1
|
Yadav M, Srivastava R, Naaz F, Sen Gupta PS, Panda SK, Rana MK, Singh RK. Hydroxyalkynyl uracil derivatives as NNRTIs against HIV-1: in silico predictions, synthesis, docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2023; 41:8068-8080. [PMID: 36229234 DOI: 10.1080/07391102.2022.2130980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/24/2022] [Indexed: 10/17/2022]
Abstract
To improve rationally the efficacy of the non-nucleoside human immunodeficiency virus (HIV-1) inhibitors, it is important to have a precise and detailed understanding of the HIV-1 reverse transcriptase (RT) and inhibitor interactions. For the 1-[(2-hydroxyethoxy) methyl]-6-(phenylthio) thymine (HEPT) type of nucleoside reverse transcriptase inhibitors (NNRTIs), the H-bond between the N-3H of the inhibitor and the backbone carbonyl group of K101 represents the major hydrophilic interaction. This H-bond contributes to the NNRTI binding affinity. The descriptor analyses of different uracil derivatives proved their good cell internalization. The bioactivity score reflected higher drug likeness score and the ligands showed interesting docking results. All molecules were deeply buried and stabilized into the allosteric site of HIV-1 RT. For majority of molecules, residues Lys101, Lys103, Tyr181 and Tyr188 were identified as key protein residues responsible for generation of H-bond and major interactions were similar to all known NNRTIs while very few molecules interacted with residues Phe227 and Tyr318. The TOPKAT protocol available in Discovery Studio 3.0 was used to predict the pharmacokinetics of the designed uracil derivatives in the human body. The molecular dynamics (MD) and post-MD analyses results reflected that the complex HIVRT:5 appeared to be more stable than the complex HIVRT:HEPT, where HEPT was used as reference. Different uracil derivatives have been synthesized by using uracil as starting material and commercially available propargyl bromide. The N-1 derivative of uracil was further reacted with sodamide and different aldehydes/ketones bearing alkyl and phenyl ring to obtain hydroxyalkynyl uracil derivatives as NNRTIs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madhu Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
2
|
Young NJ, Hay BP. Structural design principles for self-assembled coordination polygons and polyhedra. Chem Commun (Camb) 2013; 49:1354-79. [DOI: 10.1039/c2cc37776d] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
|
4
|
Chen D, Misra M, Sower L, Peterson JW, Kellogg GE, Schein CH. Novel inhibitors of anthrax edema factor. Bioorg Med Chem 2008; 16:7225-33. [PMID: 18620864 DOI: 10.1016/j.bmc.2008.06.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 01/13/2023]
Abstract
Several pathogenic bacteria produce adenylyl cyclase toxins, such as the edema factor (EF) of Bacillus anthracis. These disturb cellular metabolism by catalyzing production of excessive amounts of the regulatory molecule cAMP. Here, a structure-based method, where a 3D-pharmacophore that fit the active site of EF was constructed from fragments, was used to identify non-nucleotide inhibitors of EF. A library of small molecule fragments was docked to the EF-active site in existing crystal structures, and those with the highest HINT scores were assembled into a 3D-pharmacophore. About 10,000 compounds, from over 2.7 million compounds in the ZINC database, had a similar molecular framework. These were ranked according to their docking scores, using methodology that was shown to achieve maximum accuracy (i.e., how well the docked position matched the experimentally determined site for ATP analogues in crystal structures of the complex). Finally, 19 diverse compounds with the best AutoDock binding/docking scores were assayed in a cell-based assay for their ability to reduce cAMP secretion induced by EF. Four of the test compounds, from different structural groups, inhibited in the low micromolar range. One of these has a core structure common to phosphatase inhibitors previously identified by high-throughput assays of a diversity library. Thus, the fragment-based pharmacophore identified a small number of diverse compounds for assay, and greatly enhanced the selection process of advanced lead compounds for combinatorial design.
