiquitously expressed Ras-specific guanine nucleotide exchange factor whose C-terminal sequences bind Grb-2. Consistent with previous reports, addition of a myristoylation signal to mSos1 (MyrSos1) rendered it transforming for NIH 3T3 cells and deletion of the mSos C terminus (MyrSos1-deltaC) did not interfere with this activity. However, an N-terminally deleted myristoylated mSos1 protein (MyrSos1-deltaN) was transformation defective, although the protein was stable and localized to the membrane. Site-directed mutagenesis was used to examine the role of the Dbl and pleckstrin homology (PH) domains located in the N terminus. When mutations in the PH domain were introduced into two conserved amino acids either singly or together in MyrSos1 or MyrSos1-deltaC, the transforming activity was severely impaired. An analogous reduction in biological activity was seen when a cluster of point mutations was engineered into the Dbl domain. The mitogen-activation protein (MAP) kinase activities induced by the various Dbl and PH mutants of MyrSos1 correlated with their biological activities. When NIH 3T3 cells were transfected with a myristoylated Sos N terminus, their growth response to epidermal growth factor (EGF), platelet-derived growth factor, lysophosphatidic acid or serum was greatly impaired. The dominant inhibitory biological activity of the N terminus correlated with its ability to impair EGF-dependent activation of GTP-Ras and of MAP kinase, as well with the ability of endogenous Sos to form a stable complex with activated EGF receptors. The N terminus with mutations in the Dbl and PH domains was much less inhibitory in these biological and biochemical assays. In contrast to wild-type Sos1, nonmyristoylated versions of Sos1-deltaN and Sos1-deltaC did not form a stable complex with activated EGF receptors. We conclude that the Dbl and PH domains are critical for Sos function and that stable association of Sos with activated EGF receptors requires both the Sos N and C termini.
Collapse
Affiliation(s)
- X Qian
- Laboratory of Cellular Oncology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|