Collapse
Affiliation(s)
- Deliang Chen
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0857, USA
| | | | | | | | | | | |
Collapse
|
5
|
Chen D, Menche G, Power TD, Sower L, Peterson JW, Schein CH. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Proteins 2007; 67:593-605. [PMID: 17311351 DOI: 10.1002/prot.21249] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The adenylyl cyclase toxins produced by bacteria (such as the edema factor (EF) of Bacillus anthracis and CyaA of Bordetella pertussis) are important virulence factors in anthrax and whooping cough. Co-crystal structures of these proteins differ in the number and positioning of metal ions in the active site. Metal ions bound only to the ligands in the crystal structures are not included during the docking. To determine what effect these "missing" metals have on docking results, the AutoDock, LigandFit/Cerius2, and FlexX programs were compared for their ability to correctly place substrate analogues and inhibitors into the active sites of the crystal structures of EF, CyaA, and mammalian adenylate cyclase. Protonating the phosphates of substrate analogues improved the accuracy of docking into the active site of CyaA, where the grid did not account for one of the three Mg2+ ions in the crystal structure. The AutoDock ranking (based on docking energies) of a test group of compounds was relatively unaffected by protonation of carboxyl groups. However, the ranking by FlexX-ChemScore varied significantly, especially for docking to CyaA, suggesting that alternate protonation states should be tested when screening compound libraries with this program. When the charges on the bound metal were set correctly, AutoDock was the most reliable program of the three tested with respect to positioning substrate analogues and ranking compounds according to their experimentally determined ability to inhibit EF.
Collapse
Affiliation(s)
- Deliang Chen
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA
| | | | | | | | | | | |
Collapse
|
6
|
Bryantsev VS, Hay BP. De novo structure-based design of bisurea hosts for tetrahedral oxoanion guests. J Am Chem Soc 2006; 128:2035-42. [PMID: 16464105 DOI: 10.1021/ja056699w] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper presents a computational approach to the deliberate design of improved host architectures. De novo molecule building software, HostDesigner, is interfaced with molecular mechanics software, GMMX, providing a tool for generating and screening millions of potential structures. The efficacy of this computer-aided design methodology is illustrated with a search for bisurea podands that are structurally organized for complexation with tetrahedral oxoanions.
Collapse
Affiliation(s)
- Vyacheslav S Bryantsev
- Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | |
Collapse
|
7
|
Affiliation(s)
- Xavier Barril
- Senior Scientist, Vernalis (R&D), Granta Park, Abington, Cambridge, UK
| | | |
Collapse
|
8
|
Belda I, Madurga S, Llorà X, Martinell M, Tarragó T, Piqueras MG, Nicolás E, Giralt E. ENPDA: an evolutionary structure-based de novo peptide design algorithm. J Comput Aided Mol Des 2005; 19:585-601. [PMID: 16267689 DOI: 10.1007/s10822-005-9015-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/14/2005] [Indexed: 10/25/2022]
Abstract
One of the goals of computational chemists is to automate the de novo design of bioactive molecules. Despite significant advances in computational approaches to ligand design and binding energy evaluation, novel procedures for ligand design are required. Evolutionary computation provides a new approach to this design endeavor. We propose an evolutionary tool for de novo peptide design, based on the evaluation of energies for peptide binding to a user-defined protein surface patch. Special emphasis has been placed on the evaluation of the proposed peptides, leading to two different evaluation heuristics. The software developed was successfully tested on the design of ligands for the proteins prolyl oligopeptidase, p53, and DNA gyrase.
Collapse
Affiliation(s)
- Ignasi Belda
- Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, Universitat de Barcelona, Josep Samitier, 1-5, Barcelona, E 08028, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hay BP, Oliferenko AA, Uddin J, Zhang C, Firman TK. Search for Improved Host Architectures: Application of de Novo Structure-Based Design and High-Throughput Screening Methods To Identify Optimal Building Blocks for Multidentate Ethers. J Am Chem Soc 2005; 127:17043-53. [PMID: 16316251 DOI: 10.1021/ja055169x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper presents a computational approach to the deliberate design of improved host architectures. The approach, which involves the use of computer-aided design software, is illustrated by application to cation hosts containing multiple aliphatic ether oxygen binding sites. De novo molecule building software, HostDesigner, is interfaced with molecular mechanics software, GMMX, providing a tool for generating and screening millions of potential bidentate building block structures. Enhanced cation binding affinity can be achieved when highly organized building blocks are used to construct macrocyclic hosts.
Collapse
Affiliation(s)
- Benjamin P Hay
- Chemical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Zhang J, Aizawa M, Amari S, Iwasawa Y, Nakano T, Nakata K. Development of KiBank, a database supporting structure-based drug design. Comput Biol Chem 2005; 28:401-7. [PMID: 15556481 DOI: 10.1016/j.compbiolchem.2004.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 09/13/2004] [Accepted: 09/15/2004] [Indexed: 11/29/2022]
Abstract
KiBank is a database of inhibition constant (Ki) values with 3D structures of target proteins and chemicals. Ki values were accumulated from peer-reviewed literature searched via PubMed. The 3D structure files of target proteins were originally from Protein Data Bank (PDB), while the 2D structure files of the chemicals were collected together with the Ki values and then converted into 3D ones. In KiBank, the chemical and protein 3D structures with hydrogen atoms were optimized by energy minimization and stored in MDL MOL and PDB format, respectively. KiBank is designed to support structure-based drug design. It provides structure files of proteins and chemicals ready for use in virtual screening through automated docking methods, while the Ki values can be applied for tests of docking/scoring combinations, program parameter settings, and calibration of empirical scoring functions. Additionally, the chemical structures and corresponding Ki values in KiBank are useful for lead optimization based on quantitative structure-activity relationship (QSAR) techniques. KiBank is updated on a daily basis and is freely available at . As of August 2004, KiBank contains 8000 Ki values, over 6000 chemicals and 166 proteins covering the subtypes of receptors and enzymes.
Collapse
Affiliation(s)
- Junwei Zhang
- Collaborative Research Center of Frontier Simulation Software for Industrial Science, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Hay BP, Firman TK. HostDesigner: a program for the de novo structure-based design of molecular receptors with binding sites that complement metal ion guests. Inorg Chem 2002; 41:5502-12. [PMID: 12377046 DOI: 10.1021/ic0202920] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes a novel approach to the discovery of host structures with binding sites that complement targeted metal ion guests. This approach uses a de novo structure-based design strategy that couples molecular building algorithms with scoring functions to prioritize candidate structures. The algorithms described herein have been implemented in a program called HostDesigner, the first structure-based design software specifically created for the discovery of metal ion receptors. HostDesigner generates and evaluates millions of candidate structures within minutes, rapidly identifying three-dimensional architectures that position binding sites to provide an optimal interaction with the metal ion.
Collapse
Affiliation(s)
- Benjamin P Hay
- W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | |
Collapse
|
13
|
Abstract
Chemical genomics represents a convergence of biology and chemistry in the era of global approaches to target identification and intervention. The success of genomics has led to a bottleneck in target validation that could be overcome by using small diverse organic compounds to interfere with biological processes. Because of the limitations of existing compound collections, this diversity can only fully be exploited using in silico design techniques to guide the selection of molecules with optimal binding properties. Structure-based design is used to create structures de novo that can be synthesized for use as chemical probes and drug leads.
Collapse
Affiliation(s)
- Edward D Zanders
- De Nove Pharmaceuticals, Compass House, Vision Park, Histon, Cambridge, UK CB4 9ZR.
| | | | | |
Collapse
|
14
|
Tao P, Lai L. Protein ligand docking based on empirical method for binding affinity estimation. J Comput Aided Mol Des 2001; 15:429-46. [PMID: 11394737 DOI: 10.1023/a:1011188704521] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
An empirical protein-ligand binding affinity estimation method, SCORE, was incorporated into a popular docking program, DOCK4. The combined program, ScoreDock, was used to reconstruct the 200 protein-ligand complex structures and found to give good results for the complexes with high binding affinities. A quality assessment method for docking results from ScoreDock was developed based on the whole test set and tested by additionally selected complexes. The method significantly improves the docking accuracy and was shown to be reliable in docking quality assessment. As a docking tool in structural based drug design, ScoreDock can screen out final hits directly based on the predicted negative logarithms of dissociation equilibrium constants of protein-ligand complexes, and can explicitly deal with structure water molecules, as well as metal atoms.
Collapse
Affiliation(s)
- P Tao
- Institute of Physical Chemistry, Peking University, Beijing, PR China
| | | |
Collapse
|
15
|
Haq I, Jenkins TC, Chowdhry BZ, Ren J, Chaires JB. Parsing free energies of drug-DNA interactions. Methods Enzymol 2001; 323:373-405. [PMID: 10944760 DOI: 10.1016/s0076-6879(00)23374-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- I Haq
- Krebs Institute for Biomolecular Sciences, Department of Chemistry, University of Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Abstract
Understanding the thermodynamics of drug binding to DNA is of both practical and fundamental interest. The practical interest lies in the contribution that thermodynamics can make to the rational design process for the development of new DNA targeted drugs. Thermodynamics offer key insights into the molecular forces that drive complex formation that cannot be obtained by structural or computational studies alone. The fundamental interest in these interactions lies in what they can reveal about the general problems of parsing and predicting ligand binding free energies. For these problems, drug-DNA interactions offer several distinct advantages, among them being that the structures of many drug-DNA complexes are known at high resolution and that such structures reveal that in many cases the drug acts as a rigid body, with little conformational change upon binding. Complete thermodynamic profiles (delta G, delta H, delta S, delta Cp) for numerous drug-DNA interactions have been obtained, with the help of high-sensitivity microcalorimetry. The purpose of this article is to offer a perspective on the interpretation of these thermodynamics parameters, and in particular how they might be correlated with known structural features. Obligatory conformational changes in the DNA to accommodate intercalators and the loss of translational and rotational freedom upon complex formation both present unfavorable free energy barriers for binding. Such barriers must be overcome by favorable free energy contributions from the hydrophobic transfer of ligand from solution into the binding site, polyelectrolyte contributions from coupled ion release, and molecular interactions (hydrogen and ionic bonds, van der Waals interactions) that form within the binding site. Theoretical and semiempirical tools that allow estimates of these contributions to be made will be discussed, and their use in dissecting experimental data illustrated. This process, even at the current level of approximation, can shed considerable light on the drug-DNA binding process.
Collapse
Affiliation(s)
- J B Chaires
- Department of Biochemistry, University of Mississippi, Medical Center, Jackson 39216-4505, USA
| |
Collapse
|
17
|
Sleigh SH, Seavers PR, Wilkinson AJ, Ladbury JE, Tame JR. Crystallographic and calorimetric analysis of peptide binding to OppA protein. J Mol Biol 1999; 291:393-415. [PMID: 10438628 DOI: 10.1006/jmbi.1999.2929] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isothermal titration calorimetry has been used to study the binding of 20 different peptides to the peptide binding protein OppA, and the crystal structures of the ligand complexes have been refined. This periplasmic binding protein, part of the oligopeptide permease system of Gram negative bacteria, has evolved to bind and enclose small peptides of widely varying sequences. The peptides used in this study have the sequence Lys-X-Lys, where X is any of the 20 commonly occurring amino acids. The various side-chains found at position 2 on the ligand fit into a hydrated pocket. The majority of side-chains are restrained to particular conformations within the pocket. Water molecules act as flexible adapters, matching the hydrogen-bonding requirements of the protein and ligand and shielding charges on the buried ligand. This use of water by OppA to broaden the repertoire of its binding site is not unique, but contrasts sharply with other proteins which use water to help bind ligands highly selectively. Predicting the thermodynamics of binding from the structure of the complexes is highly complicated by the influence of water on the system.
Collapse
Affiliation(s)
- S H Sleigh
- Structural Biology Centre Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | | | | |
Collapse
|
18
|
Abstract
Computational approaches to drug design are presently hindered by the complexity of the physical chemistry which underlies weak, non-covalent interactions between protein targets and small molecule ligands. Although a number of programs are now available for the design of novel potential ligands, it remains a key problem to rank these rapidly and reliably by estimated binding affinity. Such a step is necessary to select only the most promising candidates for synthesis and experimental characterisation. To calculate ligand affinity quickly and reliably is an extremely difficult problem, but it may well prove possible to estimate sufficiently accurately given an appropriate set of parameters to 'score' individual protein-ligand interactions. Improvements in the situation will require a wider set of thermodynamically characterised systems than is currently available.
Collapse
Affiliation(s)
- J R Tame
- Department of Chemistry, University of York, U.K
| |
Collapse
|
19
|
Böhm HJ, Banner DW, Weber L. Combinatorial docking and combinatorial chemistry: design of potent non-peptide thrombin inhibitors. J Comput Aided Mol Des 1999; 13:51-6. [PMID: 10087499 DOI: 10.1023/a:1008040531766] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A computational algorithm was used to design automatically novel thrombin inhibitors that are available from a single-step chemical reaction. The compounds do not contain amide bonds, are achiral and have a molecular weight below 400. Of the 10 compounds that were synthesized, five bind to thrombin with a Ki in the nanomolar range. Subsequent X-ray structure determination of the thrombin-inhibitor complex for the best compound (Ki = 95 nM) confirms the predicted binding mode. The novel algorithm is applicable to a broad range of chemical reactions.
Collapse
Affiliation(s)
- H J Böhm
- Hoffmann-La Roche Ltd, Pharmaceuticals Division, Basel, Switzerland
| | | | | |
Collapse
|
20
|
Kubinyi H. Chance favors the prepared mind--from serendipity to rational drug design. J Recept Signal Transduct Res 1999; 19:15-39. [PMID: 10071748 DOI: 10.3109/10799899909036635] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accidental discoveries always played an important role in science, especially in the search for new drugs. Several examples of serendipitous findings, leading to therapeutically useful drugs, are presented and discussed. Captopril, an antihypertensive Angiotensin-converting enzyme inhibitor, was the first drug that could be derived from a structural model of a protein. Dorzolamide, a Carboanhydrase inhibitor for the treatment of glaucoma, and the HIV protease inhibitors Saquinavir, Indinavir, Ritonavir, and Nelfinavir are further examples of therapeutically used drugs from structure-based design. More enzyme inhibitors, e.g. the anti-influenza drugs Zanamivir and GS 4104, are in clinical development. In the absence of a protein 3D structure, the 3D structures of certain ligands may be used for rational design. This approach is exemplified by the design of specifically acting integrin receptor antagonists. In the last years, combinatorial and computational approaches became important methods for rational drug design. SAR by NMR searches for low-affinity ligands that bind to proximal subsites of an enzyme; linkage with an appropriate tether produces nanomolar inhibitors. The de novo design program LUDI and the docking program FlexX are tools for the computer-aided design of protein ligands. Work is in progress to combine such approaches to strategies for combinatorial drug design.
Collapse
Affiliation(s)
- H Kubinyi
- BASF Aktiengesellschaft, Ludwigshafen, Germany
| |
Collapse
|
21
|
Abstract
A novel dynamical protocol for finding the low-energy conformations of a protein-ligand complex is described. The energy functions examined consist of an empirical force field with four different dielectric screening models; the generalized Born/surface area model also is examined. Application of the method to three complexes of known crystal structure provides insights into the energy functions used for selecting low-energy docked conformations and into the structure of the binding-energy surface. Evidence is presented that the local energy minima of a ligand in a binding site are arranged in a hierarchical fashion. This observation motivates the construction of a hierarchical docking algorithm that substantially enriches the population of ligand conformations close to the crystal conformation. The algorithm is also adapted to permit docking into a flexible binding site and preliminary tests of this method are presented.
Collapse
Affiliation(s)
- J A Given
- Center for Advanced Research in Biotechnology, Rockville, Maryland 20850, USA
| | | |
Collapse
|
22
|
|